-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patha2c_agent.py
350 lines (320 loc) · 18.2 KB
/
a2c_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#!/usr/bin/env python
# n-step Advantage Actor-Critic Agent (A2C) | Praveen Palanisamy
# Chapter 8, Hands-on Intelligent Agents with OpenAI Gym, 2018
from argparse import ArgumentParser
from datetime import datetime
from collections import namedtuple
import numpy as np
import torch
from torch.distributions.multivariate_normal import MultivariateNormal
from torch.distributions.categorical import Categorical
import torch.multiprocessing as mp
import torch.nn.functional as F
import gym
try:
import roboschool
except ImportError:
pass
from tensorboardX import SummaryWriter
from utils.params_manager import ParamsManager
from function_approximator.shallow import Actor as ShallowActor
from function_approximator.shallow import DiscreteActor as ShallowDiscreteActor
from function_approximator.shallow import Critic as ShallowCritic
from function_approximator.deep import Actor as DeepActor
from function_approximator.deep import DiscreteActor as DeepDiscreteActor
from function_approximator.deep import Critic as DeepCritic
from environment import carla_gym
import environment.atari as Atari
parser = ArgumentParser("deep_ac_agent")
parser.add_argument("--env", help="Name of the Gym environment",
default="Pendulum-v0", metavar="ENV_ID")
parser.add_argument("--params-file", default="a2c_parameters.json",
help="Path to parameters file.Default=a2c_parameters.json",
metavar="a2c_parameters.json")
parser.add_argument("--model-dir", default="trained_models/", metavar="MODEL_DIR",
help="Directory to save/load trained model. Default= ./trained_models/")
parser.add_argument("--render", action='store_true', default=False,
help="Whether to render the environment to the display. Default=False")
parser.add_argument("--test", action='store_true', default=False,
help="Tests a saved Agent model to see the performance. Disables learning")
parser.add_argument("--gpu-id", type=int, default=0, metavar="GPU_ID",
help="GPU device ID to use. Default:0")
args = parser.parse_args()
global_step_num = 0
params_manager= ParamsManager(args.params_file)
summary_file_path_prefix = params_manager.get_agent_params()['summary_file_path_prefix']
summary_file_path= summary_file_path_prefix + args.env + "_" + datetime.now().strftime("%y-%m-%d-%H-%M")
writer = SummaryWriter(summary_file_path)
# Export the parameters as json files to the log directory to keep track of the parameters used in each experiment
params_manager.export_env_params(summary_file_path + "/" + "env_params.json")
params_manager.export_agent_params(summary_file_path + "/" + "agent_params.json")
use_cuda = params_manager.get_agent_params()['use_cuda']
# Introduced in PyTorch 0.4
device = torch.device("cuda:" + str(args.gpu_id) if torch.cuda.is_available() and use_cuda else "cpu")
seed = params_manager.get_agent_params()['seed'] # With the intent to make the results reproducible
torch.manual_seed(seed)
np.random.seed(seed)
if torch.cuda.is_available() and use_cuda:
torch.cuda.manual_seed_all(seed)
Transition = namedtuple("Transition", ["s", "value_s", "a", "log_prob_a"])
class DeepActorCriticAgent(mp.Process):
def __init__(self, id, env_name, agent_params, env_params):
"""
An Advantage Actor-Critic Agent that uses a Deep Neural Network to represent it's Policy and the Value function
:param id: An integer ID to identify the agent in case there are multiple agent instances
:param env_name: Name/ID of the environment
:param agent_params: Parameters to be used by the agent
"""
super(DeepActorCriticAgent, self).__init__()
self.id = id
self.actor_name = "actor" + str(self.id)
self.env_name = env_name
self.params = agent_params
self.env_conf = env_params
self.policy = self.multi_variate_gaussian_policy
self.gamma = self.params['gamma']
self.trajectory = [] # Contains the trajectory of the agent as a sequence of Transitions
self.rewards = [] # Contains the rewards obtained from the env at every step
self.global_step_num = 0
self.best_mean_reward = - float("inf") # Agent's personal best mean episode reward
self.best_reward = - float("inf")
self.saved_params = False # Whether or not the params have been saved along with the model to model_dir
self.continuous_action_space = True #Assumption by default unless env.action_space is Discrete
def multi_variate_gaussian_policy(self, obs):
"""
Calculates a multi-variate gaussian distribution over actions given observations
:param obs: Agent's observation
:return: policy, a distribution over actions for the given observation
"""
mu, sigma = self.actor(obs)
value = self.critic(obs)
[ mu[:, i].clamp_(float(self.env.action_space.low[i]), float(self.env.action_space.high[i]))
for i in range(self.action_shape)] # Clamp each dim of mu based on the (low,high) limits of that action dim
sigma = torch.nn.Softplus()(sigma).squeeze() + 1e-7 # Let sigma be (smoothly) +ve
self.mu = mu.to(torch.device("cpu"))
self.sigma = sigma.to(torch.device("cpu"))
self.value = value.to(torch.device("cpu"))
if len(self.mu.shape) == 0: # See if mu is a scalar
#self.mu = self.mu.unsqueeze(0) # This prevents MultivariateNormal from crashing with SIGFPE
self.mu.unsqueeze_(0)
self.action_distribution = MultivariateNormal(self.mu, torch.eye(self.action_shape) * self.sigma, validate_args=True)
return self.action_distribution
def discrete_policy(self, obs):
"""
Calculates a discrete/categorical distribution over actions given observations
:param obs: Agent's observation
:return: policy, a distribution over actions for the given observation
"""
logits = self.actor(obs)
value = self.critic(obs)
self.logits = logits.to(torch.device("cpu"))
self.value = value.to(torch.device("cpu"))
self.action_distribution = Categorical(logits=self.logits)
return self.action_distribution
def preproc_obs(self, obs):
obs = np.array(obs) # Obs could be lazy frames. So, force fetch before moving forward
if len(obs.shape) == 3:
# Reshape obs from (H x W x C) order to this order: C x W x H and resize to (C x 84 x 84)
obs = np.reshape(obs, (obs.shape[2], obs.shape[1], obs.shape[0]))
obs = np.resize(obs, (obs.shape[0], 84, 84))
# Convert to torch Tensor, add a batch dimension, convert to float repr
obs = torch.from_numpy(obs).unsqueeze(0).float()
return obs
def process_action(self, action):
if self.continuous_action_space:
[action[:, i].clamp_(float(self.env.action_space.low[i]), float(self.env.action_space.high[i]))
for i in range(self.action_shape)] # Limit the action to lie between the (low, high) limits of the env
action = action.to(torch.device("cpu"))
return action.numpy().squeeze(0) # Convert to numpy ndarray, squeeze and remove the batch dimension
def get_action(self, obs):
obs = self.preproc_obs(obs)
action_distribution = self.policy(obs) # Call to self.policy(obs) also populates self.value with V(obs)
value = self.value
action = action_distribution.sample()
log_prob_a = action_distribution.log_prob(action)
action = self.process_action(action)
# Store the n-step trajectory while training. Skip storing the trajectories in test mode
if not self.params["test"]:
self.trajectory.append(Transition(obs, value, action, log_prob_a)) # Construct the trajectory
return action
def calculate_n_step_return(self, n_step_rewards, final_state, done, gamma):
"""
Calculates the n-step return for each state in the input-trajectory/n_step_transitions
:param n_step_rewards: List of rewards for each step
:param final_state: Final state in this n_step_transition/trajectory
:param done: True rf the final state is a terminal state if not, False
:return: The n-step return for each state in the n_step_transitions
"""
g_t_n_s = list()
with torch.no_grad():
g_t_n = torch.tensor([[0]]).float() if done else self.critic(self.preproc_obs(final_state)).cpu()
for r_t in n_step_rewards[::-1]: # Reverse order; From r_tpn to r_t
g_t_n = torch.tensor(r_t).float() + self.gamma * g_t_n
g_t_n_s.insert(0, g_t_n) # n-step returns inserted to the left to maintain correct index order
return g_t_n_s
def calculate_loss(self, trajectory, td_targets):
"""
Calculates the critic and actor losses using the td_targets and self.trajectory
:param td_targets:
:return:
"""
n_step_trajectory = Transition(*zip(*trajectory))
v_s_batch = n_step_trajectory.value_s
log_prob_a_batch = n_step_trajectory.log_prob_a
actor_losses, critic_losses = [], []
for td_target, critic_prediction, log_p_a in zip(td_targets, v_s_batch, log_prob_a_batch):
td_err = td_target - critic_prediction
actor_losses.append(- log_p_a * td_err) # td_err is an unbiased estimated of Advantage
critic_losses.append(F.smooth_l1_loss(critic_prediction, td_target))
#critic_loss.append(F.mse_loss(critic_pred, td_target))
if self.params["use_entropy_bonus"]:
actor_loss = torch.stack(actor_losses).mean() - self.action_distribution.entropy().mean()
else:
actor_loss = torch.stack(actor_losses).mean()
critic_loss = torch.stack(critic_losses).mean()
writer.add_scalar(self.actor_name + "/critic_loss", critic_loss, self.global_step_num)
writer.add_scalar(self.actor_name + "/actor_loss", actor_loss, self.global_step_num)
return actor_loss, critic_loss
def learn(self, n_th_observation, done):
if self.params["clip_rewards"]:
self.rewards = np.sign(self.rewards).tolist() # Clip rewards to -1 or 0 or +1
td_targets = self.calculate_n_step_return(self.rewards, n_th_observation, done, self.gamma)
actor_loss, critic_loss = self.calculate_loss(self.trajectory, td_targets)
self.actor_optimizer.zero_grad()
actor_loss.backward(retain_graph=True)
self.actor_optimizer.step()
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
self.trajectory.clear()
self.rewards.clear()
def save(self):
model_file_name = self.params["model_dir"] + "A2C_" + self.env_name + ".ptm"
agent_state = {"Actor": self.actor.state_dict(),
"Critic": self.critic.state_dict(),
"best_mean_reward": self.best_mean_reward,
"best_reward": self.best_reward}
torch.save(agent_state, model_file_name)
print("Agent's state is saved to", model_file_name)
# Export the params used if not exported already
if not self.saved_params:
params_manager.export_agent_params(model_file_name + ".agent_params")
print("The parameters have been saved to", model_file_name + ".agent_params")
self.saved_params = True
def load(self):
model_file_name = self.params["model_dir"] + "A2C_" + self.env_name + ".ptm"
agent_state = torch.load(model_file_name, map_location= lambda storage, loc: storage)
self.actor.load_state_dict(agent_state["Actor"])
self.critic.load_state_dict(agent_state["Critic"])
self.actor.to(device)
self.critic.to(device)
self.best_mean_reward = agent_state["best_mean_reward"]
self.best_reward = agent_state["best_reward"]
print("Loaded Advantage Actor-Critic model state from", model_file_name,
" which fetched a best mean reward of:", self.best_mean_reward,
" and an all time best reward of:", self.best_reward)
def run(self):
# If a custom useful_region configuration for this environment ID is available, use it if not use the Default.
# Currently this is utilized for only the Atari env. Follows the same procedure as in Chapter 6
custom_region_available = False
for key, value in self.env_conf['useful_region'].items():
if key in args.env:
self.env_conf['useful_region'] = value
custom_region_available = True
break
if custom_region_available is not True:
self.env_conf['useful_region'] = self.env_conf['useful_region']['Default']
atari_env = False
for game in Atari.get_games_list():
if game.replace("_", "") in args.env.lower():
atari_env = True
if atari_env: # Use the Atari wrappers (like we did in Chapter 6) if it's an Atari env
self.env = Atari.make_env(self.env_name, self.env_conf)
else:
#print("Given environment name is not an Atari Env. Creating a Gym env")
self.env = gym.make(self.env_name)
self.state_shape = self.env.observation_space.shape
if isinstance(self.env.action_space.sample(), int): # Discrete action space
self.action_shape = self.env.action_space.n
self.policy = self.discrete_policy
self.continuous_action_space = False
else: # Continuous action space
self.action_shape = self.env.action_space.shape[0]
self.policy = self.multi_variate_gaussian_policy
self.critic_shape = 1
if len(self.state_shape) == 3: # Screen image is the input to the agent
if self.continuous_action_space:
self.actor= DeepActor(self.state_shape, self.action_shape, device).to(device)
else: # Discrete action space
self.actor = DeepDiscreteActor(self.state_shape, self.action_shape, device).to(device)
self.critic = DeepCritic(self.state_shape, self.critic_shape, device).to(device)
else: # Input is a (single dimensional) vector
if self.continuous_action_space:
#self.actor_critic = ShallowActorCritic(self.state_shape, self.action_shape, 1, self.params).to(device)
self.actor = ShallowActor(self.state_shape, self.action_shape, device).to(device)
else: # Discrete action space
self.actor = ShallowDiscreteActor(self.state_shape, self.action_shape, device).to(device)
self.critic = ShallowCritic(self.state_shape, self.critic_shape, device).to(device)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=self.params["learning_rate"])
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=self.params["learning_rate"])
# Handle loading and saving of trained Agent models
episode_rewards = list()
prev_checkpoint_mean_ep_rew = self.best_mean_reward
num_improved_episodes_before_checkpoint = 0 # To keep track of the num of ep with higher perf to save model
#print("Using agent_params:", self.params)
if self.params['load_trained_model']:
try:
self.load()
prev_checkpoint_mean_ep_rew = self.best_mean_reward
except FileNotFoundError:
if args.test: # Test a saved model
print("FATAL: No saved model found. Cannot test. Press any key to train from scratch")
input()
else:
print("WARNING: No trained model found for this environment. Training from scratch.")
for episode in range(self.params["max_num_episodes"]):
obs = self.env.reset()
done = False
ep_reward = 0.0
step_num = 0
while not done:
action = self.get_action(obs)
next_obs, reward, done, _ = self.env.step(action)
self.rewards.append(reward)
ep_reward += reward
step_num +=1
if not args.test and (step_num >= self.params["learning_step_thresh"] or done):
self.learn(next_obs, done)
step_num = 0
# Monitor performance and save Agent's state when perf improves
if done:
episode_rewards.append(ep_reward)
if ep_reward > self.best_reward:
self.best_reward = ep_reward
if np.mean(episode_rewards) > prev_checkpoint_mean_ep_rew:
num_improved_episodes_before_checkpoint += 1
if num_improved_episodes_before_checkpoint >= self.params["save_freq_when_perf_improves"]:
prev_checkpoint_mean_ep_rew = np.mean(episode_rewards)
self.best_mean_reward = np.mean(episode_rewards)
self.save()
num_improved_episodes_before_checkpoint = 0
obs = next_obs
self.global_step_num += 1
if args.render:
self.env.render()
#print(self.actor_name + ":Episode#:", episode, "step#:", step_num, "\t rew=", reward, end="\r")
writer.add_scalar(self.actor_name + "/reward", reward, self.global_step_num)
print("{}:Episode#:{} \t ep_reward:{} \t mean_ep_rew:{}\t best_ep_reward:{}".format(
self.actor_name, episode, ep_reward, np.mean(episode_rewards), self.best_reward))
writer.add_scalar(self.actor_name + "/ep_reward", ep_reward, self.global_step_num)
if __name__ == "__main__":
agent_params = params_manager.get_agent_params()
agent_params["model_dir"] = args.model_dir
agent_params["test"] = args.test
env_params = params_manager.get_env_params() # Used with Atari environments
env_params["env_name"] = args.env
mp.set_start_method('spawn') # Prevents RuntimeError during cuda init
agent_procs =[DeepActorCriticAgent(id, args.env, agent_params, env_params)
for id in range(agent_params["num_agents"])]
[p.start() for p in agent_procs]
[p.join() for p in agent_procs]