-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpvtools.py
301 lines (215 loc) · 10.6 KB
/
pvtools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#!/bin/python3
"""Written for python 3.11
This module contains functions that can be used to postprocess SOWFA precursor
and turbine simulations using paraview's python interface, pvpython or pvbatch.
Created by Jeffrey Johnston, Jun. 2023
"""
import logging
from pathlib import Path
import numpy as np
import paraview
import paraview.simple as simple
import constants as const
import utils
paraview.compatibility.major = 5
paraview.compatibility.minor = 10
paraview.simple._DisableFirstRenderCameraReset()
logger = logging.getLogger(__name__)
###############################################################################
def loadof(filepath: Path, cellarrays: list[str] = None,
casetype: str = 'Reconstructed Case',
meshregions: list[str] = ['internalMesh'],
filterdata: bool = 0,
polyhedra: bool = 0) -> simple.OpenFOAMReader:
"""Load an openfoam case in paraview using the .foam file
Args:
filepath (Path): The path to the .foam file
cellarrays (list[str], optional): Names of data arrays to load.
Defaults to CELLARRAYS.
casetype (str, optional): Reconstructed or decomposed.
Defaults to 'Decomposed Case'.
filterdata (bool, optional): Create cell to point filtered data.
Defaults to 0 (False).
polyhedra (bool, optional): Decompose polyhedra.
Defaults to 0 (False).
Returns:
paraview.simple.OpenFOAMReader: A reader object which can be used as a
source for paraview filters.
"""
logger.debug(f'Loading OpenFOAM case from {filepath}')
ofcase = simple.OpenFOAMReader(FileName=str(filepath))
ofcase.MeshRegions = meshregions
if cellarrays is not None: ofcase.CellArrays = cellarrays
ofcase.CaseType = casetype
ofcase.Createcelltopointfiltereddata = filterdata
ofcase.Decomposepolyhedra = polyhedra
ofcase.UpdatePipeline(max(ofcase.TimestepValues))
return ofcase
def create_slice(source, origin: tuple, normal: tuple) -> simple.Slice:
"""Create a slice filter.
Args:
source (paraview object): The pipeline object to which the slice is
applied.
origin (tuple): 3 coordinates specifying the origin.
normal (tuple): 3 coordinates specifying the normal vector.
Returns:
paraview.simple.Slice: An object in the paraview pipeline.
"""
logger.debug(f'Creating slice. {origin=} {normal=}')
pvslice = simple.Slice(Input=source)
pvslice.SliceType = 'Plane'
pvslice.SliceType.Origin = origin
pvslice.SliceType.Normal = normal
return pvslice
def create_transform(input, rotation: tuple) -> simple.Transform:
logger.debug(f"Creating Transfrom. {rotation=}")
transform = simple.Transform(Input=input)
transform.Transform = 'Transform'
transform.Transform.Rotate = rotation
return transform
def create_cellDataToPointData(input, cellarrays: list) -> simple.CellDatatoPointData:
logger.debug("Creating Point Data")
pointData = simple.CellDatatoPointData(Input=input)
pointData.CellDataArraytoprocess = cellarrays
return pointData
def create_cylinder_clip(source, origin: tuple, axis: tuple,
radius: float) -> simple.Clip:
"""Create a clip filter using a cylinder.
Args:
source (paraview object): The pipeline object to which the clip is
applied.
origin (tuple): 3 coordinates specifying the origin.
axis (tuple): 3 coordinates specifying the axis vector.
radius (float): Radius of the cylinder.
Returns:
paraview.simple.Clip: An object in the paraview pipeline.
"""
logger.debug(f'Creating clip using cylinder. {origin=} {axis=} {radius=}')
pvclip = simple.Clip(Input=source)
pvclip.ClipType = 'Cylinder'
pvclip.ClipType.Center = origin
pvclip.ClipType.Axis = axis
pvclip.ClipType.Radius = radius
return pvclip
def integrate_variables(source, per_volume=True) -> simple.IntegrateVariables:
"""Calculate area or volume average of all variables.
Args:
source (paraview object): The pipeline object to be integrated.
Returns:
paraview.simple.IntegrateVariables: An object in the paraview pipeline.
"""
logger.debug(f'Integrating Variables for {source.__class__.__name__}')
integrateVariables = simple.IntegrateVariables(Input=source)
integrateVariables.DivideCellDataByVolume = 1 if per_volume else 0
return integrateVariables
def extractRegion(input,position,length,rotation):
logger.debug('Extracting Cells By Region')
extractedCells = simple.ExtractCellsByRegion(Input=input)
extractedCells.IntersectWith = 'Box'
extractedCells.IntersectWith.Position = position
extractedCells.IntersectWith.Length = length
extractedCells.IntersectWith.Rotation = rotation
return extractedCells
def create_ellipse(origin, normal, radius, resolution = 100):
logger.debug('Create Ellipse')
ellipse = simple.Ellipse()
ellipse.Center = origin
ellipse.Normal = normal
ellipse.MajorRadiusVector = radius
ellipse.Resolution = resolution
return ellipse
def streamTracerCustom(input,seed,vectors,maxlength,direction):
logger.debug('Creating stream tracers')
streamTracer = simple.StreamTracerWithCustomSource(Input=input,
SeedSource=seed)
streamTracer.Vectors = vectors
streamTracer.MaximumStreamlineLength = maxlength
streamTracer.IntegrationDirection = direction
return streamTracer
def create_line_sample(source, point1: tuple, point2: tuple,
samplingpattern: str = 'Sample Uniformly',
resolution=5000) -> simple.PlotOverLine:
"""Sample data over a line.
Args:
source (paraview object): The pipeline object from which the sample is
taken.
point1 (tuple): 3 coordinates specifying the first point of the line.
point2 (tuple): 3 coordinates specifying the second point of the line.
samplingpattern (str, optional): 'Sample Uniformly',
'Sample at Segment Centers', or 'Sample at Cell Boundaries'.
Defaults to 'Sample Uniformly'.
resolution (int, optional): For 'Sample Uniformly'. How many samples to
take. Defaults to 1000.
Returns:
paraview.simple.PlotOverLine: An object in the paraivew pipeline.
"""
logger.debug(f'Taking line sample for {source.__class__.__name__}. '
f'{point1=} {point2=}')
pvline = simple.PlotOverLine(Input=source)
pvline.Point1 = point1
pvline.Point2 = point2
pvline.SamplingPattern = samplingpattern
pvline.Resolution = resolution
return pvline
def save_csv(source, filename: Path, field: str = 'Cell Data',
arrays: list = None) -> None:
logger.debug(f"Saving {source.__class__.__name__} to {filename}.csv")
writearrays = 0 if arrays is None else 1
simple.SaveData(f'{filename}.csv', proxy=source,
WriteTimeSteps=0,
ChooseArraysToWrite=writearrays,
CellDataArrays=arrays,
Precision=12,
FieldAssociation=field,
AddMetaData=1, AddTime=1)
def integrate_wake(ofcase, filename: Path, turbine_origin: np.array,
unit_normal: np.array, turbine_radius: np.array,
distances = range(-5,8)) -> None:
pvslice = create_slice(ofcase, turbine_origin, unit_normal)
pvclip = create_cylinder_clip(pvslice, turbine_origin, unit_normal,
turbine_radius)
pvintegrate = integrate_variables(pvclip)
save_csv(pvintegrate, filename.parent / f'{filename.stem}0D')
for i in distances:
label = f'{i}D'
slice_origin = (turbine_origin + i * 2* turbine_radius * unit_normal)
logger.debug(f"Considering Flow at {label} Up/Down-stream. {slice_origin=}")
pvslice.SliceType.Origin = slice_origin
save_csv(pvintegrate, filename.parent / f'{filename.stem}{label}')
def create_line_sample_series(ofcase, filepaths: list, start_points: np.array,
end_points: np.array, resolution: int = 5000) -> None:
for i, start_point in enumerate(start_points):
end_point = end_points[i,:]
if i == 0:
pvline = create_line_sample(ofcase, start_point, end_point,
resolution=resolution)
else:
logger.debug(f"Modifiying line. {start_point=} {end_point=}")
pvline.Point1 = start_point
pvline.Point2 = end_point
save_csv(pvline, filepaths[i], field="Point Data")
def calculateDownstreamWakeLocation(casename,casefile,casedir):
"""For use with two aligned turbine cases. Tracks first turbines wake
and finds intersection with second turbines rotor plane."""
logger.info(f"Opening {casefile} in paraview and tracing turbine0 wake "
f"downstream")
cellarrays = ['UAvg']
ofcase = loadof(casefile,cellarrays)
extracted_region_origin = [(i+5) for i in const.REFINEMENT_ORIGIN]
extracted_region_length = [(i-10) for i in const.REFINEMENT_SIZE]
extractedCells = extractRegion(ofcase, extracted_region_origin,
extracted_region_length,
[0,0,(270-const.WIND_DIRECTION_DEG)])
ellipse = create_ellipse(const.TURBINE_ORIGIN,const.WIND_UNIT_VECTOR,
[const.TURBINE_RADIUS,0,0], resolution=10000)
pointdata = create_cellDataToPointData(extractedCells,cellarrays)
streamTracer = streamTracerCustom(pointdata,ellipse,['Points']+cellarrays,
const.DOMAIN_MAXDISTANCE,'FORWARD')
slice = create_slice(streamTracer,const.TURBINES_ORIGIN[1],
const.WIND_UNIT_VECTOR)
streamline_dir = casedir / const.STREAMLINES_DIR
utils.create_directory(streamline_dir)
casefile = (streamline_dir
/ f'{casename}_streamLines_turbine0_forward_intersect_turbine1')
save_csv(slice,casefile,'Point Data')
################################################################################