-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtool.py
273 lines (251 loc) · 11.2 KB
/
tool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os, json
import pandas as pd
import requests
from SchedAlgoLib.heuristic_algorithms.genetic_algorithm.FJSPGAMain import run_GA
from SchedAlgoLib.exact_algorithms.FJSPMain import run_MIP
from SchedAlgoLib.rule_based_scheduling.RuleBasedMain import run_Rules
from SchedAlgoLib.utils.data_loader import update_process_with_robots, calculate_indicators
from SchedAlgoLib.utils.read_json import load_machine_time_windows, decode_robot_transfers
from SchedAlgoLib.utils.Gantt import Gantt, Gantt_tp
import os
def find_file(filename, root_dir):
# 遍历根目录和所有子目录
for dirpath, dirnames, filenames in os.walk(root_dir):
# 检查文件名是否在当前目录的文件列表中
if filename in filenames:
# 生成文件的完整路径
full_path = os.path.join(dirpath, filename)
# 返回相对于当前工作目录的路径
return os.path.relpath(full_path, start=os.getcwd())
return None # 如果文件没有找到,返回None
def get_excel_name(path, time):
file_path_ = path.split('\\')
print(file_path_)
if len(file_path_) >= 8:
excel_path = os.path.join('results', f'{file_path_[4]}_{file_path_[-2]}_{time}.xlsx')
else:
excel_path = os.path.join('results', f'{file_path_[4]}_{time}.xlsx')
return excel_path
def write_to_excel(excel_path, filename, method, result, run_time):
results = []
results.append({
'Filename': filename,
'Method': method,
'result': result,
'run_time': run_time
})
df = pd.DataFrame(results)
# 检查文件是否存在
# 检查文件是否存在
if os.path.exists(excel_path):
# 文件存在,追加数据不包括列头
try:
old_df = pd.read_excel(excel_path, sheet_name='Sheet1')
startrow = len(old_df) + 1
except Exception as e:
print(f"Error reading existing file: {e}")
startrow = 0 # 如果读取出错,默认从第一行开始
header = False
mode = 'a'
# 使用 ExcelWriter 追加数据或创建新文件
if startrow == 1:
header = True
startrow -= 1
with pd.ExcelWriter(excel_path, mode=mode, engine='openpyxl', if_sheet_exists='overlay') as writer:
df.to_excel(writer, sheet_name='Sheet1', index=False, header=header, startrow=startrow)
else:
# 文件不存在,添加列头,并创建文件
startrow = 0
header = True
mode = 'w'
# 使用 ExcelWriter 追加数据或创建新文件
with pd.ExcelWriter(excel_path, mode=mode, engine='openpyxl') as writer:
df.to_excel(writer, sheet_name='Sheet1', index=False, header=header, startrow=startrow)
class Tools:
def __init__(self,root_path) -> None:
self.toolConfig = self._tools()
# self.root_path = '../../SchedAlgoLib/data'
self.root_path = root_path
def _tools(self):
tools = [
{
"name_for_human": "计算指标",
"name_for_model": "calculate_indicators",
"description_for_model": "此函数用于计算调度案例的各种性能指标。",
"parameters": [
{
"name": "data_path",
"description": "调度案例文件的位置",
"required": True,
"schema": {"type": "string"}
}
]
},
{
"name_for_human": "运行遗传算法",
"name_for_model": "run_GA",
"description_for_model": "此函数运行遗传算法来优化调度案例。遗传算法是一种基于自然选择和遗传学原理的搜索启发式算法。",
"parameters": [
{
"name": "TimeLimit",
"description": "算法运行的时间限制",
"required": True,
"schema": {"type": "integer"}
},
{
"name": "data_path",
"description": "调度案例文件的位置",
"required": True,
"schema": {"type": "string"}
}
]
},
{
"name_for_human": "运行混合整数规划",
"name_for_model": "run_MIP",
"description_for_model": "此函数运行混合整数规划算法来处理调度问题,大规模问题上耗时很长。",
"parameters": [
{
"name": "TimeLimit",
"description": "算法运行的时间限制",
"required": True,
"schema": {"type": "integer"}
},
{
"name": "data_path",
"description": "调度案例文件的位置",
"required": True,
"schema": {"type": "string"}
}
]
},
{
"name_for_human": "规则式调度",
"name_for_model": "run_Rules",
"description_for_model": "此函数根据选择的规则执行规则式调度。它直接应用简单规则来分配任务,适合快速实施,但可能不如优化算法在性能上优异。",
"parameters": [
{
"name": "rule",
"description": "调度规则,可选规则包括 FIFO_SPT, FIFO_EET, MOPNR_SPT, MOPNR_EET, LWKR_SPT, LWKR_EET, MWKR_SPT, MWKR_EET",
"required": True,
"schema": {"type": "string"}
},
{
"name": "data_path",
"description": "调度案例文件的位置",
"required": True,
"schema": {"type": "string"}
}
]
},
{
"name_for_human": "加入自动化设备",
"name_for_model": "update_process_with_robots",
"description_for_model": "此函数在工艺流程中加入自动化设备,在使用自动化设备时可以先用该函数转换。",
"parameters": [
{
"name": "num_robots",
"description": "自动化设备的数量",
"required": True,
"schema": {"type": "integer"}
},
{
"name": "tp_time",
"description": "转运的时间",
"required": True,
"schema": {"type": "integer"}
},
{
"name": "path",
"description": "待重新建立工艺流程的文件路径",
"required": True,
"schema": {"type": "string"}
}
]
},
{
"name_for_human": "紧急订单重调度",
"name_for_model": "update_process_order",
"description_for_model": "此函数在动态调度过程中加入紧急订单,更改现有的工艺流程。",
"parameters": [
{
"name": "current_time",
"description": "加入订单的时间点",
"required": True,
"schema": {"type": "integer"}
},
{
"name": "schedule_path",
"description": "生成的调度方案的路径",
"required": True,
"schema": {"type": "string"}
},
{
"name": "process_path",
"description": "原有的工艺流程路径",
"required": True,
"schema": {"type": "string"}
},
{
"name": "new_process_path",
"description": "新加订单的工艺流程路径",
"required": True,
"schema": {"type": "string"}
}
]
}
]
return tools
def calculate_indicators(self, data_path: str):
# print(data_path)
found_path = find_file(data_path, self.root_path)
print(found_path)
num_jobs, num_machines, total_operations, std_dev_job_time, max_min_diff_avg, average_processing_time, job_machine_ratio, avg_machines_per_operation, density = calculate_indicators(
found_path)
# print(num_jobs, num_machines, total_operations, std_dev_job_time, max_min_diff_avg, average_processing_time, job_machine_ratio, avg_machines_per_operation, density)
observation_items = [
f"num_jobs: {num_jobs}",
f"num_machines: {num_machines}",
f"total_operations: {total_operations}",
f"std_dev_job_time: {std_dev_job_time}",
f"max_min_diff_avg: {max_min_diff_avg}",
f"average_processing_time: {average_processing_time}",
f"job_machine_ratio: {job_machine_ratio}",
f"avg_machines_per_operation: {avg_machines_per_operation}",
f"density: {density}"
]
return '{' + ', '.join(observation_items) + '}'
def run_GA(self, TimeLimit, data_path):
found_path = find_file(data_path, self.root_path)
print(found_path)
result, run_time = run_GA(TimeLimit=TimeLimit, data_path=found_path)
observation_items = [
f"result: {result}",
f"run_time: {run_time}",
]
execl_path = get_excel_name(found_path, TimeLimit)
write_to_excel(execl_path, data_path, 'GA', result, run_time)
return '{' + ', '.join(observation_items) + '}'
def run_MIP(self, TimeLimit, data_path):
found_path = find_file(data_path, self.root_path)
print(found_path)
result, run_time = run_MIP(TimeLimit=TimeLimit, data_path=found_path)
observation_items = [
f"result: {result}",
f"run_time: {run_time}",
]
execl_path = get_excel_name(found_path, TimeLimit)
write_to_excel(execl_path, data_path, 'MIP', result, run_time)
return '{' + ', '.join(observation_items) + '}'
def run_Rules(self, rule, data_path):
found_path = find_file(data_path, self.root_path)
print(found_path)
result, run_time = run_Rules(rule=rule, data_path=found_path)
observation_items = [
f"result: {result}",
f"run_time: {run_time}",
]
# =================得修改=======================
execl_path = get_excel_name(found_path, 10)
write_to_excel(execl_path, data_path, rule, result, run_time)
return '{' + ', '.join(observation_items) + '}'