-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
270 lines (209 loc) · 6.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import warnings
warnings.filterwarnings("ignore")
import gc
import numpy as np
import pandas as pd
import itertools
from collections import Counter
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, f1_score
from imblearn.over_sampling import RandomOverSampler
import evaluate
from datasets import Dataset, Image, ClassLabel
from transformers import (
TrainingArguments,
Trainer,
ViTImageProcessor,
ViTForImageClassification,
DefaultDataCollator
)
from transformers import AutoModel, AutoProcessor
from transformers.image_utils import load_image
import torch
from torch.utils.data import DataLoader
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomRotation,
RandomResizedCrop,
RandomHorizontalFlip,
RandomAdjustSharpness,
Resize,
ToTensor
)
from PIL import Image, ExifTags
from PIL import Image as PILImage
from PIL import ImageFile
# Enable loading truncated images
ImageFile.LOAD_TRUNCATED_IMAGES = True
from datasets import load_dataset
dataset = load_dataset("--your--dataset--goes--here--", split="train")
from pathlib import Path
file_names = []
labels = []
for example in dataset:
file_path = str(example['image'])
label = example['label']
file_names.append(file_path)
labels.append(label)
print(len(file_names), len(labels))
df = pd.DataFrame.from_dict({"image": file_names, "label": labels})
print(df.shape)
df.head()
df['label'].unique()
y = df[['label']]
df = df.drop(['label'], axis=1)
ros = RandomOverSampler(random_state=83)
df, y_resampled = ros.fit_resample(df, y)
del y
df['label'] = y_resampled
del y_resampled
gc.collect()
dataset[0]["image"]
dataset[9999]["image"]
labels_subset = labels[:5]
print(labels_subset)
labels_list = ['example_label_1', 'example_label_2']
label2id, id2label = {}, {}
for i, label in enumerate(labels_list):
label2id[label] = i
id2label[i] = label
ClassLabels = ClassLabel(num_classes=len(labels_list), names=labels_list)
print("Mapping of IDs to Labels:", id2label, '\n')
print("Mapping of Labels to IDs:", label2id)
def map_label2id(example):
example['label'] = ClassLabels.str2int(example['label'])
return example
dataset = dataset.map(map_label2id, batched=True)
dataset = dataset.cast_column('label', ClassLabels)
dataset = dataset.train_test_split(test_size=0.4, shuffle=True, stratify_by_column="label")
train_data = dataset['train']
test_data = dataset['test']
from transformers import AutoImageProcessor
from transformers import SiglipForImageClassification
# Use AutoImageProcessor instead of AutoProcessor
model_str = "google/siglip2-base-patch16-224"
processor = AutoImageProcessor.from_pretrained(model_str)
# Extract preprocessing parameters
image_mean, image_std = processor.image_mean, processor.image_std
size = processor.size["height"]
# Define training transformations
_train_transforms = Compose([
Resize((size, size)),
RandomRotation(90),
RandomAdjustSharpness(2),
ToTensor(),
Normalize(mean=image_mean, std=image_std)
])
# Define validation transformations
_val_transforms = Compose([
Resize((size, size)),
ToTensor(),
Normalize(mean=image_mean, std=image_std)
])
# Apply transformations to dataset
def train_transforms(examples):
examples['pixel_values'] = [_train_transforms(image.convert("RGB")) for image in examples['image']]
return examples
def val_transforms(examples):
examples['pixel_values'] = [_val_transforms(image.convert("RGB")) for image in examples['image']]
return examples
# Assuming train_data and test_data are loaded datasets
train_data.set_transform(train_transforms)
test_data.set_transform(val_transforms)
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
labels = torch.tensor([example['label'] for example in examples])
return {"pixel_values": pixel_values, "labels": labels}
model = SiglipForImageClassification.from_pretrained(model_str, num_labels=len(labels_list))
model.config.id2label = id2label
model.config.label2id = label2id
print(model.num_parameters(only_trainable=True) / 1e6)
accuracy = evaluate.load("accuracy")
def compute_metrics(eval_pred):
predictions = eval_pred.predictions
label_ids = eval_pred.label_ids
predicted_labels = predictions.argmax(axis=1)
acc_score = accuracy.compute(predictions=predicted_labels, references=label_ids)['accuracy']
return {
"accuracy": acc_score
}
args = TrainingArguments(
output_dir="siglip2-finetune",
logging_dir='./logs',
evaluation_strategy="epoch",
learning_rate=2e-6,
per_device_train_batch_size=32,
per_device_eval_batch_size=8,
num_train_epochs=6,
weight_decay=0.02,
warmup_steps=50,
remove_unused_columns=False,
save_strategy='epoch',
load_best_model_at_end=True,
save_total_limit=1,
report_to="none"
)
trainer = Trainer(
model,
args,
train_dataset=train_data,
eval_dataset=test_data,
data_collator=collate_fn,
compute_metrics=compute_metrics,
tokenizer=processor,
)
trainer.evaluate()
trainer.train()
trainer.evaluate()
outputs = trainer.predict(test_data)
print(outputs.metrics)
y_true = outputs.label_ids
y_pred = outputs.predictions.argmax(1)
def plot_confusion_matrix(cm, classes, title='Confusion Matrix', cmap=plt.cm.Blues, figsize=(10, 8)):
plt.figure(figsize=figsize)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=90)
plt.yticks(tick_marks, classes)
fmt = '.0f'
thresh = cm.max() / 2.0
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
plt.show()
accuracy = accuracy_score(y_true, y_pred)
f1 = f1_score(y_true, y_pred, average='macro')
print(f"Accuracy: {accuracy:.4f}")
print(f"F1 Score: {f1:.4f}")
if len(labels_list) <= 150:
cm = confusion_matrix(y_true, y_pred)
plot_confusion_matrix(cm, labels_list, figsize=(8, 6))
print()
print("Classification report:")
print()
print(classification_report(y_true, y_pred, target_names=labels_list, digits=4))
trainer.save_model()
#upload to hub
from huggingface_hub import notebook_login
notebook_login()
from huggingface_hub import HfApi
api = HfApi()
repo_id = f"prithivMLmods/siglip2-finetune"
try:
api.create_repo(repo_id)
print(f"Repo {repo_id} created")
except:
print(f"Repo {repo_id} already exists")
api.upload_folder(
folder_path="siglip2-finetune/",
path_in_repo=".",
repo_id=repo_id,
repo_type="model",
revision="main"
)