-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathtrain_vdn.py
62 lines (52 loc) · 1.53 KB
/
train_vdn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
""""""
import numpy as np
from openrl.configs.config import create_config_parser
from openrl.envs.common import make
from openrl.envs.wrappers.mat_wrapper import MATWrapper
from openrl.modules.common import VDNNet as Net
from openrl.runners.common import VDNAgent as Agent
def train():
# create environment
env_num = 100
env = make(
"simple_spread",
env_num=env_num,
asynchronous=True,
)
env = MATWrapper(env)
# create the neural network
cfg_parser = create_config_parser()
cfg = cfg_parser.parse_args()
net = Net(env, cfg=cfg, device="cuda")
# initialize the trainer
agent = Agent(net, use_wandb=True)
# start training
agent.train(total_time_steps=5000000)
env.close()
agent.save("./vdn_agent/")
return agent
def evaluation(agent):
# render_model = "group_human"
render_model = None
env_num = 9
env = make(
"simple_spread", render_mode=render_model, env_num=env_num, asynchronous=False
)
env = MATWrapper(env)
agent.load("./vdn_agent/")
agent.set_env(env)
obs, info = env.reset(seed=0)
done = False
step = 0
total_reward = 0
while not np.any(done):
# Based on environmental observation input, predict next action.
action, _ = agent.act(obs, deterministic=True)
obs, r, done, info = env.step(action)
step += 1
total_reward += np.mean(r)
print(f"total_reward: {total_reward}")
env.close()
if __name__ == "__main__":
agent = train()
evaluation(agent)