-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAgent.py
308 lines (260 loc) · 11.9 KB
/
Agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import tensorflow as tf
import keras
import random
import gym
import numpy as np
from collections import deque
from keras.models import Model
from keras.engine.topology import Input
from keras.layers import Dense
from keras import initializers
from keras.optimizers import Adam
import json
from keras.models import model_from_json
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Input, Lambda
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.optimizers import SGD , Adam
import tensorflow as tf
import skimage
from skimage import color, exposure, transform
import ExplorationStrategies
import os
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
import Memories
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
def copy_model(model):
"""Returns a copy of a keras model."""
model.save('tmp_model')
return keras.models.load_model('tmp_model')
def process_frame(x_t, img_rows, img_cols):
x_t = skimage.color.rgb2gray(x_t)
x_t = skimage.transform.resize(x_t,(img_rows, img_cols), mode='constant')
x_t = skimage.exposure.rescale_intensity(x_t,out_range=(0,255))
x_t = x_t.reshape((1, img_rows, img_cols, 1))
x_t /= 255.0
return x_t
def save_model(model, path):
model.save(path)
def play_game(env, model, img_dims, img_channels):
x_t = env.reset()
x_t = process_frame(x_t, img_dims[0], img_dims[1])
s_t = np.stack((x_t, x_t, x_t), axis=3)
s_t = s_t.reshape(1, s_t.shape[1], s_t.shape[2], s_t.shape[3])
rAll = 0
timestep = 0
while(True):
q = model.predict(s_t)
policy_max_Q = np.argmax(q)
a_t = policy_max_Q
if np.random.rand(1) < 0.02:
a_t = random.randrange(env.action_space.n)
x_t1,r_t,done,_ = env.step(a_t)
x_t1 = process_frame(x_t1, img_dims[0], img_dims[1])
s_t1 = np.append(x_t1, s_t[:, :, :, :img_channels-1], axis=3)
s_t = s_t1
rAll += r_t
timestep += 1
if done:
break
return rAll, timestep
class Agent:
def __init__(self, setup_dict=None):
"""
setup dict contains info like this:
'start_eps': 0.6,
'end_eps': 0.1,
'observing_frames': 30000,
'exploring_frames': 500000,
'replay_memory_size': 30000,
'replay_batch_size': 32,
'learning_rate': 1e-4,
'gamma': 0.99,
'log_filename': 'filename.txt',
'log_freq': 25,
'saving_freq': 100,
'img_dims': (84, 84), // rows x cols
'num_consecutive_frames': 3, // num frames that are stored as state
'max_ep_length': 700, // maximum episode length
'saving_dir': 'dirname', // where will everything be saved
'game_name': 'BreakoutDeterministic-v4',
'update_freq': 1
"""
if setup_dict == None:
setup_dict = {}
if not 'start_eps' in setup_dict:
setup_dict['start_eps'] = 0.6
if not 'end_eps' in setup_dict:
setup_dict['end_eps'] = 0.1
if not 'observing_frames' in setup_dict:
setup_dict['observing_frames'] = 300
if not 'exploring_frames' in setup_dict:
setup_dict['exploring_frames'] = 500000
if not 'replay_memory_size' in setup_dict:
setup_dict['replay_memory_size'] = 300
if not 'replay_batch_size' in setup_dict:
setup_dict['replay_batch_size'] = 32
if not 'learning_rate' in setup_dict:
setup_dict['learning_rate'] = 1e-4
if not 'log_freq' in setup_dict:
setup_dict['log_freq'] = 25
if not 'saving_freq' in setup_dict:
setup_dict['saving_freq'] = 100
if not 'saving_dir' in setup_dict:
setup_dict['saving_dir'] = "AgentResults"
if not 'img_width' in setup_dict:
setup_dict['img_width'] = 84
if not 'img_height' in setup_dict:
setup_dict['img_height'] = 84
if not 'num_consecutive_frames' in setup_dict:
setup_dict['num_consecutive_frames'] = 3
if not 'max_ep_length' in setup_dict:
setup_dict['max_ep_length'] = 700
if not 'game_name' in setup_dict:
setup_dict['game_name'] = 'BreakoutDeterministic-v4'
if not 'gamma' in setup_dict:
setup_dict['gamma'] = 0.99
if not 'update_freq' in setup_dict:
setup_dict['update_freq'] = 1
if not 'log_filename' in setup_dict:
setup_dict['log_filename'] = 'log.txt'
if not 'MemoryType' in setup_dict:
setup_dict['MemoryType'] = 'ExperienceReplayMemory'
if not 'PEREps' in setup_dict:
setup_dict['PEREps'] = 1e-3
if not 'PERAlfa' in setup_dict:
setup_dict['PERAlfa'] = 1.4
if not 'ExplorationStrategy' in setup_dict:
setup_dict['ExplorationStrategy'] = 'EpsilonGreedyExplorationStrategy'
self.start_eps = float(setup_dict['start_eps'])
self.end_eps = float(setup_dict['end_eps'])
self.observing_frames = int(setup_dict['observing_frames'])
self.exploring_frames = int(setup_dict['exploring_frames'])
self.replay_memory_size = int(setup_dict['replay_memory_size'])
self.replay_batch_size = int(setup_dict['replay_batch_size'])
self.learning_rate = float(setup_dict['learning_rate'])
self.log_freq = int(setup_dict['log_freq'])
self.saving_freq = int(setup_dict['saving_freq'])
self.saving_dir = os.path.join(setup_dict['saving_dir'], '')
self.img_dims = int(setup_dict['img_width']), int(setup_dict['img_height'])
self.num_consecutive_frames = int(setup_dict['num_consecutive_frames'])
self.max_ep_length = int(setup_dict['max_ep_length'])
self.game_name = setup_dict['game_name']
self.gamma = float(setup_dict['gamma'])
self.update_freq = int(setup_dict['update_freq'])
if setup_dict['MemoryType'] == 'ExperienceReplayMemory':
self.memory = Memories.ExperienceReplayMemory(self.replay_memory_size)
if setup_dict['MemoryType'] == 'MemoryPrioritizedForgetting':
self.memory = Memories.MemoryPrioritizedForgetting(self.replay_memory_size)
if setup_dict['MemoryType'] == 'PrioritizedExperienceReplayMemory':
eps, alfa = setup_dict['PEREps'], setup_dict['PERAlfa']
self.memory = Memories.PrioritizedExperienceReplayMemory(self.replay_memory_size, eps, alfa)
print('initialized memory', self.memory)
if not os.path.exists(self.saving_dir):
os.makedirs(self.saving_dir)
self.log_file = open(os.path.join(self.saving_dir, setup_dict['log_filename']), 'w', 1)
self.env = gym.make(self.game_name)
self.num_actions = self.env.action_space.n
if setup_dict['ExplorationStrategy'] == 'EpsilonGreedyExplorationStrategy':
self.exploration_strategy = ExplorationStrategies.EpsilonGreedyExplorationStrategy(self.start_eps, self.end_eps, self.exploring_frames, self.num_actions)
if setup_dict['ExplorationStrategy'] == 'BoltzmannExplorationStrategy':
self.exploration_strategy = ExplorationStrategies.BoltzmannExplorationStrategy(self.num_actions)
self.summary_writer = tf.summary.FileWriter(os.path.join(self.saving_dir,"Tensorboard"))
import json
with open(os.path.join(self.saving_dir,'config.json'), 'w') as fp:
json.dump(setup_dict, fp)
def build_model(self):
raise NotImplementedError
def get_target(self, state_t, action_t, reward_t, state_t1, done_t):
raise NotImplementedError
def get_batch(self):
self.samples = self.memory.sample(self.replay_batch_size)
return self.samples
def post_train(self):
self.memory.post_train(self)
def replay(self):
minibatch = self.get_batch()
inputs = np.zeros((self.replay_batch_size, self.img_dims[0], self.img_dims[1], self.num_consecutive_frames))
targets = np.zeros((self.replay_batch_size, self.num_actions))
for i in range(0, self.replay_batch_size):
state_t = minibatch[i][0]
action_t = minibatch[i][1]
reward_t = minibatch[i][2]
state_t1 = minibatch[i][3]
done_t = minibatch[i][4]
inputs[i] = state_t
targets[i] = self.get_target(state_t, action_t, reward_t, state_t1, done_t)
loss = self.model.train_on_batch(inputs, targets)
self.post_train()
return loss
def initialize(self):
self.build_model()
def choose_action(self, s_t):
return self.exploration_strategy.choose_action(self, s_t)
def save_transition(self, transition):
self.memory.save_experience(self, transition)
def train(self):
self.initialize()
self.t = 0
idxEpisode = 0
loss_logger = []
while True:
idxEpisode += 1
if self.t >= self.exploring_frames + self.observing_frames:
break
if self.t >= self.observing_frames and idxEpisode % self.log_freq == 0 and self.log_file != None:
testing_rewards = []
testing_timesteps = []
for i in range(5):
rAll, timesteps = play_game(self.env, self.model, self.img_dims, self.num_consecutive_frames)
testing_rewards.append(rAll)
testing_timesteps.append(timesteps)
self.log_file.write(str(idxEpisode) + ' ' + str(rAll) + '\n')
print('tested at episode', idxEpisode, 'reward is', rAll)
summary = tf.Summary()
summary.value.add(tag='Performance/Reward', simple_value=float(sum(testing_rewards) / len(testing_rewards)))
summary.value.add(tag='Performance/Length', simple_value=float(sum(testing_timesteps) / len(testing_timesteps)))
summary.value.add(tag='Losses/Value Loss', simple_value=float(sum(loss_logger) / len(loss_logger)))
self.summary_writer.add_summary(summary, idxEpisode)
self.summary_writer.flush()
loss_logger = []
self.cnt_rewarded = 0
#Reset environment and get first new observation
x_t = self.env.reset()
x_t = process_frame(x_t, self.img_dims[0], self.img_dims[1])
s_t = np.stack((x_t, x_t, x_t), axis=3)
s_t = s_t.reshape(1, s_t.shape[1], s_t.shape[2], s_t.shape[3])
rAll = 0
j = 0
loss = 0.0
#The Q-Network
while j < self.max_ep_length:
j+=1
a_t = self.choose_action(s_t)
x_t1,r_t,done,_ = self.env.step(a_t)
r_t_clipped = r_t
# reward clipping
if r_t_clipped > 0.0:
r_t_clipped = 1.0
elif r_t_clipped < 0.0:
r_t_clipped = -1.0
x_t1 = process_frame(x_t1, self.img_dims[0], self.img_dims[1])
s_t1 = np.append(x_t1, s_t[:, :, :, :self.num_consecutive_frames-1], axis=3)
self.t += 1
self.save_transition((s_t, a_t, r_t_clipped, s_t1, done))
if self.t > self.observing_frames:
self.exploration_strategy.step()
loss += self.replay()
rAll += r_t
s_t = s_t1
if done == True:
break
print('episode', idxEpisode, 'length', j, 'reward', rAll, 'avg batch loss', (loss / j))
loss_logger.append((loss/j))
print ('rewarded count', self.cnt_rewarded, '/', j * self.replay_batch_size)
if idxEpisode % self.saving_freq == 0:
path = self.saving_dir + 'model_episode_' + str(idxEpisode) + '.h5'
save_model(self.model, path)