-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
executable file
·74 lines (58 loc) · 2.26 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import tensorflow as tf
import numpy as np
import glob
import os
import cv2
import sys
def predict_image(filename, sess):
image_size = 128
num_channels = 3
images = []
# Reading the image using OpenCV
image = cv2.imread(filename)
# Resizing the image to our desired size and preprocessing will be done exactly as done during training
image = cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR)
images.append(image)
images = np.array(images, dtype=np.uint8)
images = images.astype('float32')
images = np.multiply(images, 1.0 / 255.0)
# The input to the network is of shape [None image_size image_size num_channels]. Hence we reshape.
x_batch = images.reshape(1, image_size, image_size, num_channels)
# Accessing the default graph which we have restored
graph = tf.get_default_graph()
# Now, let's get hold of the op that we can be processed to get the output.
# In the original network y_pred is the tensor that is the prediction of the network
y_pred = graph.get_tensor_by_name("y_pred:0")
# Let's feed the images to the input placeholders
x = graph.get_tensor_by_name("x:0")
y_true = graph.get_tensor_by_name("y_true:0")
y_test_images = np.zeros((1, 2))
# Creating the feed_dict that is required to be fed to calculate y_pred
feed_dict_testing = {x: x_batch, y_true: y_test_images}
result = sess.run(y_pred, feed_dict=feed_dict_testing)
return result
def test_data(testing_path, classes, session):
error = 0
success = 0
for class_idx, classe in enumerate(classes):
path = os.path.dirname(os.path.realpath(__file__)) + "/" + testing_path + "/"+classe
for file in glob.glob(path + "/*.png"):
res = predict_image(file, session)[0]
if max(res) == res[class_idx]:
success += 1
else:
error += 1
return success, error
# Get Image
dir_path = os.path.dirname(os.path.realpath(__file__))
# Restore the saved model
sess = tf.Session()
# Step-1: Recreate the network graph.
saver = tf.train.import_meta_graph(dir_path + '/model-20/.meta')
# Step-2: Load the weights saved using the restore method.
saver.restore(sess, tf.train.latest_checkpoint(dir_path + '/model-20/'))
classes = ['rl', 'uni']
success, error = test_data("testing_data", classes, sess)
print(success, error)
taux = success / (success + error)
print("Succes rate is " + str(taux))