-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
106 lines (75 loc) · 3.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import argparse, os
import numpy as np
import torch
import U_net_Model as Model
import SimpleITK as sitk
def load_model():
input_channels = 5
out_channels = 2
model = Model.UNet(in_channels=input_channels, out_channels=out_channels)
model_dict = torch.load('./model_lung/best_model.pth')["state_dict"]
model.load_state_dict(model_dict)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
model = model.to(device)
return model
def get_model_input(ct_array,resolution):
wc,ww = -600,1600
ct_array = (ct_array - wc) / ww
sample_list = []
z,y,x = ct_array.shape
window = (-5, -2, 0, 2, 5)
for slice_index in range(z):
sample = np.zeros([len(window), y, x], 'float32')
for idx in range(len(window)):
slice_id = slice_index + int(window[idx]/resolution[0])
if slice_id >= 0 and slice_id < z:
sample[idx,:,:] = ct_array[slice_id,:,:]
sample_list.append(sample)
return sample_list
def predict(test_model, sample_list):
sample_array = np.stack(sample_list, axis=0) # z * 5 * y * x
batch_size = 8
prediction_list = []
index = 0
soft_max = torch.nn.Softmax(dim=1)
test_model.eval()
with torch.no_grad():
while index < len(sample_list):
index_end = index + batch_size
if index_end >= len(sample_list):
index_end = len(sample_list)
inputs = torch.from_numpy(sample_array[index: index_end, :, :, :]).cuda()
prediction = test_model(inputs)
prediction = soft_max(prediction)
prediction = prediction.cpu().numpy() # batch_size * 2 * y * x
prediction_list.append(prediction)
index = index_end
prediction_array = np.concatenate(prediction_list, axis=0) # z * 2 * y * x
lung_mask = np.array(prediction_array[:,1,:,:] > 0.5,'float32')
return lung_mask
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='lung segmentation of a ct volume')
parser.add_argument('--input_dir', default='', type=str, metavar='PATH',
help='this directory contains all test samples(ct volumes)')
parser.add_argument('--predict_dir', default='', type=str, metavar='PATH',
help='segmentation file of each test sample should be stored in the directory')
args = parser.parse_args()
input_dir = args.input_dir
predict_dir = args.predict_dir
test_model = load_model()
print("model loaded successfully!")
for ct_file in os.listdir(input_dir):
input_file = os.path.join(input_dir,ct_file)
dataname = ct_file.split('\.')[0]
input_image = sitk.ReadImage(input_file)
input_array = sitk.GetArrayFromImage(input_image)
resolution = input_image.GetSpacing()
resolution = (resolution[2],resolution[1],resolution[0])
sample_list = get_model_input(input_array,resolution)
print("start predicting input volume!",dataname)
lung_mask = predict(test_model,sample_list)
mask_image = sitk.GetImageFromArray(lung_mask)
mask_image.SetOrigin(input_image.GetOrigin())
mask_image.SetSpacing(input_image.GetSpacing())
sitk.WriteImage(mask_image,os.path.join(predict_dir,dataname+'.nii.gz'))
print("segmentation is generated successfully!",dataname)