|
| 1 | +" |
| 2 | +I am responsible for the decomposition of a matrix, A say, into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R |
| 3 | +" |
| 4 | +Class { |
| 5 | + #name : #PMQRDecomposition, |
| 6 | + #superclass : #Object, |
| 7 | + #instVars : [ |
| 8 | + 'matrixToDecompose', |
| 9 | + 'colSize' |
| 10 | + ], |
| 11 | + #category : #'Math-Matrix' |
| 12 | +} |
| 13 | + |
| 14 | +{ #category : #'instance creation' } |
| 15 | +PMQRDecomposition class >> of: matrix [ |
| 16 | + matrix numberOfRows < matrix numberOfColumns ifTrue: [ |
| 17 | + self error: 'numberOfRows<numberOfColumns' ]. |
| 18 | + ^ self new of: matrix |
| 19 | +] |
| 20 | + |
| 21 | +{ #category : #private } |
| 22 | +PMQRDecomposition >> decompose [ |
| 23 | + |
| 24 | + " |
| 25 | +The method appears to be using Householder reflection. There is a wiki page |
| 26 | +that describes the mechanics: |
| 27 | +https://en.wikipedia.org/wiki/QR_decomposition#Using_Householder_reflections |
| 28 | +" |
| 29 | + |
| 30 | + | identityMatrix q r householderVector i | |
| 31 | + r := self initialRMatrix. |
| 32 | + q := self initialQMatrix. |
| 33 | + identityMatrix := PMSymmetricMatrix identity: colSize. |
| 34 | + 1 to: self numberOfColumns do: [ :col | |
| 35 | + | columnVectorFromRMatrix householderMatrix | |
| 36 | + columnVectorFromRMatrix := r columnVectorAt: col size: colSize. |
| 37 | + householderVector := columnVectorFromRMatrix householder. |
| 38 | + i := (PMVector zeros: col - 1) , (householderVector at: 2). |
| 39 | + householderMatrix := identityMatrix |
| 40 | + - |
| 41 | + ((householderVector at: 1) * i tensorProduct: i). |
| 42 | + q := q * householderMatrix. |
| 43 | + i := PMMatrix rows: |
| 44 | + ((r rows allButFirst: col - 1) collect: [ :aRow | |
| 45 | + aRow allButFirst: col - 1 ]). |
| 46 | + i := i - ((householderVector at: 2) tensorProduct: |
| 47 | + (householderVector at: 1) * (householderVector at: 2) * i). |
| 48 | + i rows withIndexDo: [ :aRow :index | |
| 49 | + aRow withIndexDo: [ :n :c | |
| 50 | + r |
| 51 | + rowAt: col + index - 1 |
| 52 | + columnAt: col + c - 1 |
| 53 | + put: ((n closeTo: 0) |
| 54 | + ifTrue: [ 0 ] |
| 55 | + ifFalse: [ n ]) ] ] ]. |
| 56 | + i := 0. |
| 57 | + [ (r rowAt: colSize) allSatisfy: [ :n | n = 0 ] ] whileTrue: [ |
| 58 | + i := i + 1. |
| 59 | + colSize := colSize - 1 ]. |
| 60 | + i > 0 ifTrue: [ |
| 61 | + r := PMMatrix rows: (r rows copyFrom: 1 to: colSize). |
| 62 | + i := q numberOfColumns - i. |
| 63 | + q := PMMatrix rows: |
| 64 | + (q rows collect: [ :row | row copyFrom: 1 to: i ]) ]. |
| 65 | + ^ Array with: q with: r |
| 66 | +] |
| 67 | + |
| 68 | +{ #category : #private } |
| 69 | +PMQRDecomposition >> initialQMatrix [ |
| 70 | + |
| 71 | + ^ PMSymmetricMatrix identity: colSize |
| 72 | +] |
| 73 | + |
| 74 | +{ #category : #private } |
| 75 | +PMQRDecomposition >> initialRMatrix [ |
| 76 | + |
| 77 | + ^ PMMatrix rows: matrixToDecompose rows deepCopy |
| 78 | +] |
| 79 | + |
| 80 | +{ #category : #private } |
| 81 | +PMQRDecomposition >> numberOfColumns [ |
| 82 | + |
| 83 | + ^ matrixToDecompose numberOfColumns |
| 84 | +] |
| 85 | + |
| 86 | +{ #category : #'instance creation' } |
| 87 | +PMQRDecomposition >> of: matrix [ |
| 88 | + |
| 89 | + matrixToDecompose := matrix. |
| 90 | + colSize := matrixToDecompose numberOfRows. |
| 91 | +] |
0 commit comments