-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimization.py
211 lines (154 loc) · 8.12 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
import functions as funcs
class object_detection_loss(nn.Module):
def __init__(self, num_classes=2, eos_coef=0.2, matcher=funcs.HungarianMatcher()):
super().__init__()
self.num_classes = num_classes
self.matcher = matcher
self.eos_coef = eos_coef
empty_weight = torch.ones(self.num_classes + 1)
empty_weight[-1] = self.eos_coef
self.register_buffer('empty_weight', empty_weight)
def loss_labels(self, outputs, targets, indices):
assert 'pred_logits' in outputs
src_logits = outputs['pred_logits']
idx = self._get_src_permutation_idx(indices)
empty_batch = False
target_classes = torch.full(src_logits.shape[:2], self.num_classes,
dtype=torch.int64, device=src_logits.device)
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
if target_classes_o.numel() != 0:
target_classes_o = target_classes_o.to(dtype=torch.long)
target_classes[idx] = target_classes_o
else:
empty_batch = True
loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
return loss_ce, empty_batch
def loss_boxes(self, outputs, targets, indices, num_boxes):
assert 'pred_boxes' in outputs
idx = self._get_src_permutation_idx(indices)
src_boxes = outputs['pred_boxes'][idx]
target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
loss_giou = 1 - torch.diag(funcs.generalized_box_iou(funcs.box_cxcywh_to_xyxy(src_boxes),
funcs.box_cxcywh_to_xyxy(target_boxes)))
return loss_bbox.sum() / num_boxes + loss_giou.sum() / num_boxes
def _get_src_permutation_idx(self, indices):
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
src_idx = torch.cat([src for (src, _) in indices])
batch_idx = batch_idx.to(dtype=torch.long)
src_idx = src_idx.to(dtype=torch.long)
return batch_idx, src_idx
def forward(self, outputs, targets):
indices = self.matcher(outputs, targets)
num_boxes = sum(len(t["labels"]) for t in targets)
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device)
num_boxes = torch.clamp(num_boxes / funcs.get_world_size(), min=1).item()
loss_labels, empty_batch = self.loss_labels(outputs, targets, indices)
if empty_batch == True:
return loss_labels
loss_boxes = self.loss_boxes(outputs, targets, indices, num_boxes)
return loss_labels + loss_boxes
class sampling_point_classification_loss(nn.Module):
def __init__(self, num_classes=3, seq_length=32):
super().__init__()
self.num_classes = num_classes
self.seq_length = seq_length
def loss_labels(self, outputs, targets):
return F.cross_entropy(outputs, targets)
def forward(self, outputs, targets):
logits = rearrange(outputs["pred_logits"], 'b l c -> (b l) c').to(torch.float32)
labels = torch.cat([t["labels"] for t in targets], dim=0).to(torch.long)
return self.loss_labels(logits, labels)
def od2sc_targets(od_box_data, seq_length):
sc_point_data, interval = [], 1 / (seq_length + 1)
for box_data in od_box_data:
point_data = torch.zeros(seq_length, dtype=torch.long)
tmp = torch.round(box_data['boxes'] / interval).int()
tmp = torch.clamp(tmp, min=1, max=seq_length) - 1
for k in range(tmp.shape[0]):
point_data[tmp[k, 0]:tmp[k, 1] + 1] = box_data['labels'][k] + 1
sc_point_data += [{"labels": point_data}]
return sc_point_data
def sc2od_targets(sc_point_data, seq_length):
od_box_data = []
for point_data in sc_point_data:
tmp_data = point_data['labels']
boxes, labels = [], []
start, label, length, last = None, 0, seq_length, -1
for i in range(tmp_data.shape[0]):
if start is not None:
if tmp_data[i] != last:
boxes.append([(start + 1) / length, min((i + 1) / length, 1.0)])
labels.append(label - 1)
if tmp_data[i] != 0:
start, label, last = i, tmp_data[i], tmp_data[i]
else:
start, label, last = None, 0, -1
else:
continue
else:
if tmp_data[i] == 0:
start, label, last = None, 0, -1
else:
start, label, last = i, tmp_data[i], tmp_data[i]
if start is not None:
boxes.append([(start + 1) / length, 1.0])
labels.append(label - 1)
boxes = torch.tensor(boxes)
labels = torch.tensor(labels)
od_box_data.append({"labels": labels, "boxes": boxes})
return od_box_data
class dual_task_contrastive_loss(nn.Module):
def __init__(self, od_contrastive_loss, sc_contrastive_loss, seq_length):
super().__init__()
self.od_contrastive_loss = od_contrastive_loss
self.sc_contrastive_loss = sc_contrastive_loss
self.matcher = self.od_contrastive_loss.matcher
self.seq_length = seq_length
def _get_object_detection_targets(self, sc_outputs):
ret_sc_targets = []
for batch in sc_outputs["pred_logits"]:
labels = torch.argmax(batch, dim=1)
ret_sc_targets.append({"labels": labels})
return sc2od_targets(ret_sc_targets, self.seq_length)
def _get_sampling_point_classification_targets(self, od_outputs, od_targets):
od_outputs = funcs.boxes_dimension_expansion(od_outputs, dtype='outputs')
od_targets = funcs.boxes_dimension_expansion(od_targets, dtype='targets')
indices = self.matcher(od_outputs, od_targets)
selected_indices = [item[0] for item in indices]
ret_od_targets = []
for batch_idx, indices in enumerate(selected_indices):
logits = od_outputs["pred_logits"][batch_idx]
boxes = od_outputs["pred_boxes"][batch_idx]
selected_logits = logits[indices]
selected_boxes = boxes[indices][:, [0, 2]]
labels = torch.argmax(selected_logits, dim=1) - 1
labels = torch.clamp(labels, min=0)
ret_od_targets.append({"labels": labels, "boxes": selected_boxes})
return od2sc_targets(ret_od_targets, self.seq_length)
def forward(self, od_outputs, sc_outputs, od_targets):
sc_con_targets = self._get_sampling_point_classification_targets(od_outputs, od_targets)
od_con_targets = self._get_object_detection_targets(sc_outputs)
od_con_targets = funcs.boxes_dimension_expansion(od_con_targets, dtype='targets')
sc_loss_values =self.sc_contrastive_loss(sc_outputs, sc_con_targets)
od_loss_values = self.od_contrastive_loss(od_outputs, od_con_targets)
return sc_loss_values + od_loss_values
class spatio_temporal_contrast_loss(nn.Module):
def __init__(self, num_classes=2, seq_length=32, eos_coef=0.2):
super().__init__()
self.num_classes = num_classes
self.seq_length = seq_length
self.eos_coef = eos_coef
self.od_loss = object_detection_loss(num_classes=self.num_classes, eos_coef=self.eos_coef,
matcher=funcs.HungarianMatcher())
self.sc_loss = sampling_point_classification_loss(num_classes=self.num_classes + 1, seq_length=self.seq_length)
self.dc_loss = dual_task_contrastive_loss(self.od_loss, self.sc_loss, seq_length=self.seq_length)
def forward(self, od_outputs, sc_outputs, od_targets, delta=1):
ret_loss = self.dc_loss(od_outputs, sc_outputs, od_targets) * delta
ret_loss += self.od_loss(od_outputs, od_targets)
ret_loss += self.sc_loss(sc_outputs, od2sc_targets(od_targets, self.seq_length))
return ret_loss