From 184f07a59b5b2e7c85175ad82724f601f566eab9 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Tue, 22 Aug 2023 14:53:05 +0200 Subject: [PATCH 01/29] Update compile_cost_assumptions.py --- scripts/compile_cost_assumptions.py | 47 ++++++++++++++++++++++++++++- 1 file changed, 46 insertions(+), 1 deletion(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 59fc9f1..4e41258 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -59,6 +59,8 @@ "Breede2015": "Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/", # Study of deep geothermal systems in the Northern Upper Rhine Graben "Frey2022": "Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben", + # vehicles + "vehicles" : "PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html" } # [DEA-sheet-names] @@ -1398,6 +1400,39 @@ def rename_ISE(costs_ISE): return costs_ISE +def rename_ISE_vehicles(costs_vehicles): + """ + rename ISE_vehicles costs to fit to tech data + """ + costs_vehicles.rename(index = {"Investition": "investment", + "Lebensdauer": "lifetime", + "M/O-Kosten": "FOM", + "Wirkungsgrad*" : "Efficiency (carrier to wheel)", + "LKW Batterie-Elektromotor" : "Battery electric (passenger cars)", + "PKW Batterie-Elektromotor" : "Battery electric (trucks)", + "LKW H2- Brennstoffzelle": "Hydrogen fuel cell (trucks)", + "PKW H2- Brennstoffzelle": "Hydrogen fuel cell (passenger cars)", + "LKW ICE- Flssigtreibstoff": "Liquid fuels ICE (trucks)", + "PKW ICE- Flssigtreibstoff": "Liquid fuels ICE (passenger cars)", + "LKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * LKW": "Charging infrastructure fuel cell vehicles trucks", + "PKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * PKW": "Charging infrastructure fuel cell vehicles passenger cars", + "PKW Ladeinfrastruktur schnell (reine) Batteriefahrzeuge*" : "Charging infrastructure fast (purely) battery electric vehicles passenger cars", + "Ladeinfrastruktur langsam (reine) Batteriefahrzeuge*" : "Charging infrastructure slow (purely) battery electric vehicles passenger cars"}, + columns = {"Einheit": "unit", + "2020": 2020, + "2025": 2025, + "2030": 2030, + "2035": 2035, + "2040": 2040, + "2045": 2045, + "2050": 2050}, inplace=True) + costs_vehicles.index.names = ["technology", "parameter"] + costs_vehicles.unit.replace({"a": "years", "% Invest": "%"}, inplace=True) + costs_vehicles["source"] = source_dict["vehicles"] + costs_vehicles['further description'] = costs_vehicles.reset_index()["technology"].values + + return costs_vehicles + def carbon_flow(costs,year): # NB: This requires some digits of accuracy; rounding to two digits creates carbon inbalances when scaling up c_in_char = 0 # Carbon ending up in char: zero avoids inbalace -> assumed to be circulated back and eventually end up in one of the other output streams @@ -2144,7 +2179,17 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): index_col=[0,2]).sort_index() # rename some techs and convert units costs_pypsa = rename_pypsa_old(costs_pypsa) - + + # (b1) ------- add vehicle costs from Fraunhofer vehicle study ------------------------ + costs_vehicles = pd.read_csv(snakemake.input.fraunhofer_vehicles_costs, + engine="python", + index_col=[0,1], + encoding='utf-8') + # rename + reorder to fit to other data + costs_vehicles = rename_ISE_vehicles(costs_vehicles) + # add costs for vehicles + data = pd.concat([data, costs_vehicles], sort=True) + # (b) ------- add costs from Fraunhofer ISE study -------------------------- costs_ISE = pd.read_csv(snakemake.input.fraunhofer_costs, engine="python", From 4391b99db645fdc4a539075deee9b42e0a0fcb31 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Tue, 22 Aug 2023 14:54:05 +0200 Subject: [PATCH 02/29] Add files via upload --- inputs/Fraunhofer_ISE_vehicles_costs.csv | 38 ++++++++++++++++++++++++ 1 file changed, 38 insertions(+) create mode 100644 inputs/Fraunhofer_ISE_vehicles_costs.csv diff --git a/inputs/Fraunhofer_ISE_vehicles_costs.csv b/inputs/Fraunhofer_ISE_vehicles_costs.csv new file mode 100644 index 0000000..0f93f7b --- /dev/null +++ b/inputs/Fraunhofer_ISE_vehicles_costs.csv @@ -0,0 +1,38 @@ +Komponente,Gr��e,Einheit,2020,2025,2030,2035,2040,2045,2050 +LKW H2- Brennstoffzelle,Investition,EUR/LKW,151574,122291,116497,117600,120177,122939,125710 +LKW H2- Brennstoffzelle,Lebensdauer,a,15,15,15,15,15,15,15 +LKW H2- Brennstoffzelle,M/O-Kosten,% Invest,10.1,12.5,13.1,13,12.7,12.4,12.2 +LKW H2- Brennstoffzelle,Wirkungsgrad*,%,56,56,56,56,56,56,56 +LKW ICE- Fl�ssigtreibstoff,Investition,EUR/LKW,99772,102543,105315,108086,110858,113629,116401 +LKW ICE- Fl�ssigtreibstoff,Lebensdauer,a,15,15,15,15,15,15,15 +LKW ICE- Fl�ssigtreibstoff,M/O-Kosten,% Invest,18,17.5,17.1,16.6,16.2,15.8,15.5 +LKW ICE- Fl�ssigtreibstoff,Wirkungsgrad*,%,37.3,37.3,37.3,37.3,37.3,37.3,37.3 +LKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * LKW,Investition,EUR/Lades�ule,2243051,2000991,1787894,1787894,1787894,1787894,1787894 +LKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * LKW,Lebensdauer,a,30,30,30,30,30,30,30 +LKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * LKW,M/O-Kosten,% Invest,2.2,2.2,2.2,2.2,2.2,2.2,2.2 +PKW H2- Brennstoffzelle,Investition,EUR/PKW,55000,43500,33226,30720,29440,28160,26880 +PKW H2- Brennstoffzelle,Lebensdauer,a,15,15,15,15,15,15,15 +PKW H2- Brennstoffzelle,M/O-Kosten,% Invest,1.1,1.1,1.1,1.1,1.2,1.2,1.2 +PKW H2- Brennstoffzelle,Wirkungsgrad*,%,48,48,48,48,48,48,48 +PKW ICE- Fl�ssigtreibstoff,Investition,EUR/PKW,23561,24309,24999,25622,26167,26610,26880 +PKW ICE- Fl�ssigtreibstoff,Lebensdauer,a,15,15,15,15,15,15,15 +PKW ICE- Fl�ssigtreibstoff,M/O-Kosten,% Invest,1.6,1.6,1.6,1.6,1.6,1.6,1.6 +PKW ICE- Fl�ssigtreibstoff,Wirkungsgrad*,%,21.5,21.5,21.5,21.5,21.5,21.5,21.5 +PKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * PKW,Investition,EUR/Lades�ule,2243051,2000991,1787894,1788360,1788360,1788360,1788360 +PKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * PKW,Lebensdauer,a,30,30,30,30,30,30,30 +PKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * PKW,M/O-Kosten,% Invest,2.2,2.2,2.2,2.2,2.2,2.2,2.2 +PKW Ladeinfrastruktur schnell (reine) Batteriefahrzeuge*,Investition,EUR/Lades�ule,629102,527507,448894,448894,448894,448894,448894 +PKW Ladeinfrastruktur schnell (reine) Batteriefahrzeuge*,Lebensdauer,a,30,30,30,30,30,30,30 +PKW Ladeinfrastruktur schnell (reine) Batteriefahrzeuge*,M/O-Kosten,% Invest,1.6,1.6,1.6,1.6,1.6,1.6,1.6 +Ladeinfrastruktur langsam (reine) Batteriefahrzeuge*,Investition,EUR/Lades�ule,1283,1126,1005,1005,1005,1005,1005 +Ladeinfrastruktur langsam (reine) Batteriefahrzeuge*,Lebensdauer,a,30,30,30,30,30,30,30 +Ladeinfrastruktur langsam (reine) Batteriefahrzeuge*,M/O-Kosten,% Invest,1.8,1.8,1.8,1.8,1.8,1.8,1.8 +NT,Wirkungsgrad el.,%,62.9,63.4,63.9,64.4,64.9,65.4,65.9 +NT,Wirkungsgrad th.,%,27.9,28.1,28.3,28.5,28.7,28.9,29.1 +PKW Batterie-Elektromotor,Investition,EUR/PKW,33000,28812,24624,24358,24092,23827,23561 +PKW Batterie-Elektromotor,Lebensdauer,a,15,15,15,15,15,15,15 +PKW Batterie-Elektromotor,M/O-Kosten,% Invest,0.9,0.9,0.9,0.9,0.9,0.9,0.9 +PKW Batterie-Elektromotor,Wirkungsgrad*,%,68,68,68,68,68,68,68 +LKW Batterie-Elektromotor,Investition,EUR/LKW,204067,165765,136400,134700,133000,131200,129400 +LKW Batterie-Elektromotor,Lebensdauer,a,15,15,15,15,15,15,15 +LKW Batterie-Elektromotor,M/O-Kosten,% Invest,14,14,15,16,16,16,16 From 3ac91cac79efe8b3d13b97f6ffbe688b082cbc34 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Tue, 22 Aug 2023 14:55:49 +0200 Subject: [PATCH 03/29] Add files via upload --- ...aths-to-a-Climate-Neutral-Energy-System.pdf | Bin 0 -> 548440 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 docu/Appendix-Study-Paths-to-a-Climate-Neutral-Energy-System.pdf diff --git a/docu/Appendix-Study-Paths-to-a-Climate-Neutral-Energy-System.pdf b/docu/Appendix-Study-Paths-to-a-Climate-Neutral-Energy-System.pdf new file mode 100644 index 0000000000000000000000000000000000000000..27b72cb7e80ad47ff3af7d325300c10ab0a12cb9 GIT binary patch literal 548440 zcma&MWmI0vvIQC(5GsaV4BTfnHZ~RlIszMgb2v^;fTWqVk)FMoyOALQ z5Fkmw#K_9XNC%K1_-Mrj5F%g$GSM>vqzUL50E!Jb4j)qr*jPGQSvwFg0c7os49yH2ZR`nv z^xWJ4VKYldBYS|brJkeF-(3J=f*PDmOe}PKLc#*9Y{G&pf{ZNubb^e+!pwAxEJFN( zd;$X8oI;HJ%mRXR3~X%7%zO-tg8VG}Ld=3f48m+Ibb<_m0^C{vF>6C3SB<~c&cOJm zYHagojm#fH$^#^gtW6wE30T?wNaXzYIvD`+Ha3ob+OYoBM&Uz81Rv{S00I=fb_ z@MtW9opH0{G^$m3qb#?W1b+cfIFc$(uix_lciFNNi>3$+o zw_=Za!;snd3lVi&8qlp^3pRRxiuJ4HjRQ{Li@xa?_jL6Q=5Rxiz$*%Uz2@nyOvVQR zh5h8)kHic2`9snFn&n?AcW~6RcXYKkGKTw12lttjR7ge`?(_e^@D~USbpHlH-~%v* z|5e8Xj7&`bqXPy8CV&C~10y{^nSc=p{I7-S>gs~#p~6!0*81|rfPjGe=~wWM+WGqN zfsi$GNBQ|lwO*y|yrMG@bNMW(3^mzia&OJaw{0y5?_+8)^syy2Ro6C=7gqa-Iz0OP z(i$vnZ_CeX&uedQZv!du2@<9d1mo`GQeFWR#3vL9q8l|0zpc&zYw< zar)F7ZSb1&n1OIc(*d-qt$$do?V2E|r6hJ|+e9W3BbifuUr*k_BsE|NCr2*cPgsi* z9P^S^)h}Pb->*F%ECd^ak^ludU7$IF7Zw#Qklrsv3^z|4k+2+m?n?sU(hP6(F+;T( z38)!20U8997DvFRe5yK{eDHjfd>8{{1H@j^?@X{F>hxf5dl{R{Bf7n|*d@c?{ru!2 zmavhRjbSan5BM??)7hW*5dX^X8#4sPNE_=S3kWXaKt>HJho}n!eLsPH(%0~P{$Jqy zm#O{BG5HMaZG>&?t^U{?knwLb)w4GFW@tnsC`18}(zCbtW5gf+^r!gYzK-@zMjuWj zW#p)5sOP9h0A%{Rm#m(Nk;5N5X8PNXKiU~MD%u+v{bk=k7Ph}W|7FtxAN?$COaRJe zMlMG7AHHC0WN&0`@X`H`5P$Xmx5Iyo_^0c?#1*iyb~LhfbkO){NeBEhnt z|5lW|k%Nts{m0@zCJ=IU6j5;eprwzphyv3eL4ki$hlm2}U$wu){=;D(diZE04E*zz z{*TP^0Ac#SDt~DJApF4>AAkPtEzI~=Ie|C`aqBW z@0Y;eFEK5Es*Jw5k-?vN{-DkFXAIz9n&$p^K6vYoqy%&Tg}j%29O9^z3vy9ZrwoP7II$>A%R**R zo3E5aMK*(KVj=h~t^CMIVVR66Cy_XK4)Wi~y;D&q5KnelUZ@vMxLZJexiV25Jeh+G zT;v-nj^lt>iV(QYoLm)X&UKM{VM2=Tbxu!#wFL@;2VGaB*qj%)sE}3SfNOAj*_}3;A?M z;Yb9+_xvl@7t+$KW6xM6m3Y0MoUQyWBn~E=7KD!r>@?SEJ`KL%U%V3w6Qm2DoPO)) zC2nSH%r9L-fm{CwVW!)q)LAg<_gPNo^=)5o&y!CP+S=wPvfe;AO`mTO;xb~9+WG7s zbNGmYnE9#Rof=$|NT~a(;im)9$h?%2!8;1dTFMAKds+JXwj`)6!=P9Z326kI>c|LB zLR1;K00ZlYS}Y=4b`jWIBUvTrdWSEgE^C0u~bdYet zxvzAm3G$Q}*K(V5_RQ?K%=qUxpq18q%RtM~%CcOr6g5&^qBhcvF(NA&17e11*=a_= z^U`}A@-z1o_Jt8~GO^`P$07|8+yiP;SS*n6DuQ6s4Tzyv7cbXYnU_bTzN|#g$_$|0 z@!Zl|A3INXeYLJNHUYV}up}35&Xg`WU}q_aTLc>alC)rr0cEaHK-O3|=YK5NGB|36 z2=aAbwy$V7Ct#J0bOD<^83)lrDw7c`d7pw#^nh-Etb)EH`uSXs={jlK6wv-^*L&P? zwu6RI5ZWtyFN8gMe&dKU2-%Ku%N+q1vz9zvdIV`2NsMlcKHl8wE4)-<=XJFu0ad#q zjsD)8*(1#nRAWVc(dS(IuKo^9_vtzXTK#|7KK}UdAL9KNA^$Hv{I4+QV{`wvql$*s z$4Xd$0#Sk<{9c0VEQ82W+rWq(%dGfhaSr)4C7tSN%jTugUmwQm`3KZX{K>*&Vm!v5 z&iBTwYBEe_K=0UX(1e)1#!WD89NSYbZw=ya_!?Dz)aw7#zM6VgkmFw4TcX}z#xiwU zb}ba7lcT-R0tNXBtAMOcPAzKbAdY9DD%ayd9MF$V3WJuQI#fS5>QAkpyeq|Qy;-y_bF>^tUU&Ff+$GY|na4iuF8l*GMD0A#0GBP7S>_Pp(z&0d zRxuv4=)QBEx|ux4^BK7F;dNcx3cetph;>ht{sEpp9R2?T9>)KICyvXehYs<(i^LlO z3z?{$=UZc7jCc+WYKdaOv88(<>cqwzOc=WQ<}L37}xi(~t$(OS*_ipLGzigEtUZH&Mt;J06#S>`AA zCJu;`DBXr*m=gee`B;NqEdCVbR6N?%cC)w^uFA_qJ*$m+7+z6)?BvW6Nsn!D0?1e_ z8^|<;@fqI)Pn6L?bG*6W_unFvI6LQ$_?6uAW7<{2Pc2J)jb>p7N*x0iCWZaUh(CT2 zzEolMR@iK%ia+X!fvN6844;w-#?Dc6$~;j5G*hJg$gEpWfdwhd)#cU*<*uv~U$V!h zpNRx`Fx?sMP<(o2Bo#;s=}W*ZX{c9O&;FiWJ;M122z7)|%rsD2cueCk&!cT^0ot ze(1|bK+KMjJ@PLNvK8kNAUd`aL!?5oRX zukc|#*3Zq-S*4cvWG0{sk;F+5_f@@)^)eJ4(wuEy=sxXHY@PfAbbq4C|I@b^fz1B} zU7UtR4;{+D2G|q)0T4BEtWXM6Af+YUvRZEd?-!n7q`GZp^5>PN4Kt@GHdHrXE$OAHdEow0-Zofm|mS1qnsGeH3<)Qr;yr zyIL>?Z4^lQS+|3RtMKKd)g?8;86P`lmap_ht^(P<@L2&zHe{HTSCmDX7w=?<+7*2N z;*N5yPz@}j1kd|j%9~_i{iZx_+A-@`;o`KWkY-rqesFet0y(0l-wy3M#ZP+d=Fe6T z&OGB}ODMnj1fZ334!!XNPn{wTQl3IZ8cs^u47hG-Ms(8j=M6hf5vLNBc zUh?3%B&)Wk?T08`)Lb<2ww8Ay`?2!b9jC~FOyw2XpOU=NlC86UyO*+h!q9!vnS7%D z2cZ8P8vbvf>HgbC<2OElM*IUb{y7i{J6(IZo}lN2sfkchd9imr{RTix zX>m5#N}jbx>%7AyS>{GV9FmRnt2p;Ju?Eqv5cJCYq=>=t1xUJOf%Db06mFKjxdj#% zP2ZtY2ayMh6GWlU$U&IG5JBX=M8*IpVD$D!nMh?|9~pKxcFCZGB4h>atG*FeF?cCi&{(`0>BUnXwoH>E(CZ8**BucC$mzB5JJsjCcR-6H9Xa$uB_}Ho zbvxJ_vl9I?qb2GB4>8<8~X<4JVUQNcyfuVg5QN@tUAi!n6Of0DdUtl zbt#V6ukk|ZRX8V8I`MC;OZfK7xE{Pcm?W|)qHL@rfp{^lkXMbweP{s!oUi!$cbI{W zDj}FS{EbxL*&jKg1?*L~e^Bgyr2GDPSEFb6udt(HhVPGJzi&Nvy#!yVdZdhz#7lt| z23wbZLqS1vM~t3V2>ShwFfX5IEthnLoU)R>%Lc30VC{R1RHxQpeVz=h$339GL_j{& z&>c*qjg%>VFB=`LQgoJZR9mm`(}cYrORC~6N`P7H$hF%z%%w(}2P z`3IH#$vynvw#dZ#U%N?+j6^RlV*kaLXWVr=g;Qhlr6nF&chlt%em=rYK2BBBa3~0{ z*Ej1j8f5txRW!U2*o!M~VrVih{!4b&FP{sz(p)HD?=x4$uPS2NbABf4&xu}r>pzgI zQCH!8^If9WQE`z_&6=oDRX(6TV1lS7#QiMm=S&z(<0E!&Fhi(Xn)L$6rdTJ{Ph3r8p{R1WwdCIZ!h=g=NHG>xt|y7??a=z znM2P~WT}Q^7cg#8$T5fnfOUX?|1~mLA0=Y=xBGhgN&@|ht9#eJFst0k9DOUc;?H7- zZ0^=nd1q&1<`58O{ThXj%?%GIvYYg5oi-P*VISzis$g zv-vXng&<5WJ+I5|$}em=ug-iCfxX{u_U4*w)R|7OGdEC(a#cfEI%RB73XT)14jd(-wEB?nzfsdk=^U<*SEHpJMyr)O1l*15b6 zp+_wThNOR|mw~~enl3W(xrrV@Cd>Mo%6#19+RwzQ@S5p!ydTR%48MZ8LhBicoHU7_ zQ1iyRjVNMia@mGZSb%X8t3wp#$@?P8DpXpXdNB2kJTK#sG)O8dd9R0-sPasiC2MTb zXHWk2f#|w_(URFC&`8J^Jt zmJH4;e9`E+nM0mJo;_>B()7+g>09@PhT-yHYtD0Qhrgl~^4=MLnTR=m znIM+TQ@<1Ud^{1n+y1sq{-oDQ91m(;g--ZTj#KzXs2b&lcn$3B&qk?|cd@&+sOvJ5 zy*%t@7z(V3eZs2VM*N#=wroU%@y~!^m%MZ2m&%?8{Rm(x-84=;&%mz2;=Dg5g-U74 zaH&aMAM9n#Cm#jg^vISx%c-8w&e%YnDtw=#fU7s2yKdLxxBTZzH~dkXJs(H>x3uU6 zIn2-Ooy@seQ8Jf)(*h|+`Rl*LEbChSDK z-k>Pn8%=nlEHM!gcHw(8YG^dnfdqy>SJswUtU5KL0LpC8g-^VV_AV>l8geTy)-ur^ ztsWi+l`Csj=S)=AYxr^nZ`*tq_jsKiovM>-!5d#%ZysdMhv2){v$Du$zw+G)mbf=Q z?{rhYe;b-{uf4fht9;hUT4{gZGh2G%;u_q8 zzC-cpTu#>eeJYrZTlguqB?)5fncU<8ool7(#3t+IHNDAZVm-<(pa>%){5(EpF!@@|UFcT)>*s?N7xg`17L6g@MhrvY!Aq|slR^K?rW#wy#N?5FC z@UM^|8^x*nMYQLRO3K-B zagQBq&u%W*_7735Qhb@GM4k|-gIDfq~M#&EUA=_;%q!rzn_8FT^o+8gs7DZhk z#OW=hh}iU1t>-uDcXs%46anbjxq{zDR$jVs73FvCpK+u&NYoTElhU?re~rxE_Pq#( z-nM>cr=r@(RE$kl*(!0CuBx(_xJB#lKxtEYqx^QB#(wvskJrju+uMHY@j7kro&xvl zs#BJy&6@9=%ah&7N^;L-B})J{ZlmpbmcxeWrjEQV8SRQ?}*k0 zY(<}Yf|Lw~(g8$jB2^+Q`3ZudlclmNzcfXeE`#zVHXCgVgVVO4FWC*qcd|Z2GDA{D z?X+d}L7XwrgvmLz@ifvQg@|sV-Xtr?Wpt43p|)`TcR-UMGkX8D2s$r}qJzT)v0L|M z^ESa9Zjz%5&aK-gKendPXLQ2jlmifdP&RF6eW>+DIBqrmWlhiH>6>~`<-Ue!m za^zLuAc~ams%_r@T_J#uf+45Ni_&6h3pC-g&kv~e;Y|og$P@FvO%VOUS2kC$ci2(3 zCG#0JB>l>A`I|S)b}|N&Nx$H?j(rlW9(y9{g+Tr4rsINRbJSz}z(e6o(rbcw#N0jJ zuW(q1YvfAVElTsL1P1aby=}TF=&(1)8X=ot-BA8AU!8eZPKDTg4WSDO68vR{1H}<3 z`ATL32fCw+W8sM?dYU#xxC0n{4b@A9spd=z(_pj+9Q`Kyh0t;biBQxEV50d@Px;)D zV8A&fAN1{Dho+@yh2kZqcID4|=@FCssv|U1{m_(if>0%!Ap$jcn<2n+hh61FVomGT7J}Uk(e^7`o z<2RG*ZO+$!GmD}-xu=u5u{?vKxm3Su9UUbmJv=TY9TpYZMNY;}!N$Tt!A7=hZFBE_ z0Jud%b4MS4aIYK%WH~+BCnd&bWo5-7e?>=+j{{AK<=eRIZiirGzRvq?M zLNIkcJ(j!yJ`y|%RGP#JUu=0@=476%u?K~+-5GY1aoUZf@Tx^NcA5hUBg4cNK27tO z6DDK8xAKya1ZEQGJ0m(D=a|Nv)`OMCls1#Ezywv4#H^?&rlvG?898UM;C*Ldv2gc8 zt;u_)$m!&_spb*J!hpFZ3ocP+Xw6kK_%Gy8JD5$u&2L!AmotmE&3M}#@bt}yMI>}V zztbeS^0M4YqGuP9=8w%s%6?eWSe2C|)Yj$=v9GjRpDlE>IG-JNIGr$Csdrk#-CY&TZh1J5z{T2iDdqca9%uD!D zObsMggWnc|-)_JWJob;(q?1RlkVm1vNJDrqZ8Zu=N6YQjhAdsphNS^xrd~AVa;pNt zA-_Djt^~$cgOMgIuDH6Pdbv z7M%rA`YkjEGG~dC7P(`*(@X$z1Y5u{lgV8S*!)uPY#4cyJ{0|<4GA6pn{mKZbzV6>r zpF>M?1yvvudny6SBt7vv$RQ2=m`R<8J1(g9vsD2+5(5F%HsY&Xzrobt$2jE-_oR)=|P5J;FG~a8w(Iz4E+TaO{rQXL?IdG=*0o<>IxtZwYQ#Pb3drl%eFh0|U;ToGDkU(*uQfZMtpOk#KWvbPJNI2u z+9ZVZ${P|LU=p!Gt90&2P%x7F`t{T8XZ%3y5>cmJ1X@D8r5b8#Qxyr9J33rwBxpL< zAhm0(s(of<++erGJMiC$Nl|k<2%qYSDe~7poh|syMiwY90CG&FGE?0_n0|QU6+5wlK?KrVOv~{EcKFI0wfAc9_G|FA zYMifCqc2slZ&fox#`LdPm2XWm?IQI$#(Oy{g2i5j^xq6~7u3>@CazV3F~D6X%j*>v z1+vm8CrKy|Yj8PB1Ix;0XQlV~pBI4=d#kJp5ez$X<5FD`KcriV*yO8rK!@rZ!@@?z zM=(=kwbj`2>+Ihj!fRTLF2tn2)+aMN+2=lFTGW%e0_EwU#H z$A-~+VRpORh(&%SCx&l+b;QqV#u5Hck`s+zQOLo^D3}SC>gQ#q)$n9zasz3X1_y~~ z-}F^gVGrkjL~tplG8NTADdCRAy-EegukNIop9PZ*zRbQHuPJN>4Ey{4?yoZle@!%6 zgNvL_W6gcFuy?i{>hm$pUT6DRlfyfFHAZn|w}&cmK;34ye;+DLCc+(0P7ohCKZv+H zR%|3+a*3B|4>lPMA*>wxB`h_9Xe->1g)tfh*N^QpEHr*CDWL{3ng@z&Hb^Lr|Bt&+ z%Km3zXdn0vlS#%U!c#VVc1-rUo}57u=cEJ_ zUhz+9ST3o)84^9P$a@xSK5XRv+~R)kh9lovp`3PX@*Czp98x>PJR>RG0a3(Ld$-J z3r3%t(ZJ4)FFP(xZ6(1t`X&RUJshL8jaE2vd}Y1;G8?{UhHJAOD!EVAC#IocHCxSg zQAo6$->rQ@AmWO;Wt`?CX`Qb$9yD3Z@b-<>=A}PZ&MLZ=MRkfTnufk{Jxj^8)}I_R zINt&Ke6sZ$@bt%jmqhTcf0e?sVB<0`Om*6qEF1$fGVuaouKm@OG=wWAL`oVYbYymQ zb+ki1o_(HD=V~VrPU_W9b0#FD?D2fY^@V6;M50{*3sl+O-ug!?flKYGadb%d#84?# zauQZH=@*Ubf+|BX2Q{}m)UB#hRpBe|^8`baf?{1~A!lVxPjK7`f4?64?jOR$aW5R7 z^?)hQtT`+FgzMz6tH)CW#<6I*eJsVu9@uCl3J~e+>(SgW+K+M;by2&g`j}np@F#d% zB{uLN=9DUaAV?xD4Do^aItwT~o?3NhB>oCj+U#1)T2~4*0^->HW?|POW?bqmQL5k;B1Avn~>#>`LRlce(0!Yyz|+68B#9I^L=NKo1$?0&a|(?aI*!F|S_ z7iPd{f6cy9#B0=o{QA_K#6~r6nB2pAaO|yUROqf3;x_TS**%HqQJG|^wQ`jvNFO2- zweC9lH!nBF!_>$2iy;<&i~6@Sew-VSeTJ1d0aZ139RgI?klF8=5vfC@ry_oraL(xS zxe2p%C=+!k_{)rgf^Vaf)*S^$Es=1uR_6WNKWnErZPXa0)bjUflAvqYDTnN*GUC2F z5y(`e0fKdwK!R(#(1H}jhsXlyNggT62uZQSw?oa%ae0pjot{1B88k353|gB%>*hCx zJ2yv6$%YA2a=79|Vl5)ckPs7z%|~Oa;ycl^=K9LsSf>39@1}&*!2AfOG75JDAa8zl zql0K~L9R6OcwmBKj4r&T;A%-Jyw*7O7a6cn5Zq)Mt|b1tLU}xnNV7v@jlbDD>2^5{ zO-=1!AvUx)Nj7n+pE!qRROQK9*iUGmUyx=yMQU7NW|SVZ1l&IDpU0UU7x|GM6Y3=E zZtMtlIXi|J%V|6sTeD9LeiEwZCM8Dd9X_x>Jn)C`qz^!Xw1!N_q&AT)LTSsoP*<`T zr(<(pNUX8l^(PUu8} zU**-yjGACJjfr@}ws)Y3v; zYC+^7Rga9XWR6~ zAJyfWba+*fz);Qh`=@NXP2z)j?e<23w}CHPIwv6-dC1 zq_GN_u)(7T%gqDp%S267pU3Fo&FGfP*J9_mG_Z%uBa<#r6QrytgQIVV%SDx(>LVNlXEc74^sfJbq?=ZZWQEq17WVq zYYQr@%%$2B-om2Rx}OcLqc(VQ&887L9D_-}78Qu6#>y$nYpCeNrXizd#>%NP8{HKQ z86Kovo^UnbU)BRLXs793#Uo?Navih^y`(9%zUGShN9eAm5P02QQS~RoFVecnQ_!!w z;x-5&D$_X=EjA$4X;vr`jm|$X-;*D9;IC0M=0u)cE9mvPK)DQib^BzRd0B1ujXcbZ zHHjb25;&Suauz{EMIW+vNlus5o3VafPKeHCfIYqyZpHt6DTiXU? zHid$QD{+I0RYBvVw;zZ$6Sclv0Y3V|2FkA^NXq?3zH2L=MbA$+ zdNWiNXYh2c?2^Ehl>tO1Y;470_G!Twi^U8}P*>6PueG`j)w&HW0SIQfxz#lwXvHAz zEqoenBEX%p%gRsKG1OKO*lO7<_9k$w(4kDsmymFI(6{B>%ynC76;yB^QEjRCM41?v zYecsh+^Oue0#cdu+!M1tZDgC&P7&;*V!gR7WTVJ&ET*krcRMV%F9DTpXg3#1_Tea` zXNe!~X-cGhofE>kKZ4Em*v?T_^ibwU>NQ6YZZk$zm-+%8t-cr&$AHfxk?&iYPXOt; z6nDP|j{iNQ7R`+EWIvHXBT_cZNHT~3Y?cw9$JuXWmkiQ#Od31sPYCsaP~QF`;oSry zOL9qdv`KZ7$Y=U~8vURmjdy%Bwj}BeDJ|+Dk~B6$Ow~iyyz`L5XaRu8$LSFJNDOD< z?`tJ4q&Ot1uVsL*ZlE^0<4h-M$Al7A)H30!!{>gxmIg;h23sv%n*vF-+#yqBBn{l$ z;LRnSh`|w>TC=`MGEm27x=@oLv(AwC^sK$LPJCdLY+5jBg%3PMRC)??v-};3>&%cM zojEyh-}oe$gJF-{^ZQn-V~olBSoXi=k}1lNci>o5mEDBS zZihdcIn_G>%tvIz;uBFT{o>@Q3^di<<>fUsCBKtXa51$Ka!_$_xN3L{f2X3LWo9O0 zriIZ{l#_NB*7qA7iRY;p9Fd^CM%!ThSwY0n-t4MvW2R=LuE#f*F&$SwT1(H0w4--1 zQI1hYmS+qNs!?e0jpbx;50;Dp5tfDb8gLY z^}W5}+=zt&-J!0DE8Ggl8LC2l0Nr$1+wv%LdNVr;7%({5h^@69my*AE9@l?LFFkBJ z?23e{KGsL)GlO_zEDoSGp zZKVf%fZjliH1U$7c5k=){-)NJD`CKyEM$5FEHiwnB@X}a)MZ`plbbe*T^5mchLLK9 zQCr)v+gx&;Uy1IVLU)~cf;O>;4HqmHYwe-2ZALc)B>wlCS=%fu0|x$qqPx+2TKKMz z=mFMG76$`WbouKD4%D$GUB1pyu3);x98db{0>=ak)089C)zRIU##=&=BB{w$^vzvu zFEJojQ?m-c?h+jKJ4Yv(_YHizi6Ac+7LG9;fu<&xWC1dmICIoRV8>Xq+5!Abj`@|# zmXuU$DWgEuH1=V*0y*9No4{KlM&kOSh%7brZHhFm5tZ8V$~Gb{21@xx=NDB76O9w| zfSWGQPHNJ&foA;M#H0ow$z9#ViMG4^CirrDVqlp674Fw6$oH`2)RUg=X z8-_29v@49M)-OLtO=HPss;;pWxFZ#gbWF6O_QSG2@dDMsT3hV2dk!MCUR)8-A0t73 z=cTs%oXe-REcIS=;yK^xO_0HOWSd}+tf4||iMqx~2PgOAFxyy0hF?1pLOHlEm)!q6 zXM^e4w+R}+oVoO4yl18)?Tv6*LMbse4E~BJ4XpHioV_8Hj{;0A=RGW4NbdwuD6m9M zB{;J0n*&m4h1@W_;P=s>pG=16oxD8j^S{?=-^ja+l-~p@^4MWgW)>YrUn60i=~%mR z{P^$#GDj2oHBG>tdqMDC^c$&9W>bQu)6uA)h=W+lhCc7Ecrs1zjJUXKC%g@OF&>$X z!t7pSDDtL!pGg?83WlEo;aPh~HmMMh4G_wka@T`?F`HfQrA3{94G~5^Q=gd^F|~OA zdX~jO$S${yRG@YH9ge9z0@sBFOwam#O3os+tO#pPkxD}%{ZnGjXRiL}5SSK8RKH11 zceA9n{Qa6(=ty_GcCw6p@3<-2yocvmMYPmX9Qg}8v>@0g6U(URYJZ;bO`0fVZbMt) zjnrI&S>%)@WUi}nw~b1bU=ZgTh)rMzZ(VGu3>c2#@lV?V-7a&;gT<#~1+*u8IQ~o?R;b=i5k?`j-SY6w{`S*96KZ zxl?nO)03B$>Iqf#*5SQiKekEb`hSR^*5!n0MPsG(Vy%fIw1S~yI^J|h;|GL)Ced*# zERkIPAygKuBq2v$_*+^&)zee?ym@uB0$inyii?Yi!z*=8?(k}NpX}p_#8%n8TbpcY zDlY7Au`#!+sW(QCsxo&~<=(9xAT=~beV#@_5L~2vubV;2j>*(Iofyg$kaY{DzWuQp zXVjmR)L01!mQy(RxYBDTgu!!tUsuXD zfiLSPARgK%Q3mhD9k@KSfNsW>Kd(Sblf5c;LXikv`f=NrQ%uPsm{wqq(nGAAYOc_x z0JeKh9Q7w$>VHAkTaO42Gs|YfY&Z18in!)+Yzo+dr>vV(xgJ}poJ}xq4Y3Z zHhU7la2eG%iW}>bjP<3O_Ub%N08!PnPV>Wl;YUKR`13E7J@qDXwzGME2#v;Zoo|^@ zeWA3)Gc88_3L83Z;YKbbB{wQBSk;Htlh*W1K%6Da%+7VqwlE+vKVQau_-Su_afRKX z@~FKRt!Mj5CQvX0M(3iwlr0j-_Z8E)nZo=y)0+mvJ!`FOdG|%}Ev$0Twm zM(kXbBMr+iEm(f?$2VY(juKX+c>Ww5u@|s3$oec*^g@q253cl*#?yb-*Im@0&~7xt zR5%}fY4(eIR^-9{xHuMCV=1|cr!+LzGI^Zqwyb9S@B^7NS+MC4;S9FT_;5o&CVE^r z-n<;wX|7i|&5Rx7UBzi*E$!+TTiww$cF^D@ZL2N6QzP4yZZ}A%JB-A*kXCP7o_c+klnkZV<@a_7mdOAgvaR4Zt|>Scld|cr#bV0_k0@NJQRS$()T^7#S5t1yPAt@1um$@;XG5?hmP|q5ddZQaU~u+~YP~Cr%=aaCZ4I8HA(|Z=d@fl?r}Fc^$a$chse3y7Zj;)T^DLfKYLm z>|5DA&V3c2Fd24$72X@nz+Y)CA@kV? zL98MGv_%lwl3Qy#uUMwWVsbbqe8L-7^2q4Y7t;BP!FS`3^7OC*ER*R@>8N#KAwHxN zCpjv~>-UB-8Tfjy^1G(1&ZvIXvVI}jazuUe0px5Mw2}vSY;XRYLs3hRh)V~J5ozK& z6Q?7+t3+ss@@X%pfedhQa1-Okla0ZgrOSJNjPB-Y1Xj7sy@t_HD&cleaH3Xush;(b z_@}knrAU3APGV$tK)1+l+$O?pT2acKTX@Ttx5-YoTn@AQ%l6lpskMr-j&rZh%UBL7 zR4fg=2dMMzRpnHq7m)dr*RKr#--~3E;b^?ZP4Res`96|e%%1Zl zcw=&CnV~n#^&=eq@@NwXpEjyWUL_I)kW zr`>DqaPKe&M!EGLr6rlw2ODCJ6tG$z5x!@jXSDnjdfj|DO)Sg#nhtXt^y?MUWa-o8 zCxr=f$}{q`vhPf`l*Fg}MA#Lq#g(<|o%BruEw?R=;pCsPNH;R+wWphG&$bb}03qV2 z?@2e_;I^TqHaC%LXRw}{Eoiz}2Vd6SZq1tfwXt%WF!X1+@m@zh*HJ9?tuL&YhyMtA zSyr`XMS~l#cY(e87$n6#^b4+jwH6qbKK1tyPves_8R|e zgqhI|CTmd!?90?xC(FT5zJ`}GI^mhFZLe95cUf3J#Ec503YxRW^7i|Mw(Ot|uY z4!KY$f7I#}6{CLz?aY0lGAKS2cF9ZYPz&D`FGn@DpIxQtXj3sOYKg6zcR`vU3uy~s zS5Ko|7mGRFZ*}Y)GnlLN<{Rp3$bG0(z<5c63rz18Lu;JAv?8o~6wr8ZaK)Y2yE_N9 zy>a(Rhcm_OTtDCY)*Mllh--9-62LMhtXkn#Dq=Le+hJ%|LrrVkMZx_gvsae|jKwb| zLG!Lr=CPgb)i`>Re1zOhfXCt#jpuV`8vJK=Gp)sgzMUJevGW%JKUuLU;h#-zyp)B z`(m^C7N;?S-SjD9Npo}+7nWm0#h%4+7XgE#EJH#WMlj{CtGOR` zn*A8(Q9lPXPHx1#0$3t-o)Wztn714*RMN1p)BSJuMlm;@&POqmGMJvPaO;dUR;*ao z>h%OB-2i1SRkUgmR-`voHaJ`c~onrYn6XYnsn4}xb+Z0B+}Xx4f15lN`f;}JPqU2>naFy(vNhdvY#<*rcPFs3@K;lRbLC0LG~iqWtbb3TbX;ql}uU zbG4GC5WrdyB%&7L7r)6g_&pU^d_^}`g#(auo8Ul@eW~7BvNnA|qgoG52RrpQK zdDNJk-+a!};^!3L(+VMEd@$63_w^wQB3wdH^2e+VXHZ5oj zIxvtiM0eA}tew>hY>c2LBrFH|^JP@@ZXcu|kK}51>G=pLv zltG6Xf}dOg``MzCya@Ib2kQRBk|);w(%LY(ICnLH$!?U__Jxht%wVz$zK>a3`oWfk zW9g{_5psWhSsHS}g172{ytkU97fyV>W>VT2bN;gZ&^j%};B6%PBUp{o6*Ink!UYAfJX30Ck;N4e@NBL3OE-&{KD>QFplnzz#l^O!QHM|qw43_K;oQ@PDX&@(<4v(5d+!Vg#C++ zO3#IoTU&?E&Z$J#4&@I=o3(WkCy92^%K3HkhJyL^WsM~CQaEixY|Bf~UjnCM{!1UX zzumKm?qGZg!0&_?feSu(-U5hcnZhgQ;!fB4; zvNsQ#^0BrDuE*s!EwAVGvKFOc>CC+}K(lM&x`mpos0tckN^@^!d&`y8cKukzu z=gW!-bIBT$DG-`*XpErr6E0=( z*MPpfmmOd|dVOSMb;KtoNLARa&x{rs4Q}>K>;i_2yt-b#v_bKNMotoRq4`E%O7m2+S!xs%?gvbnBB=+(<_Hrs7=M9R^-6|JZjqNHO$iSfs=3!Z& zoBa&Htr92|nQdtTad1`OnS~WT~rShir|)3LXX zoonu5BcsyM3Jt^c2=!^ub?$CS++QTQ68(}ZF{{ZHHc0hAXGL}s7?oL(TxI2EDYA~})9(We>HL90j{a3$6OaRS7n>I4 zt5k0=cv!xUAjC~j-nT^E*NW`F2HI}FWu{3t9whXJOeq3Zyq*?DOe^^qRJ zJk-aOfa06G>E>>_xm(?Q0d_|pV;OrCgJc0fHNfL&<|*iY(*dpq_!z+&6#$O{TxFM7 z(l~%e1aRjPtsx!OQ_aQy_m%4Z&DSsdx%uSMee-^5{$lA9=GNKfm;U-ant$Jue}75M zL1XeZabj{C-5{YTwLO|6%`J`C2Ey@~GuabO42TmGfrY)j(uUJad#wLq21qs!nYXi= zpHM4b2rudeOyDO_vIgL8Wqaj7iv&&71X7i?MOIq#NHiuwDsEn>-~-B`d4*Jqc1b$* z0c-xXjq~L@j5Ph7<^xD1lDOu_A%JPH8ytc)^(tiK z{s7>+hK@G93E;cfN8AL^0^Y#eR3?hg_#S~D)8|P=>&$#@ea5{i_Luz}ee_MARv4^| zg_j{jty~_f%0sBB#V)lQI(NH#xNs`Omgy^&wD<}${i(fN z*7jsF8mq7C$kfM6f~M&;%R4)J2NDgDdNW>^PG<&t1FnsW=gnKZ%@p2QLYVI2KxJiH zPqe%|S{tv6m)+A@Q6WSq80$@qHZ_I99#_?EqJ3tl zpSKv;*|vk?ryVc9Q+`)Vv#F1N)y=FB*5uJDW}P)xQe2R7%%(mr=yS}bG#8{*K`Ny3 z>DBNqlXIYsex8<@AiZ>1%8K7#2@!n&GV@slm>4NQN??G7bwHBtx|QarBM0^nIDp83 zEqQ5UbEjmBF?V=`#$5!Fz`B`r@tE4ba#_cxF$UUOrY`;bNvJcY#RoD)nrPjTyn(DDq z3Uy4SZXA0c4x(`@5LSAG+H(?;_t(gFw$h&WpkW6A%2oAq8s(7;Fdw6Z&!HWh<#w9= zq)MzlrL^4ua)7Dv6 z7mD~i6Zejo?ts6vtfr=EeQ$UFz?JKI&5_CG=H|NkNNH(V{W%NA&aE$vMoa7Jo14ti ziCzA1C>Zwp#e%Vo*DhRWiqBoZ99}d(A2y4OTJv8yXS7t!PL5pr1$Hh^!xVZA%rJ3) zhtyZBdX|!6S1Lt)sU0?%Lafw}XbSuS(G}|<-ToaQ0q_LCJ=zk*bFz4x-5m0E*3K~w zVW7ckfUN-WoQ-3QXJpJVXMD<2!W^2W!s=$y#sL4_Jvw(NMX#W2+b)y{NIB? z=Mw~+p}W&kayOcn`g`vbI$!rIvxu6 zy<%6T5W~|~ubeR=V$(~7x%j+wH_jguK9@`J`*qVi_#>@TwMM^d-Yyd6nvwGwSida3 zO~c~bwAf_UqWjjOH%65)+e72HkM^}X_eWZ``DSZi>ox%Dwb8pTq*t!BI_{kd;^X|c zb=t_olC;RkU3~22shtbj9Yej23+f!pQ<4jk%0{A=rgrImzfy*i22^ zhPS=~i}5_{J#*OT=R@^+PJu$w@B&uo(`#709*3iNKY>FSu)9(E91Yl4>7$>h%^p^K z!#046Y|p#akv;}^4&)ZkL1oj)%pQ7PlT2vVWDTwKjh5+^5c~TH9D>-tg7n%OkSg{n zC^GgV9nNL}D2oSto&vmd1!w`1X52#B3`OWIM`%t&Xm&?b zuf2kK{G4s7tpun-D|H9F2k;y8#3^*Zs|1dz4&WVc6ROuLmw0o^%5JTOymYo<>C}y1 zOW=CdH%?}*Ob#`6YRcIlA~}%sT9jF83e!S(y{{ld%Uow$T@5XHzJf@krmn5CrZy5P z@QHOJX79Qy`v*jC?={UewWTR9EqRSi&GmJ>(AA$i*4W%wUtd;Q8mX^qZk~AUg3k$a z;lgV-jx7*=e>hpehpCxH3+>~cH`(-&F#lthG+pHG<196F5?~2HH^41W+7~O}lRn%y zebRitOV#S39KY%m3|@bvxOhhU{1d!`OJ_OFG(qcDf>zoDJv*V^^Ig~*zG);K)4i1E zZmDB-JCmDAWk?fGWAOGpm3$T4_&!(cUWqapViPoHthjSPXKf z0p0_!DB_L*+z4OaRhZBRX}}&)6Pk6ZGSaE^?EV--`6U=W*TM#SguqGIU^n9H&4~4w z3$Ps^10ZQa)E+{n31*q)%`5rE^_chKbz4->mJfwxLa}V8*64Ij&CArhccE}vZ2VtD zTdxQBB3g7Ez!89#0jyRZK(qdWR&(>ON2`zE>wj1C+b5g9jXrxgnjohetk&;Qc{-p! z5OO;xl}wswwIYEm9kHo4K6g$_tH{h>^!33(A*N6J{M9|_i66DMEp2LTtq{q%{R5^s zIC##)|Ei|hG*k2;;Dy8(t4D$?)u~&D?9Grx-Z6LY)W0xK24k^bY$CLz4#w3B-*g(hi*CUz4KNP4xie(IeOe^;}S|W=M@pKp-hr(X3xc1r+v2U=cHPu`fk3@vaoAIm6+{%u@i6KMjA1$PR6p?N*-8ISC zXf=pq)T;IxfKh-Dl<#{8JnT@u4W%X+5LMT}&k~3JZ10wpa4Jwqlqxc_lnR^2Radou z1*gsWs(V}(XfDKuB~z1;+tXE_y;ZiOlXC606)GR9UfP^hK2(8X3Jl59fk=Fn@jFz8 z(xjrXy<+N>h(qCUeFXaZsw9Oh%oR;M{9HvPKg+_JlkLfKu z2^C}xR$+^-D`S^*L50?A+sqTNAE#aX1Yhq5o7Zau-Ul1$F{q^bZB~^G378DsH=~SN zo2kpTDOxXn8k2n)SqJy%(L55;(*UnwJF!P~FWhxF9@%wDb znyJ(VrvVP2d-tMyy{z}D-e=9Ej%02f3;=QbC=Qvcc;218&r4#P>|!&giywjNvzI#a zpz2xPvUSmBrwaqAOEqvG_3SJ3IjU@e+ydRPLv+LW^to7dEGux_mreS#G^RY)b^)y_ zIh3Wofj*Ddj#^AXtNPguhQ-e7&aj!@= zEMDH&P@h<#RjamjV+%}CROB6LFh#Viu`!(9b68bk^AF z;psxDSW@;cra%6J_D)seLUwQHXt}3z;@|ur!8V{VjL1;+EV8VnKvQ()Dne1pu=S8w z_ed}$)U9r+7u%LId9iOgPEwPg`!wabPn+bFu(%H!)lC4~0UlAHkiIIExeZ(B!>J8! zWs@qWWxZT$|9_7yJnxCOVGI9&O`lwdr)aPR-~k1A=$A{DYNp3m#vzVK4JX6>Abg93 zlZ!{pXlv`x+NMS^;&vBTEV?k66eH#b6T8}Ls%Rmf@wXE%itdKG+VXB;&YU@K;<$=M zrT1mrWge2<@IN_n!7n2hRP2EGO%Ci%0$27n~Nci$3L%KJvT&oOoM!C(dX&MC1Ac zs@3Y=6L?Z=S4_cKVeUD6d{>(1PJr8Yao-`*sFQyUq!Cy(;Hx|;QI!U_QELQ=u z@7Ez(SVi&%;oi6Ov5Zb8;tgVnl#F$j*CIL2=9w%r2Y1U(9-!NlD1RE33cVD~FyPRb z1-sBF)VonA)T0o#qsW5MC2@ctzWNX)O8}k$xK#plR)YH`;TSF*T+rbt&`d^lf#zl@ zKa2S__YKH`Y0?WSDTt@(zN#4CMQTt7LP-Xs)qa;ej?GZL0}aK|J5T}rP`a8iWpcTC zd?enxY31%FLEf#V<+}*&yN?#@%`o8Yfo`-N;24<1KLL~YF?#rE)Z+npj#!p$pc>o< zGN`=@u+}i0zMigraG$KWA=Mi{6qIH|@A|rB5aJ$G(rU-SJo2G;0q#dl_X0cx+vGb` z<-dUD{3JB`cLBDc%J&0oM&0)SYzKJ22Hb!|*lF#t)-A_B`=ZcoK#m^6Iu{L_Pr1Ft zfoL>7(Aq|8n-kA8eSxA#q`JB#5-lq$3kJPrXoX8@l3kLZrLSoA?(shsEnOhwGWgsFZXPt;5tCdiPZ?Rg-$T zhNw+OTuxZmIEN9@d{P6`+OLhkYZ3x5^l@Q|Uqq`n4Nz|y91|>09&6>rE{JnM+%bK$ zSx7Fj9=bFx)th3OG6w6;QIgxIaMIQ7*ylV2b^AV=kDK`zC#9QAJvH`n0_KHL$93AD*=ZU@abcJ4&7c7{b#nX0r?) zC>fMCl=2|UajfZasQl$5!D%oR1_F`Nnwr$-T2mv{wb^A25nsUwkCs)DNF*34EEJi+ z6%)I};8=UBFo&z_6Acqblnv2z(|8FQaq|zHIid3otz>O0ecQ@Aj63oU4dfk~SfC4V zbpf*O3!oJjKu<1!c-P=jcuBXQ2Org@#R5B5@L}wZ?uJ3}8VRPP|5Z&jsOUWKGI?|x z%!*$9Z%)H4(}%j1Np+pSEzxC4?plYhT?{XvkA4+n+c!67B`R+P0qp{K5<7y;02g79 zvU%||>~90eE10W*$Fh`bKe)D={TK;mj?6xmZ#swXF91gr$T_59%Ag)V&c|E@JTi;y zRkf?+>cy#gak&xjNMeg^P=+>BFKmPD@gitukHYZ(C^dBl%#Bud-MhBqUKDOvrDBO@+#mXo~Kb+j#A+R@h5 zv2 z$k=3;_=Nq=#-RB++u#Rz{`jPlgxCIY1P;Oo zzY=3(4~!ekh`159kC#!p$7m;=q#Z7zcA6>ea1pg*9Z1uC({Ko-N$96hX|0!>hC1?| zMT=}Tem^z*kZQa~hDpDQ196|CMj>>?rIe#ms5ctC1grWUfaPe|OEBN;Ig96tzt#ak zQKaDPRVCbpc4|XAW=Wc6NgA#|9gnpi;5jt$H3^!g_`RZ2Vn2L&u^$boWY`h=QBxa< z_zI^6f4EI=z+XyBSBr}N_-cDj^hbSTbE6~vLnJTtmxjaPVk`XP3llFJTJM=o^RU8r zjiVeYp!ZZjFH!X671Dd9^d0%V9(s@Dok_J7oxMbYDRJ3(TTHt^M`&mbrqGBfL$KT< zA;{v_7~q=;Y{LLQfboCC$~1ixMMqUqsHF;&$D)#@jQ_6{qymhXkwkrWWofjssiGoS z;`NP)Z_jK0d}n>V5T4my5st*`l1<4^sjnI)Plzv2Uk$lJjvTuXMEQD~PhLy!odDOM z-kbn8f_giX;L_4js8Zfko?23NH|L;b#yP(%%fa2lq+krIUvGt0o(34tIpkVf+N-9@ zBuxv%QmBZ&A5eO$MWxY+7pW?*a>oW7xnsi09b;6a6Gf?ZWds`GEjDBj)h?-}sb3GJ z)lT{`n&qrcJO>NNAvnv2&|TjGco56}d(_Qm5a0G5ruruULzwDk?8zU8(2GMyN~wFz zBXALYbj+9z_S%T4{tk7)UsNO)%ZE;q51mj1R1}-3F6*Mpy0Cfb!Ft`JN8n3n)gDMS zCYjid2nwsM-v_t@;3yQvBWT{o0E1}WNjnHYH}4S4*mJ3AE6}`05VbNF(R!CrJFkPl zz8>7{djU=YTn_Luz+d1uco%Mkqtx0{^4zVAawa-*wgzk`nX*miWNek`oRv(=@WOP0 zrdnfTPmE+0$EWr6WXqGu25)A#r#4tn==Vn=u~>O;QK>f^La%)~^bFchi^l@$An{6&FiGC8ZIx+a{cn8mWLjOOn&^KPS7jP0g> z`e|s&oR%dBo?ilr?B^%T+P_e`6?@G<>Su-wYd0Z`uK^c;! z{R>YZI;}dLYq8GL!}E55mLF5d8CWdC?HKVR%g3R7Yg)Sb;KRTH>!$K_hm0FBpDvb4 zrg4^E`Q$IIpwA6Bn%&CeRKF6*unIhm1or!*7o6YXCO1)CZw-2Sp?Wotz&P~>ub z@rxs075gT(Co3ug{cew^q$E~RSCNI!^ukjxU{1bNRyRaF)4#RQ4-jnN+W_zDp z4VjU1PLLsGj^3gjqe`7d#VTRy9zzWug+OL$^`P>ZdZ^w(l4H6~J5i^{QDvN1Z01xa z1F#46ItZ}WJ~4|ylQ+h(LORin!x&VOn-%UJ?h~&I4_k%;QX{&wwN;GN){M4GZOJ!s z!|<$C;cz4rEcEksUd)}?Ki1k230K$D(=uPBbF&1W$>0;;&dGNxz#e09UMSEK>_dW( zAIozEi6cvH8TP_Y1Qa?3^kq`kb93XQ#$xIp|$^F|8cAAZ%D`Ff;09i8B7na=ppF z1t7?PfAS(qR-@#hyga&5eD#Eq zQ&0?y#m?`vCFdBxNeLhzwKtH@0a;0(E3y6Gi8odaPz*2+tMxIAt7?E^HQfqH=}`%A z%1kjH*C%mT&e;9{&Dg&22fIY9FA=2k7b z)4X%hkLPSM?^<-b`JEB5ljfM5XZBnpIVhf_x#l~};P?qbx+9iq= z(U(J@=u*07F+ECK6OUs=tj>wOPzJMNT4MBds}YeA1Q^Ys6V%cmPhRAS7+ZkY+4$<{ zdCdg7$xsI;YP*x3j`IQD2Kci+s+5T$wIJDvRc}9mLs<1PCtf37Rg|Q#~`nE0jvX9Y463|xW5*J$Eksnh{k%*qAlBD z1UQgV=gnxJ!va=*6?<<5X^|C5VBQMT&~bn@03k5-jOSR5^0IdF%t(5~Rh%WjFpKn5 z*?}5-1bOugzE>By6euMHt3j^x@?s zK{i6Z?69m=H$V_s1Zz*p?=mEvT}tn5;9xL$WZ8&t^}R0co&B3|T`(H0PA0sxMGmFP z%8HA(%~>uU`|I{hEA5L#!Jx}@iFj>qr|DKUcb*V4nSa12HNVc*pMV;%x4`7{2EcK! z3SB5mRG_RRrn3$jZ^tCMnZTWf&gA?lzWyt|euKbqeEmaw{TqPY0IQ$^_zCc0&kt}Z zN0EMa({Sx=poP5hk!@%4%SEyTp6sGj(j ziU0iSBJsL;@)QnP*}dER=ESvz;(R?#ld~(>8j? zZCDT6pbxb{rD}7&^>SHB6}p&^1E*Ho6M7VxhPL)S4KNB2l3<5XH_mP&_W0~D8VEO} zrSUgKD{o3IH)*4j{=vpXyp}HR^e)G1>E?oNM?oVOG&A~uJ6G09e7$No~FSk0AG{9kONfL|6525z7fycNH@A&-c?xfw$id` z*)=o08DR}jjl~Q5#WHKyZ(p|T-t254 zW@qnRwoJ@2|IQ=aE?;4B)y#NX`_PwW#-ruIDz8^~&DnBNm>$=cum09QT(!>Sk}}?9 zbWNUcmCD?vtg+Pn<}P}1Q6=SXg{8O~K-nO77;&{d_DF~763FU$NZa*VvyWS1lz%Xr zO``Po&^S;1*^2XlJsnX)lL$tUWg5k7i^}^%=~t<7&JCc#&m+I`8xnA!dR(7q#3E!+ zJ}*mGXZh;yP^;7}b{Y%854Bv~J`V5%z!C{Cz1n!Lv^i9VJW>ozE>(V3x!9{ytFmx6 z?~=#B`n7K(%lsQd)VD*V>mcDOYh94l30K@#ZL%!OEZJKA|4GY#?oXB+ZIY&t?~tOa z!}1QPG-qR|Bmb;Bd<2vH_iQ3N4W0z}J-}N4SLrOU*&;!MPXWGP*LLIy=+d%^e~ZD33K>Fn8YKX|1glH687}oGiCR zv@~DL*>V%Nm)EwmG&faNiH7>r(j=2M$o#p1fjOK%=l;Ts@@O(~?#zaUP{?go&u%O8 z`z2vYY1u$~MWxKEi!Gq}SL`qOp>P!y#bWI((WvN2&ohk4$;lHWohwO)Z#FKNVHjR9 z`=?6oHTKc zN51M6I7VZ8-s`>yubY`Op2h2a7H|1t8|e2r2Cx&L74Q5dyvyYPbMaEQ5ZI1)p262w z;9Z^qxDmj5@h{jTK)YZM1KfajeG1^pJTijU0A4XPErZ3+a0)}fV&QofkqZat9lwM3 z{4o}y19>3~ze0Gz+XPM^H*YP0>k+SUB5$qAVeqv^!2!I?y?F6Q2%N-=zns8Ey!eap zzE|RXACe%0OzXjvT8(I}@t`cKmaS$iS}~oTox-|yWk=i6?sz!Pf~p=uq7HEMgbEIJ^~n#a$hO)BE1Qh1aG>m`uSG}wk?xUMpm z$^16Iv5fV2w)pQbT!(p696f=f9iu03qEFO1Pr)`}vld^ZjYh^e(#1Hopu4B3FPg;1 zRe8Y$6TeWOW%57fRWjZeje=9yqAF3!)lLeJOL{Wg?R;cnG}-#eC!%|fvL(+KZyLXq z=Q;MXNh~V;&r^cuq#-~YR$)|ZT&yzKvgwkk>6yNJ7oImwym@Hq{TevdB`P0#HUp6B zFjvNxyp4Ws?mEQwm7B$z;^(GHlU%i%7R)I7IotE=<)rEK99EV$Z%Fl!kOnDsTd}QB zChqxUq9LE(*e*ROf-3E!kGP(m{l2RGp+m}6>8!&Vy9K+cCQ+)9Tb(lPbiga8v9?;r zr7!60?N#0weyc9|MpgT{D%*8Es2>iYA17}zek;dPG`Anqs_Qbk>z1M3lQ)T<>#=vW zU0eINvT_D$DKL55%Fp6#OiP!%k-JCf1>?gYAe=6^+?f2tfk6aw{X$$GH!yP zc`<5yAP&*R|4mU_8d4kMmb(u#F>W!3?r}2Q!#cxI=*OGmMkW8GBFlDqmCI=8PUG+z zGc8-7^Zu?OaEng$bLsAN^R9ReHEq47$t{f~Q<=Ui|9<+nzdclyk zZ`+~d%+uOE?^3}$hoz^=BvsZl6cujq3FSqxPf^aVtga+i!K5nW)y*0%TzfawURN^J z7xN{5mQzX7SY?cg-^n`qjb}M}RY?;=#l*_ql>O+Yess%9dSoT--c+%yUikw~_AF9A zD3T{7@(=v-2Ri6ozXE+#(eQJd*ClcU1jQME#%+ zWOnnwlCQ%f{}hX4gC~AtxBG>&wf!Au+cA2 zT@{;n&h8vsvhZ|+A)GU z;3IKDaOg^#%_VD&JGf+xG>>7SPH(dH%rbu=L-v{!T6s`a=|v)yJ9?xTLr;gif-R3b0-kE;coe-u!x z;X%|@W!UmJyhG*vTV=?OqUL*XVn;k}=?Yj8v?cv)rzTO8e?Xo36Y1nrrgG)}@UrP$ z1tIVauYn0HZpVFV(5bon3lDQn6n<5r0!Wo>!LM4P;*-jyvqUoMKBAKZOLRYQ=u(Xy zw{?1XO^k!CK)5KO=0^(A}>Z;bw^6EX@l+0dM##k@H~f6SsHbFjE~$(nDJi{<`_pLskY zTQu?e@>|!OH|XtO{&$a7T;d;dyO;TwR6hQ-<>t>uYQM6&yQ8an&HC!m*xg_6?&|2i z`5&bWjEQfGMw63FW{BT#K6922IjE%xQA;DCmL^0k4Y67hRkb9lYH0Tuax3EV@Uhvm0BjTuIn zcJ{C`QX68iS*B+f^Y<`yX74!Lxw9O5*Q=f}N?-|n)+ja-zHKkvwwG?(s}kZX5s^H| zb7GJu39B!BM75h!v}o(c`y);XSG8P2U_E@|YhXm21n33`X-dONN$KM`A@^T;-{)np zLEfy1ZYC`Q>zew`5RUb9iSd?l%x;$kMHqyPLXs!Bpt6|F6?SW%J7 z3>F6bg?_K6qN~8`6&r4Ei0kopp*rW%l&5!v6jLi7BD@uW+>^Pfrc#QBRJXoJ;0;87 zUqj#){DbpT7t4PjHMNXY!ftxTC?YrRQSlti5l{h5y8=SE0?SMV@|-IWpIsr(X0DKq zqcYxN)nIJdhfZc4CkuxV_&W*E4Y0;R@a$HDXD_tu>A(Kon%chR<_j-OH8!R$ys)|1Z0xUZXsGY+ZAc1{ zZ0J2Fofc+i*PM~AwA)N~Nj?8OQDYo6e@P9wha)t2s1@t91@~d-@vH$E{B_hO{-Bl8DMwE1yX#pY;z#Yip7e2>VD2K00kt`Q`nhMtpfV zu|(dolm4M%4GwV4vO3IggVsgP*YPos!X6pyP^_hJjAJ>abfeX<2BM};TkFLg|V4`EX4QDQh)mSXbM0v3c8S1&Ux-Y(rghLn#ktk7lh z2rX*35_!@rl~PU;dhbEe7fp0t)gG@C<>d{-eFZ}^hf_^LG&i>`*fa5=n6tXIy*-tT zL_}?GwWz9@HM6U`Da(sOgD4YO>aUC#-%V93W`-o%{U!-@;{+K4>V^hSBiKCzumJMw z4uH#WNZ`}xf{+c85Kb0lzl`hf(O+%GFnt!VndDO0F*@R-h`|Q=1YJ^zlILMRe2lQXP0$0o>kybl(&G(6%j0!VuopQHB> zN^U`klZ?1S-DrfDH8n;ukf9j^k=E}+LOzdBv-e@keP1c-KG^}U(dT{oxYRf7sdJvJ z+3b_UMRRvZ@esv1T;5cM10mSp$rmQSP!o>DqUFI7Guco(t;=22kf<8$EDr>#s@l6N zE6o1BS=o$d`pmX?T!@mASa+(%47g06FBpuq`iuTgdCvhJMYZm1NkT#zq>%=bN=und zPpBaYNg#xhP(@_2J4u#oV@pCnghT}qR6wwBxey|tpdwxYX$qpKa792w1tKUYc)^QQ z>G=NBb~gp&dav(&_j{RdHfK)#`~RPrGiPM7z?Ak%Wss+TKzK|@h`U@7*12cjuy9$& zlt8poS(vYns|QS^lwAIAXXUr#2Y|QUVB&)1{fSn!BcV3g+>k5|BO4@;Stgn`qFt5H z4Xk!}#))dO6rnV8eozx(2}|eTW;wUiHtRRwfu* z85DjeqS+0V&;TT%0r&X)m#m2_(sd)>Cr!l93=vEU92|HbaM(Eoed#QlO@Gj=8tS84 z1OaI2I@#^ezMlh4M6lJ*_9X#9bm>C?CLh{*C4lp_uhb=aWDEDOuMHlB#926Rq7Rvo z2~S4=9X&gXL7T4yLSpV zdXkE^*AKxmg^=)W!T}|Dx!51Qe?oT=A*$$2_kKc~fv_?({l`1UHlg)QJpOzP5s+Hu z(av#bHJ5@-S)E>D%Vn>}q>==BZ8aPuE1bQ@8wKKlQAL~jMS-?QL1YvKkx>*8vme1S zUnS2TP>pD)5e+q>p++>+K*ChRz-Tsd8XGyEjl2g&J;Fvl2Z>wk;vZaRygMie-Mu}s z%t-*R-P1eYJwfDg9FoWGZF_1O;vnHva;YGj-XNRl+yHJMH%KvIGdCD09@WHdr67)A z8%9DNU%POoV}^v#Z;K++*8Kq59)mn-7jUD&klVkBeMuG4P|^>V^n#pzP}-*nfh7U zD|*;VyV`fgMYPU@fqMa#{cu??V&i*3!(Q0NBid%b*$eL~hZ+qyfEPRDaJS*amUa^) zK8EuvIPnBT4vCI%Mxu<#Wafly!X7w}pslpXbMy#^KO>mZ*;NXa#6SsM3t-=}_DA6O zRXFL8c`#%i44FqF5+&gds#XBi3RtxQs8#^g3do>80(Y)r4rQaq?{o>#CP;h?=U3>p zFg)u*D`(MLu}9Fh%VcH{1`Z*NbPL7@!ZRLba;hIOl9-D=p(OoORA3U{^)I(rRu_8a;-gU*Mun+;B8ArnkOAs52}fmjFx zV%Z(<9^9|&O$9eHCw0N!0w36FnX&eJL zEOCUJ&17RfM{jR0;^_Wti@C4SrnqGCvzRo5*Om8xo-k=R$Z?vg58BA{qnckcQow-T$ z24S4XbiuAb3amhw4u_fYd_$B6eJNlJkYo&_!&oR8%W#_rxJ_giB3y_}l10EzWaKIX zdQjat1?qCSh3=p#6;P#uQM7_tt_n6$v8z@k3_^A1C(xVgM0XI@lNr{N8P;aNx-A9D z0OcuQ3iJ<9o*Qi_5Hc$D075-6Du8;C+{ zS^c$;i}XSUv0BXizJ}!dRT29q0NE!z;rKV&%6`8s+FL%5ZLZQaR_>m4SDhuFBbT|l z`FI6~di%Jz%VaWF7a#A?U@spxkG`%hUOpkgJ$i(Oc=@;}l`cMBA)!5b1c&%|xwzi? zW6kdV^WN>;T)jh!hoU|0LwtfmyA_9eySm8_+zHv)F)+yA-_zUM)4xY||DXVWe=ko@ zFaMt1BlylCAwKXI64IH63m#p`Wat_${!lB~ta~+!j^H~b%VfzZg@s9-ynSVE-1fLe(B=s z(%GfA%S&#RZkOD9xA$*<+bhn;@i}@pLA$i zA0wasw~zHB&;HS4RNSaseCS3!J?gX3zN5R1HjUmj#(&Jhv7N{EA6s^>;~{@`j4yq7 z(*)lMuRU@a9b!sZy=LX4gh>Pc$bnRWi;ykEtE138kOq#UX&L9ESVz-xuASn2npSW< zp%zIixlZ;vE}W<0?=U6cdWKbJ5l7`od>PoFa z;?0t%5zBNEZ?su;C_^J!MZVl<=1pd!#-`R9DsT^_wI-=tR7)0=U#&%5Xf3?jXsR`9 zD=MvUxrR>?gcLp={mbBsv<9OU+VJ`MvVu6irluxAN3#;tMtuUGt<&+isRdxLNakuu zlfai&LZ=pExwS?#OK1QzGz@5x%+^|jOp9(s1Hz=1hfKZUu(3rq;fZPcV3m5kr4;KnF9Vz;j=YHz`mr`VwLn3 zLfR38v?Cszw9Pu<3jqnU$!HeQpoq*`D}&8ww)~$_9s`-c4>a4X+6u{x@DNc)8c8pj zt6K5K4kiY%LJPQ|(X<9$4QPw-f0E6twP>_ztJY|+P%2p|Gf?kFAiUN9gM&8J7|9UX z8nae3*nvnO{Ff}+3IiJqAht?s>;1-R256QYqoPti$EfF1QUMcSVHVP+QIgpLZFp5e ziohxsl|r?6T&H+wY2m=aob1xVp~d{rfqYS6PF`_I9-o~*A}?=9UU8|HhnL4#kflno z8Wg<@0fPh#;aYAqSRG;^0UH1Yjn)jngD97q0hHzxMT|36NVp#2nxio=*J{?5*$~!c zAW|UuPWE6kFlhgy6ENSqa^9BM0SG+M+7k=da*lx;@hOU!0l;OVq_t<|oaKmia5i&aGZ zV6DcP#u@|aC4omYXG(&U7!l7wr8b60;0wzgh>3<;ezHxnV0l6EE1ESFdb1rnz+DfZ zn{<+BK|)@wm1?jWwMHLx42+eu)l}nfJ^R>*DfyB?G6O}L^^Ud3W)UkSX0g>E{vhRO zEMy+6t?YXu?ZDBgqyv@~X{SntsbvyE!)B-e<+efB#Ww3yxUv9jVB`35tw94NC0Yqe ztw_x7*ZD9+43o}g;Wb^g2H=5SB=k}n4WM`i;5ZK>!xfkbD^vpY(P=G&Wf~i=GgfHT zT1f{A%$tm;XP{=aWYYq?Q&BUEO^1Mh;Xwo}zrh$cTVQ2Un5n-j*Yc0qc5GmA1)soI=LUNDH z58@QjULx5RY|gQ0B3>InHgYOOGbj+kH(#_Nu4HSGrMDte1wn%rn?a+kqLPQc&9z96 zt@zr?Ll-qhn+~K0krjqV%7Pt>O$~&zl-qQmo*-XlD%jWK05B1w zpckt^N-=B}@CZD3EN!{N2wN+WeBn`niWVDqS!5j;N)B}g`(6gD1#f1SCfk4rNa!s{ zmqm&oA`wV&77x0DYN?GC1})KDWavnw1nO)+ju??rG*lo`K^MS^YNUH8w?@=eL7Lco za8)26s0bsBcm#A5)!;szlnh)T$Raoq2nmp5u$d(mn^E9E^%39G)8csI17RfUdV%Ml z-q`Fw5g{qYKR1Cd0rr|edb9Jfr!g8P*$kNZWNaphany%n_za>R`fBdJ>{_Pf<_u3 zsm2CUss@ons)7AEuufeCqalESPY4*wsi`QADX~FY#3e1@X+Vwu$&Ur$R$(-1FkL90 zsW#v^1Y2qp8WB-uq+sqHVGOnglblJGPBcRw7PY9uyaG+6tcoLi0Nr8KsuYpu0xPNq znxj!IwlXWQtd`)5ta%)w60*L?5KAJ8q4W^8AV5q;lMM!Qh_oI6LWE~Sml-wClQadZ zs9vlPr-B0~5?W?7R>44^vn3KBtivQGijI5%3bm?f^k8RkG3v=K@pfZ1Ob15MVADhV z0mEZXCRAFjrmV!oR@M&5I%TWba<59%Byz(zku!5vj^~VAIs96=N>0L0qqJNFoK`5; z!GT^{mN)|dVnCh0r-phONNM0&4`phouZ4Wn#tgqAl!#mzw2*M0Ht0cTuYt-?k35WJ zg!(*Zf?w354SGVgDx6>_g;7nAD#znUoW)+h8tO7Av^XEZWrF%<40k2;K}y%anZyZj zq(Ca(ew6{KB0QoI>XLDIE+23z;|jPqNY~&afkN-7m4L_6!+)O3#AA9vrwz+!PEK zqL&5NGvk_8ENciWlbz!tru6U80@0dK`#&eetvU8br5DMP8biS7W`*`>F9<}L-;?ET zP|_X#tGG;%-wezPl+FZscBE6VTxy^X!ut~F$%6aP!+&R~9nnl`NBk*Ldv8d1u8?xV z4DF0qau}venza-*XS$)9mj8z`@1P{&%s{At`b8X+FdT#*q8%a)rZeJJ)dT2FYic^E zSb_Vt;&GVGHDEa<+!pEeB!I|_>uNB+5OhXNndY)&ZJ`+qb|aN|)EmK^_@)|MQq_zS zsHTWVZAl3>7SVr1WmIBlg&CnS!b)wIyMG<8ds8&44IUK%WIUIH{Ra=4no4;>v@px= zn?_)&+pt`kxly>ag^r5!JOSDYt@=m3lfL7fdM)OLLVh9CE`-u-oE{3fJp2yCjM z$SHweMBRKCKM#%}IJcDZ;ymy0qc+Px@oGz3y0&4%B`gJuLZuIc zy+c!phTEKcjfky+JwQNTSZ54_S$BSaeoq)B;9>s zcX%emArb3(%ZOV|eF3rT3@;W-Sh?Si<`Y{$&=#Z;j+-Q^lT&g2R6Hi*h7JEpRGtXb z#aJ??(lQIBTP2m2a@7 zf$BIi2nZ34Uct+@k)2)H*&DuGE)!4_?r)THoLB5;}J-NZ{=8wMeaLjonk{Is}ZK;E97CK|#>5NND{a?$t*ox_EZGmeU)c_lv*|ON7 zC70Ur?j)KoqgqR5YKZ@nac^cPOHU&5atwKM4l*eswm1uOOvDnyyn+#zYdL4X%OX1G zJ50no8|?FACY2(#l}xG#6htek?S7Bdt-%soMf07be=^4+7KF8OaG2?lmg<9=&PChy zWO{nXz)WkK={*BBf3Q)z)ch`5bIK8~&-6VVG(OHQ%Vbt4QeWUa2PS$>ytgCTsiYit zNU4MWxp<@!s=X#^dr@5PnBgEQOu~Lf?ZhPq-YspS^L$&|jD7|T1A*&)bFtPM)Es&( z?XCITfW=pixdCcz#3Qm2;u*}CmNu+$1}a;m)EQ^epUnyDUYz4T1M`X&%Hx)ENP?vW zYqmo-C63%d;;Ap!()*J(YD?ABN;0qEn5`47Q-kyp+!%$4J~7HP*Qu!-yE{{Y@u+mt zB`xKrfnzfQW`8VpzEwa^Mm!3Wm*)E1+&4JxjyPg!b`Qzg%xX86ik5SE#$yuKIHbI# z%_1}23TnU9xUEC4M5=wxS{2t!A8hpAR&&{^q)>?zLd0Vt=L}b5C(5vlNz^Jj_{(DR zIJ+#d*q24b67JJN?;eTN4-$%)u>WOq`L?XIo>GWOd`qm$Fuw>)$WA!Cs2=l71ewrM zo;xrq!+fry7+I*qNR-1mCn<;kr3E z8q_t5K@zZ^w?dmNh}#k$Ahu(6y}7m`$p6)znn#Ivhe`PRZ6gG4ZT)?hoSK}TEF>o- zX_7ONRmmyINpPelr@^%f@>Ou8;&gIy68~TL$3^GnrDfy_1Cn!7R5@umsVOzMd2=#Eeybi>uX$E<=`*SutI@`n1LvygRK zE|aO+3+}EiJ-rq35Eo7mT|Iib%9OJDbh%8~P$CQ$;+%5A8avMn<9g#`C`h*j%MI~~ zebFIAICZAmS`&sacDhO zf~u#`9Th12B3S`ns?|$;iB;5_&?D#)$y|+AFz`9qLgyeaAzesQr3(0OT#%P42`*DW za57Uf#|h&faL^PXi45BF_XaJ&j|2I5K0isQTkedc%!O0bJ;MogbL4e(+(#QPjR@HO z)U1i!0|z~nICw$T>;;!oOUI<1J(xD3Y{-b=DU)|iD-WOZ>9;*Tn&k0o`jMBc3w~X= zZvDpU7cQpc2fm`7qV=ElX1rVhLi9@AM?&2PLW*lU;J%BCn@pzc zCd3NS>{^h`>O>!G8r2q4LNy?do_C@rn}R1$B-~FX`%NhqI3XEbby3C%J%nxzu?^9) zB56alS=X#xqSa!FSBnXdF9f1SF{leq!GjH|XeW51d>@prRLEU-3Z2n)2PLp)rJvA2 za@)fJ=<2@e_s7v>#_l{dX zE=b(?jmzDqj$K@^;GIz+{a2q`_!qPTq;GwB&fdiX!q;#4q~V#--`zZ{ zQ4UBgmK{uP4El7)+OD5m`hHfCJY&e?Q$D_3^4+=bTxWl~@`Ys+JYPDw>ir${PkuP@ z`x9?=`{t8XgEdD#34Q3jH!|BD&WK!*JU8*_CFi!gMfA(fc6Zw-g+*^KIFvi{+=~5s ziW%v1%hbC+(OuCc|+V>Hh@l^ZrcLXm! z@yv*UIoFQq3%pb-TWVk3TqjK!m#qpA{Ln=^KhMz;S}G3!x~Zy`MkH;BzFi6)jM~D~?oMgmA*YKw6A+$--2Ls%hl6|%Ig+R~d;hlbvwi$q9@FQ%G23=wL-EBEANcI3 z5Z`-66LxgljlIdQKOxK+^Vqy&Ro|v9^VxCm=P8$JRzGI!z2o_}ytYU_NexGbOG5ftorcP2N zC|<7fdo7>;TxIbZ9lvi%O7h~4FL&H>yfSg^=~KI&p4a2Uxe>F=-+O$_XrpaM@3pbB zAKvR5(0ln4XG=fuFnn}(_n>dLxOI3j^3h{`yB_R3<>%$9Jr_?$1|R$Ao&207A&)e4 zp8vyytLGoRIQ{i9*>hKiv_F0za@1>!_pN)XdfoZ0UYCCua-`u_Wy3oEUhmBQU>mg< z$Ar3X{-DL^Xtx;c1XuVcmvKTiu^U-JhLF~f(vUPuxR>1^vf?Z%Ioa5X_+cw@KNBKz z1qiVT0m)n$ECez6R`_{>2?0UNh*!m@Cbu*sV5bLF-8egDS8kYUPVLJ*U)WLqhU}}b zqJ8V19%DGsuKOz!KHdAg-x=iyuV3=JCUP0;f7tVU@scki%L1biHu?8`kqKeOk^gm1U?e6sJxzivG8{pjD`-?00!tNT5d zU3l?s&qKXNgob8xz1DA#P_NtpXE&S~Wk+tksL=+U6R|XWOimMzhvhi&Zm4NLQsfR1;mMGS#fx@PH6d zBhcP2(4m`Vo5ji(OL&p7s+W*SDkPQS1(?QiywVOWB?1Yt(8V^*M8s?o(c*9+MU?;{ z4d!o*y?2Iaj!`3FH;oJcUatQD%K!fM^V=W$G4J@HumZoBvmdCZ-WV>OKeV>j)eDQ3_Plke{LAR0*RC!%1ZSpgKk!O*yUvka zqjebzx}JQZa9!xrEAGV9$N36BO@6)GPc?&vU;KIB^$Vq68h4)3dpvjK8_hH7zr`1K z{q;%jyZTezUq1O{{-g1;X8bhzxi>3zB_}QL<8QBt@?WCg^~B)nO6B3naSun_e99~K zPM7!vJl(oM^Kf+~N#tN|#pv`t0M zMR~lkkAV2re&VbG*{th%GPfWFiU^ou%4LCJ_v4^2oOXxM9$*xWe!YgF&V3W zI8pyV!QZa_a(hbA$`EvLbtk|L0NVvwoD4e&unmy{zp}FsrV0@{5!va0MJ73i8Hki* zGMKkAQ0d?9>hPa#-R;vyllExk{)eW#c4Eu!bfIo0Dvwgu3Ng8Q^wwDiqE$0Xv2i9%L>{&Xxhk|nvp;EU-{3%?D;P*owNO|gz&vnqHcr*`^-33 zxjpH~QyIsb`W>3Hq2Jr}FI-$XZtFi2Vhy?=%sFE`6)+;FkJdcW5uRk4t`%MYLvL z8vWL!y#CKU;o1IR@{uDQ_MexJ=@N6T$7{JRYkyXBnKEP9^IMj1Yon%r^~RHp>by_P zT|c{0^s#O77n#2d9dN;R!ejo&&+^8Xe6GI{^@yo^+R8n%&b+;Z|9i=*C(rbGfBKTU z(Rs;D)dBzXX`HMnk`n4F^IpX|-hw4aezp~L?72TKmK*Bt_wDLiw>>&MG4FD>u!@C= zk8aw1^TdUp7Hfs+@mHedPH{mUNoZTni+NMKUK-d-G$IsMBhQJXa^NeibeHy{~}p&~@Lpr%zZ+p9pcs&=*Qm zhp0DYZw)=}`q=TBen%tL%{99fwVU$6q7&P8KXJ4D<>i`=A4bL(A7Aj-&>s)Hcka#d zIK!;sM&&az23HjKsSUX7e)Xw?w>2}y`k(UgX`HX$^Hz5J?1rIBcJe3tT$?i_;=MB= z5y^b=TA!#dR`uCkILtPuJ9A<)z#2`%v<&ydlhPFnT0OI zvvm>zXSVJ8S~^yxFU;>9x0OOktiS=4+nTSx_4mgQmCTvGu;G_4eqEIIbKgb6Cr@7G z)}&<0q@rJH&c7>r>GJ5M!-Bgc25)-fsz*wg^gVGeBH~_#&5dga_4&Ev)4778>{EgR|5?bF0P#>Q3pReQdk znaAHbc)Bcp=hN%FtsO`1EK|Iv+xGCzx(HqKs&1!H_g+KY@|kr@ z+gwM+o~*RBrn&j^DYBOBeybYdou12C=qeF)8_zFWKE<(c2`hqU2HoSOf)*B5SvND5 z|I4rMMjg!_wX}CG*{1V140CUObYXAw;6q!cEmc_SCQL{dl*ze^I~ruj$+U?MAnCjiayf^Il#3p<8mv$)^@nZdpN%s)HS_s(P6YvMP~4SNth= zY}&Y|>?CauLlo~MRqY)&#$_N>_7WGB4>;aTAxTITGE!4j;AvY5)xLIKW9}UJqFd~h zuZAC8Q^ik>TzsxI3nnhVbz9xNZ1_M$tOtvZ14F8T@Ek$wReKmV`S{gT<*Kyp6mMY-q&7@^li#| z^zz%gr(_jf-zHs}5nGwD&AhGZ?O~tg{G1ln^xO~Qo_ErJV|$1$y*9 zKhGlh4GLv$WOH8NWwOLV6Y{?v5mnG65A3F8(1bb32}%=iJb>{ z2yAdBv4MmPVg`)dkhQ=4b{RI`Y@%dlNHTH2?Brn*0_?_+K;qV(bE?i&OEM(0nfUq)f_b|XwXkWN}WXEp%gAaEI;U0%;Zr$;bJGcL` z=0pj!|AP>lf3WkWtv9~@k1u};`o0dOeJ51de`k3b`c}jD>Ycl9yW_8VJXgT?7lp9B z{E@xew%+#AjW-Ih=c__kT)Vg4F=9DpO+x!1^pEb@y8EV=j>7NgvF zUf4vQao8Awww3CC`5~C^d(h9FXR+9-#6J0|7!tES(6;(Abzym>i09TB4Pwpge*cz_@jc-*wuyC6 zQh?XNcn!8Y=X+v>#RcsRVmbBQCYA&4hLQ(utFR8%-bHN> z3HJxyzd=;fvpp}WVVpRBCk*4l{ReZNf6#KLSW5TXM*ZpjFuy^(9{w-jIz6`YPgxs! zj;H?gG5%lr0R2*b?m2wW2k2Y<=bppAf#^M57zz9`dr36)BEDj@yV52u#c;# zys8W1D@8MuI@q_(Q0h=lD#`!vaQ|JROnzDf;eXE`>I?F|=})+oMHS->tzF9C8)}_@ z5_UNO-}A-yXZ5#&zTuC{L|)<3sOS&ev0BuKgs2r@4TyOnDH=p0JV8p#7tNrx(oowb z+C_)x1k?>>;jHVILFpF*BxzTOl}dtxUReve;3}~m@HJwC*r>JCb${eK{Cj*p@_r5S zLvl0x_u`!TE98otug67Ju9U0fQn^g_$t5#-4#;WEvRw9mz$~mXB5>6}e*-o1MHQ@d zBdqOmSfOiRU53S0ag*33M#Syn4)JyI4e^|KLHta%z--n>i=vTeMYOxBaB4~*^`me# zaJcA$6~9Vfy-ngz(hiu4w*7QC`?wjFetPnj<2Q%t4ITPb4VT7Z(dFZ3*A9)JT~-dl!_q9{=DQFkg~~HHExiU^F$14@^y^|q$bvsm^Jypn{}cRYJ9q; zKwJ;}@jkWeuoH=znZRze0K38>Ek(nbn7 z3g9S%5d@n6%x7>E{ku`BF;vZ3t{LH)`EV269VI z%N7soifXK=7KMw4p9Ai206(dzT2ap@`<(D(1u$rV=!LQtid79>z%wbp+u5LtAG-L3 zp_+r(j28!?B?v7+s-%lYuoZz&zy?fM0c={KF5V14Zi1QlPD7>RBDE&~CZHXj0IFk9 zJ-@l5EgekB*7lCYvaK}{ud+L87t3@@C|G276v$xMAM;BnFL$;Xkyx~_v9hw!-r`u% z-ZoH@sPUZ1-YCDF6}K;4db_`)HC7o5R5v%I^9Gg-E{L|pV~Ms2W7nl)#>1CdfbK~C zeIP%PFD$T1qt5}mIROwgdja5#9X?ppNvg0@g&iv7Bt4T;5yQfS5V-CjnoUADu)=|a zfCo;&U3#Dxn@$5I^59_uX-nLZ4#xL=F?fq-Y|O}H1ASvOuOWF>eoD{lUYwVU=7mIb zDI!{60ZoR{z>8L%BAlJ(OKX3YCQiViKraI?KLX9xinF!q=}*FUcv8nXc)rQ`%@U?r z3q^YGy6f4y?lLm(z4sn4^=f%myh!t$IX5*WahY|ooWti1##hrI7%vG=eNJ3}ol0X! za&=)08;B7DcnP*Bjg!JlVdP4BMqre*Bfjyo*X9Z@c&c&f7`zhC48^AA@y3Vq=B<+~uBwDlAxGLHa@kbhYBO z-=J#&lreZ-k7k=x-R#({n#ckx3wQ_~7M2Up20}9JkNX|9vh?n;ef>t}Qom8U!QEGtd{dwBlBq+PlXYPz~PPM<9c%Ds2A3E=5;2uH_LDFsFfR&WrGM7XZ5C z5P=NEv|MlrR9(S5*1_Nq0eC1{BB&^4K0CDKG@vud7 zF<4F@0}8?c!o08xm8y#nJ#Rj50u9bEIKp5JgDC}UVhex~COzb7 zEdykJB40g&D;NyoGK|tPnhRr9_k9q+<4|z-TJVva07{@3*nb|gVYOljhj;+MNhqhF zP=7ms5NeT8}oTK)P ze-djZL=yf_ra%p)z^3SdvIfd#DArNpxFm60u^QY5HU+Xy3Y1tliR1H4id42DT#g zI|ioEqfn^d9pHm2VPjKsvWU0U-EHC}06*i&*?Dru=FG{(b2_G`VgdeZP~eLU26!5O z#o#o92Y6x+z@$#9iP^+{nAj(w7@IoMEgkLf*IJvvzocwShp?i}tf)=5ghTXaci0_4 z1Vs*n_N4srl1NEOut|D6!C*7nih;U5wWys^Xy{DQjwauSh0k zNl9&DUb5=q9;?k&)Lj({x;$26r}R7hzS7FV!aS!T_t+ePK)kwpaeckVa3qsU`s(U} zK}R0ylGM~i<4WTNQ7W&>z{1#(=ba#8Tp(gxz}7CX`drFNnq&#P7J;Iv2IJh+%fLrK zNeooSB1IZo%ht^bpjlxD2DXzOWe4U9DAu%1I3H?YFcx{Po4 zBnzf*5`fEKGOkG!gr`9|Aj9XuJ-vhsKw&}xP$?j|@Hqgi<~Fk2-$7f3K#+LR1~$7N zIMc5<0ju|;^50ZrcT@qz3u{`!4j_CS2plW|Vk3VTSFT?7#EuV3hrDCudRJ{tO=9<= z-k!xH$>h8eS5R)e<|#R9E#DV%+U3B&p54m^q%+T>%zl(rUooDCH7=D8W?))AC8^G< z8QS2x0}Ne<+6d!w45tHV_A4^@6#X8dnhD{9NB1idL}2Ze33(cJk`s+y7k~)wuLxW7 zmp3kaSm9HG$3J6P)oSjf;bG7V0DcR_P`b5<^@Rp52E};4QPQ#6pLmVIFgLx&H7>4M zK|qj{&^NRJ2;vQ~{Td#AyK1(80MVeIn=bIEgL9_v?yM=;=+3w_#%Lhjj$1rv?rbF& zNC2!mbMm&XD15p)2M4b@Gq(ErWy=g>*|O_b8yRD;cImQRJC-i1tM&Qz^en#R*2RmJ z-3N4+Z-S0;i)YYDcPpw3cF)c-h%$JRbRgJEKHM#+jI3xGgEcCB%Am7p?3_e3Z<-|U zOI9~lxY=ez^AVK=x}$DoohhAS)s_>|UELh%9*6~FL9m|T-`G0&aQ3Zt-<5^g8;s1J zC-(doZQG(eItucrOdddG99GX5U@KrV)DTD!m=IwY-L5z`#L~saAOJVktncH?eC#Ir zSWszjJZBH&!-yGhB<&)f9;+aQ^%J5LmZ>xaWcC0nmmxcw)>a9wOi9jC1+XHZma4?O zR;gjEVVf%8L!%6r(F@lH=zd=4SD;&!_25sbeY1mC;^z!DA{eEnJg&)8HA7lJA;(&o zQFZTMaLoqpZCG5j%VgO;#lyxu#KS*92ZngqLALxOP>^9Qiq62fql$T4#JR>K$*EigGD_sL zGac=8h21o~ER(a1Wwfrp!^U!yjO95jFOh8WvQ~43&bO6KY$!%oUWD|iou$lUrAwTO z<nWlQ$k$n$uv^j-3c#-{x_dPp5z+052+kFsuU zVD{O>n`rammo)%3vjJSmKGc)k_aK0ysxJx&+XwCMX`hhh9$$`*{iS}jH$zhwWiQM# zD7I$kn8lLBXU1ox4LHS{^B@7fi4(_kzR%7G!g2-8T@lc`0({<(vZ88X^|S;9?hBRH z#RCC{M~*pNp-@dtdt3Wmp8Wj6+B*5&ORtw!R+N?c{W4$k*=Lc@m$rg05eo;Xb%Oo{x5=7X6xs!m3v4BtP0OQv#PC$7Et*A{jw&u+e=GJ~y z;}kamxE;zTpx|{@WlpIejTIReckG?$1#MDmY*TC8&*be_psaA*CK zY{)*FJtCK7pJ$!qlFbr*C>N6e9wb(EU4oI-gg&i&zp=N z!;}M{^v0w&dlPJ^r}yZ&SvJGmyv9D1guy7ZB;2f|XDe}ulI;)-^8gg;+^!zi26nd;?{IC97onQLTO8MU zgu&(+!9ryV4){G#hZYs4ZWpZt;BvkF!JeLk6eFh3`Xyxr`0oC|@4s%cFuL*m`Jl#Fu!WM;Vv{ zJ;vAnfWa^g9cTs11zkThTEO4yuxp=Rg@B+oHMH^3lS4yt!_cFTZ5aBTY--xoo=Aim z8dE!WG^OO`uWY?R8aHhH>o0G+$uMrb;VU<+Ty2Cx)hln9n9o4)iu4kg5QW+pVS?r({ql1N zsy!hxF7WKNgyeeIH1hI&NN)}VtYEwAItGKt`3Rn6*K9kB_WcZoh(j>+G6|n10j@}?J@*KJC!w6d3cU9eg>5H93ZA?vch$>y zvCDY*%cx_SHmWh_RfsY=H>lT$P9N)GQ`h4&qrFfMcdA!=G)WQ72~iIN)X<$0llW~y z)GBdPD|9%mnJt;-oXx2%^J!W(VMUXoWh1mS5iJ{2#19w`&9&SM$&1AqH&VAIx~(F! zK0a}XW3Z7Qh4L(#d^m#+v}9=W9pXL@Lfhj|PS5NU(1F#=g26~>Y17!T?(XjS&E;h>kyut%Sm+vg`0D(kV6t&c9<^Fru0T;`G*IYtTI3#S z@%!p(uUOpJ=rSy!P)YX9f2sBRvM-|!>;^w53$k{x{9y(JQ-|7hJpiQgz&eNq9X|7L zD$1efEewt`ILM%vfl$CkHES`;dK3qn5LJ^H;hzu@7`UE@8-dzIlNjbFRkaAV{vu=q zH<(3>=;UHAlmk$XK(XPV{}I49R4KnI8Lr%w?!awoHGAGOIuZIyC6DFTx7hf+O`fshU*)HN@vzc%1b zU`dC3ap}s!!hqlBb{7-`!=;h(^3pP7MPud4J?%A#mi!f0C+q4YaAwnj@kEe}qm84@&3O*bN9V~^ z=p)eeBkD{7H(UTVTtKn-Q2@u)7u@fGoP9ONQ1oJjSD8F^#qJ61`=cS~)-v;FZ0~=c z!E0oKiN2ih-_NNEtavaoP(HSSv1rs-Evv?4Rn_XXvFMmJ`}6G2t>7B(zP7caqxD+( z`RtPHMXObM(DR3tdl`LD%Qt77$Xl7lX5iJzD`RCETeXn}52TVCytGu}oLXx1TEWvf zM|w>sqJMM~%Cm0e|s(MiZ5O{9n)kk}!_K-p`YF zD_tQdMk-iEl#%nTdGVr}0g4ENLVq;F`?>Zj0RE1d&Y)VA8DppIhFZpkV;1Vjn{{$- z>IWVWn}-q_yuiRbbT*Hek1$xnO`EyqID`4zG(t7+tAF%?GTFHn9iZ%Uicbi9L?jx< ztSssr+&VK-r~;o>)6Ufai!ugPOu9P0u92VVkjj^`q)TPm0xrI5>Z>On`@(x;vPhoH z{z%qjug$&=S673*`L&sdU8(E+7RXjQ z=?_DD8V@kyRdH=eUcX_}s}{qs?z0=k$%gs;ZJjbwoTzJTnzy2?Y~j$rvXXGk;%K?- zc6&UYNH|>JlNS=wa&F1W_O9+!#k_E_tgT(qU0v-D*lmkTie<<7sMjYO8y6WCr?apS z_cZd#V}@5$%Bl<{T2np;f)tbOp)giL~MQ+tbs*8Cqtn0eohv@dhk&gZz1ha?!Pw zN(z-33JNaM8YnikZDYK%V??9abk5m%7)URy2ICCynpjbk_W0}o{6)K7iTS1&9b2yWJ5K|28{KEW(F$awEM$x zJAUa%5NlCPcU+d_hk~(qD4btlx0QNB;aE?J$7X-sSiI%-mKG^nT5jLkWgPmLv~;!? z`}}@iaS1q*-RTmq*Jvv)FaODaG}f)zy=V1mV^G#!DpYYnkO77hWI&#%kk4f3g$&}m zDC>(Y3?>=8rGOKpW)P%65af9f_)6!;_s+_X$GsmUP74xWx-Qa&*T&xg20aWa38=_l z2zsMMi8@#9+=@w*>wR9zv)>El0F)z89)a>ClrwnzXY#F9C85ij(0(l)GH@Ti&PfSj zaAYr39H87KxbZn<59_2CCp@1M>#q zZqB}AS-5cjr`yvq`>?I9ZgF#RUX5%`SH-1_RkdYbtG7zWt*fszso8po2>4dug(>%aNL4c@;p}q#4O+>P)jip%|P`V9vd>dTd2GXoe zNwdAG2MWG68ljCOH;&L|%J)7z?5Sj{Spz=-5Ihuo>f^juW`!=Kd{+)D=yccVie{{6 z&Jkf+rWIjDvrj1%l2YpMu8VY`RBnDbRh8#XaSKi8G=}-LE~-|&>nL$FL+|c&vE*x_ zss%8`W>r-UUs&>)3F|xABiN{-^q5ZABJSXf*I@wKPiO%HMW>q%i!_XoR$Vfjef)I> zLllFg$Xh22*QxqFPN6Njfa71=c^12P7DFF23k%Ia->Zdhk%qo$_RP{ONL%@-I)rwC z^xaP|*v?=hfts8Xk}yTxq?!AHQF`12;dU)q+3q5F+8$1~$*P{R(nwkN(ny&s_XdNq z*s$31E6dy4)~(y>j?J4F>xfl)y;j2r)X(c4oe$!*t@W1eoyJa?YFx6cu}K=u%{`s- z!v$XXP&QQ(i4->{5}~k^)wlTb3#2Rzlvl*#v8r&1apj5+->`nYMXvAH`8%ZNE5twJ zL3jn9i7M%(VxGu!`UI4n5!zBS(q;QNrBOsd1vA`*K6P*&yq_{B$z>kfoOFo zRFH48A2Qy^erK&AJ3EK7&&dF+XE0ol@ApR{XjD9BqcyO#hVzLRO{hn0pnziqhpxk0M4p@=n^}{DP%ISUN%Gx5okuFwx5nL*ur2w0rfsyoKC5n zP!lI*TMYyXoMW}2E(`Ew0g|1CimfMEE_nIiM4zBwbgu)Rw1dwmI&xyEI#4`KFn#lcvUhlO`%i(_=PHARR=E9eSP914JD1q`5&sTl82_*>6BzICduoa0&;8MP+QBmCf*gfHu|O8sD}L zT;u-!j~(nE7&AaQ7kEpG6SWa=W^A^~*pl98EPK!3fRqD+_l&N@JcpI{c)fmaG!pUp zecnhUS{Ys3*eGRFqt1VrYBG9(W<{dGFmN{)aRyxxte1YJz{~mkZ|bCyBK?|)&PIZ@ zhZWR{WDDz$UIqteo{Fi2?2<|471Szfy)whEp2P5S1dT!QOfZ?6X_~gqE8p+#lPd7{1oW5gTbxpN#XsWlYOqLadLa|sl zNL!MB`uv~GK#aO+1&+awr46nC7`)lJ)qb=Rt-KzZYNO^grvkh2S>3+E%_%S5z z&Cts-q+eg*6Xqif&JqB}l!$0b<5y;csON~uIhrqo6`^Up79!4YnAtU2Pj$3}gSjGd zaKB+s)GRCt25aj=A-BsgKsw%DmuxVspLBjY>iuXsc6sIr`uP0iPgOyFby2>@QQ&d7Ts~iMxa#Ue!e-AS-YWp!+i%(HcA`wvbZ$DUxR)&Zw(rR>I>0Jiyt(UT0!*BTBmm_OtF z20Jo`J%?Lz-*2!}CKnx6OsZor%OoF%sZdIRDZIOMQX8W{ye-|{AR zL;Ls3g8Z69*jl&XuciF*4Lg#byWy=WpiaTf9_v@g76f~y!a(ET$C#4k;x`1NY@9^d z&Wq9)GERLlPcU4fk7b$+s0IXAzHUs93uh9s`#QvxM-&Ju}G$kiUUT^&DYf@4;j*MIQ@l{ zHN|01fz^7bADq*!&LO!x`zyD{lOG9(3cLZd3Cl}x5F zcnPuO?eBO2R8o?F&I|eFoTR4f6mWGcw{wW`HMoN*^8*I;45GZk z2d06G$*8whF>kH;yu{}3VLYOe@%#AAi$4BUk3OBr4vu=bBkc&pYaQ`G>6dQW_L(pK z&GB1r`}|Xe<*~=!&i=2nXJvuVze{5ID7}9dlD|SLJ4A1`6{3(Q_dBiVh*Z`@7Q_FB+U+U@esm%*zUzNq!gYD6w+qP&`Z-o zr60cpUw+2^)hYI`PB2K#cr#p^t(SWb;BifOpP<5Np?(@fy|7%YUszTFzykg1a<%q9yowfHp+bGw zEu<-+R(>Bdv-ynOV~;36cm?3KckkM^ZQHzS+qP}nwr$(CZQJT?(=_RaCjAeS%*;Dy zom2rriN-UX(m4c!1$Oa^h%u z8@i+Ol~n3@{_1wuP3Xkfmx*zqwXKy!8)Gt&h|5Jhvwni~IKjB}N~>eYB9)G48n&`E zk95A*s&z}hzgmmu*>Vz$)ASnUGHP}&Kf(vt5E{>_N*^D-Z1v7*+8zk007=Ev4^D(@ z20`x3tPBHBdr~jRKenGeuoWGfBrgHf&WhPJo*TG8v6y*U1~eTWn3DucSFv_9${%?< z+6Q|W(zOzNr5YST>(3tzISh{JK6ZD>K4Fno`STm30yNqi8UF}w0G?QWcMut%Y{P}p zv>%yz9U12Y0XiT>b<+6r1da*DXq59;3HWqJpe)wxdf7JdYyj5^q&?X*l~X)Vpe%w$ zTA7Ags1u~3c=~VN@qDaDZg!~agw1wqzGev=H)zS^>YA9jiW5@GWrHC8 z?5b&Yqndt@5>#p3g;U!RKD1OP+On{T9REzujt(Tye)*zi%jE!(2KFrRe~DZz^}iiX zW_=#husDwaBK`w2T)gWG#ErTM;~%)(i9JqI3JT8zQmu?F_i5G5?VPm6%F326%^!LS zmi4uFzNxPydkRYH1IpXk-bBRkf-RDQ;`rx9oY~nd#QL!M67a(ORNKi##cUoD5D~-( z>L4iaY`jTfd*qZhedG8;0bySuU$v1mP0ff}WIx0|U7y zC>42q5MhF5zh=XU>^@}nVspG=(=)Dpi%kY$SSFK~-9A9o6E?c( z%acJFR)IYIX-fIdnzMG4^DZx>>T3lVV1l~=&Gh_w$PxCC_mv3Am~o+A`^oF|zl_IX~09u4z*{t5hVcv08VV%^lk5jY= zJL1J{o*b(s7M+Nw=Hz>lW=Rfa2*Y2)L1y8@-BZMmBP3}lMdJXO-A~!A_koEgS>$=9T61OOm_O!Ta$ET*-c1K)f5j+^1JYqN$^KtOQSW*wxWf z90KX6B%gju_J_JvkhgGv^o*NS_m$SSI+i;z$i%X}wY9|;9s+xLC-u}r7D^o=y%kS1 zEeRw_D);pF$D0#HJU%9V93O|v42tEgqP!-Pgc;ln8j$V|iS^49lBS$SHoN~DW?*9? zqS7Uu9FZftyEhLaA~utf?9D~r;^t%{;m%M^j7|yGGM1EizQ{{=UizD_kMEr&e44S} zoXBvqF~NT+>yF)Vh#M?pr`y`y0;?Z2|0xQ%0UkH(+)o3%r|y5+;9sM`b*uTYh)9F>PR z1_<4ic!f&dLhtC+zQ8`=avGIvA@qAf7_<9h)CS&w%>*C2FaJuB1m8oKe{!)bd#8uo zJsSTFp?n0*hw>QIx*>e5l2)D;r^J42>V~g!ClG|E3aM*bvq!uCEsWIlo^fnK0+=GV zNk{UwtJQxybp6$KZ&SrXh$on7`1T0m+k~PNI{i12hnJf`lY&4=asOy}ZWnRuRQY2@ zeGv9o@r^FOAY6Pl^!a%3DapFIzXxWZ5;U|9H)P?QoS8zI(cXHDbEr8K zE#t3{(0QL!4wuLKJTs~c1-QWuD1q0!Q7c`t4Se>KD3%Y!8Ou6YtWT?-TY9js;yY*> zOkigHCxb{B>CmpFFTbLx)$@kwaAHp1A&5dlsQexYV{*UQWfCfJV9oh`oCMG<0Y;z{ zZxCUV?YG1aA|JpyCIe^_Rz^TZ-~;|>R$ZAuX6s$54ag&KNxaKMW9zo8`-=zNl5GF5 zAT~zj8Z=~H3SJkAshCp}d7U}H?74fxNrDV!AOC)vC1wt(0-3r#E>%$b0%elgo)XIl zOMaYJ7Im8p-9x>;qrxJNK=O_*rm(mFErLdVh}@$p#R zjX6Q4kk;7Ou@$RN`n8TVx_Br}q_{QT4f&Gjqo(TGDF2_vljtH2jd=7h0rC>DBGSfL zyKw{WSU?$@9M)MnMoN|hANX-mdex+ey|W$2bMH=YP}kd)PFF!eElFWvhx{})D~?-7 zYQiqf-LbH@xx2f%x;}g#h2OQjys^HUZI9>cbtZPTVsU8LlfzIEs#GOanTWf`OPuVf z&$58IDT_aGmsVY`VC2{tm4y!04<9B8QLE?Ko@xR{psCc_c!fK}u3vTXNO!Jt0BK$i zcvJb;&nSzLLVbAw{g$AIE~xDBwA^5&bjcpXl%${Dgb<4QbxM$k8>vKjqGhmu*E)hs0UmK z>qeWP)Vxh@i9Lm@3r9DH^XnQ-FWp|!E^rz}9HKY~fa%IADsE=2cEh3P=f{SN|4u2R zDW#=)ZcxrPq6xdkB=3NXa`JDRjqohb%Rp)b8o!VPnNqxO- zwQ+u^BUR@L19UGrT{>eHzhE86OI*Ckbsx?T9S2`4a_48y_@;lI_!asZ`jY)i1HePx zLMa7ZgKwZV5pc10mb&F$dE+JQz7D*fU_uVV4hjOK%sA4d?34fTqguam2IQ&mT4Iyi3~=yUN^yRlu&_GfliXyYUc!@5Gkgtk zDal&OL$ys+2aH5SX6vDsC>$Xv-tD~coEk5OJ7>H>Dc|ioJQHRdevz@$rN@1KI`tGy z*h9u8Fa^hYHcge-2d`ShgEUE4SpyT>ZEk3A`&wp2E?q{B5Gk1b3S`h8Le>2Q7}3!I zRx9dH4LbA^9h`ycs8$U{sTI);diI=AXCXQc;)2n`q-xfv-HN94s|FCt(JJkt3*##Tp!C=S1N@|VG*Q}JMxBkY|f(4+-QE%p)!n{mPVPdv{*1PoO{4G$~o4cT~~sE z(|dMfCIStF10;sv)Qq6~pDk)vgjG~8n6RAdQFe}ML86h3JgJLL-ykyj0s>%Ps1a{$ zV&p5DejgK}okFbZkd|bKE3#eQD;|IdqJRjjmBXa@vIv>5a3Pt)CcnNT?omc1^jjxR z=oZFU1ww*;PYn_c(^vRdXc_3k8o+ZQ9!zPVIB_)nyPnysf!eln95ASj*$(6X=DvBF ze)nKZPH-zrdIZ|Ym)2n8SAv9zW4bL^7SmNseQN}l*xJv>!DjK11rL<@Lk5Ts4#E1U zg*^}$i#QF_a55k=CNX0d$*KZ0EERtlYAlxS6i9}Z3rCb84nv@i3neEgDJO#t5RfJ( zMpBfOfF%k z##xy#f(FKebSkg-H=L`v1}Ir38Y3+sS_tf7kL}58O4PF9bBIqt8|Q7Z7Ih7oyM*M- z>oKxxl|W(x1lMs9gMe=`_n4d06OpF_9sGNmF&YSSx1n`j5GkRr7?DXcvOzZCFy>l8 zE$U8?k*jZQF9Y6?@#|P7mvSjOcm`_+#8MD@K+uD)`WISz3At?l5EaBA$TY^X8-nI+ zAt=?ZNKWrv@qY-6DeQ@Jv~#+_u=Lj}8=;fC2X^B&eE1a1}jsoJMn*#pbnVE!uMJ$*wVqA-7 z!q+HEy)-Tyj(Ec5z$2zG=oW6gUQ0Jz7H(h-v`Jc$V5P?wzJ(YMFZyf6@3Z5NjZy>y zb_GH+v%v|dw}}~#!*$mz1ON||v720Kq;CrAO2<=)ntbUA(K4I$wZl@bl z7`lFnbk+d~DQ;mio<=H(e~57IfDq6Mba_GDVj9e#b8J4I8**wrYJlFL*r-ON3J4xQ z!o$e(%qGw%3)1-DnLyq@AWtk!kCnT8ZY+mB%_h_h6J5x8|P;R)tBtL+kyU75cGLaV91 z4?=r`MmU4cl$wfOxRMfv zFq|G&l%_Lcgw~#jOrPUY<+l1YKs*bgM?Bjszn0(*8i#?pAVv~o0%}m$vVpUpsZBB~ zpkUa2)ulxwF8+99eRxKZhB+LFT|xdb>ZJ4;gjLI5uz={a;h{MNYW{E)9vNIM!W#ZK zEzDa7mBZ*g;)xf#ts1 zz{*3Tx5`r(Et)JiH=CeBgq!iK^hE(4o}?!`>w#Ya3!Ej!Lsr(e^JN8qcM=Y1U^Wepv~wED8Y2z2nZkgdPo8e0kmzf~`U+6($H=)2f+ zI(`{pOuj{v=64{~xQlkddA*=&sAXCZA6K-edfiLFFod6yenzA8(s!$hmSi60*F$_F zmbTI1ebEI8bpl+_E7+nGizdLs(}}iaCEve7*{+U=5+>|R{C4pm#!=w$p+^JavF}ku zERU>LB}8o7T2;e!IBj?*j?@31>zhbCyy^6e2A!YPbRf8(Poi3BIX2Y62Db%Sa0Q5x z64#dea;KgSKq@Hqbv7LXo<*+k>@j#4T=Syt&=rau&$oZGYGNG7Lw7)HKt>?|s~A!r zveh=KN#vhG>mKN<^zDp6q$9NAui&&cW$Oif@R2@HxcY?VAgG(6B|+KXZejvD3is3* zXk!CAfxh5I(eply?Me}SKtFQxQ~McEcdHKs+xWe9B)rvd?y7S{e=X3^(pwEVyD&-^Jb?wY0^B{xJ^>CpQ}nUVv4k*-No)|N^qy8&o8D@ z{&L;lF|Htt{yQu{bb|Dix2P$y^O7P!~`YorOzLmV{(a$kEpqAvV@Bxj!Z|q z%W~(}06Ukd(AY$BM@v&w6#vZaM}$@B9wk1deF`fU!?i1hRJKeXm-8?!ZXV+fECzXA zpc{w7!N(emew^E>!$n@+WT2K=y6gwIO+0mZFX<~}n(LT$IC(1N>4@rQa7n`0qdqf0 z-%O(OK8j4K5}|*%bhSDYauK>B9e1Eyh70Esh(EJ`u(%1=Y{v5rrm0ak9DTUl&%xFb zZBP9b)pKK9AvR2H>pVnFhzqjr_U5fAj1PG87Dbz6#@@m^{ZPNAKZ8-kFjZ!39_M)b z!QLWE3_<#xP|Af^K~ZBmnKN~nXyvS+VQDMQX(=B{OKgElW&1Q`z`I?5p?YC-scI}o zhpPup47IN7T9Pg-{72C9o3AKXwc##FL#ZLxH)3zW4gOf$;E5pt;hN_kySj<{K(9{L}}E8urTauWg+FeBaM zd5b#WYswAk1{?`Y&4jweJOl%=FWXtyMk;vc32gozw$r$f{!xN zGg9f_jbX>vtQg!1+_mV-8M?eHy=?h+7fXA0A)T@ZQJG`}YjP7tdO8J)LU3YISlV$R z^1wE+*~UgQsv@n7jc6JjdSG&FHzJ!%FpLX9jSZOm)x9{$%#I-g;lyQ{dt2qTbkY0a z+?dypq3M$t?WT4$qbr^%;2M9fEMHFeSG4j=4KsbRe=gCZ6UgwIg1<<35E)rFL|nx{ zO{sS02z-j+sxErU@he==xX$8XqCugrJKhwbCs0+egYv4j4OUgpbnZP{4~XH9@Ml1y zon-22jQ?6dOspbXj1ehYu5NyVm9wx<6ixObwd-`Pi$kn{xAE1h?hPiDHj$xF*wFtJ zB7Kb`eCNihG)8i(y4dDD^&p3`{8^*?R>ZyA^DD5;jxL6Y^AAP)xy>ySkJup?-A_6L z97t`As09wq7?vk+@CgsA-g~mAm7j*DUF;QPI1KBQ6j=*9(=yG&Qlbga?76@*zzh#` ze?dX^MB6t+qP+QN%5{rOI?LSV%JFZ@wImff@4L>2OW;hWeZifMsBIHvD~H6Cs~M zw6k={KXFVqCDXLcDg3yHnka=qnk!o~!3>)iyZ+$qvM9; z07pbd%>?l*$bVu>Mu8>eQCc!S+agMu#Oi6zU^Z-K1k?&FYFPAyfK$Uh7`ilux5v^iR zyLx*0#8SlCrA0?GZ`sVTY2EI~;&D#{_?5-(=%7I*ljaNj=kOybrS7*5Oh{{dbvY1_9>aGo`leLE;1uHDp zK5yHlij9~QPBb*_3{V=S{IB-oZsFwT_wn$oSGN6Wf}!q{$BUVzlyJ#fK^9R9d4*;& zlurJcO5B64s&Ar>@6AF3lQ)|$?{gUXfnf40U=bxl%!CBxF2rz=q)gHpur`Qj&S zOmc{ZBbY{Ia=8TBXFm8u81V~#8DpAJ{sKXI)fuRBu~ntmC00;^0Ru0k@D$o3b35S= z8w;gyB5W#09(!$-VNnhdARZ=o#J{iL7(P1G1_=BgXw_@~{(i5PpmdwoHB z`eyh0!4U2yDotCd?(Dp)akM(G0M=hz%{iyEquD9(T z-Md(>3-zz@@CY00DxdrQ@q9-ELON5Ric*w>u7}UW8Acn*cg8bl=w z17C*fW?Rc#P>H7e8IvcA)Z@C%WljpDn@ApoLSzs^H5j98%I{%$Cq9^MRSJ|IYXj~M zI8}eQ6_K$040=7Pln`5G<9gBTZQ0}`8t&QXU8a*mUKz4p=<~));aj#`RqkJdNY1x@ z-063JntTjf>F5Mj-+f2J`FiNd)Lw6~+kCnl&HBQ;J6O}4!n1Sx-D6vCllvaBkm2t8 z8?owG>7S1agl-Ep8&F^IPS%UVdaS>E9dFYC4kG<);HJKA-4B*R`l0cogCuI-SIq`^u*+?<8;(G;nvD)T1x! ztPhI|C62RrYn5xr?s*r5Idsf2oeS)49o9DmWv7giD>s#2pIZXGPjnupTaq^26nFjS zswPT07tb$8^q1hPw7oCFmS#)g+dP>!>sTo^I(Z#-Hw#xwLcE?cr&}zC+Y0Mw&3fLQ z`$~$JSoKUF;fb-**g6lF42xs%(;Y7>t6f8bh$X0&9$^S)1AK&T4N<5_8NrC-l$M0U zH)k!n!t&*dDm3Yr^B)AHvHWpj*-LwIEcOO49SFz>5;hPd4b%Q9wR_Lv86XTXW3^=7 zQC8zK(%~7^sMIW@)-7j$C#PQI?onvG{(3rE?+>!K;g#`YK0oxdu6Q@-y7AcE9H^pk z`fe!M?;m~Yb6FN&)14XidfiU&UQ;~|4=duTd03sOy3Yn*b3YAUMZ(hY>S44!-meO^ ztY|aVY_)n9d?d#Q(%Nz`e&3)EXH=>)9j<d2Hlq@RSPibD9Vt_hJ=zRu3f^Ui;#-`wVuO>WqIY-<0ZyZ-G@7z$?D z#LHq_KiJ~16WR@4e09ELu$%t6t=##;eA`oR`lNdM5zLqD^jqIw9(rKhLlSBz(bq5eJ6cfruf)g8un9_@$RO_rL}r%;?4{!zp6->fvO^#My*m0P*E z2;DOt;!32$fuM^{FH9T4?4-ktA>zE1kq})Af?UI2qi|-q#g%xkRBX2E;X6sYxISYz zdbWtKz42K2=W*@f+m@Sq*lVG87n+H8=hbZpV|geJPprtq9@N&W_4PhNIhREF_03t_ z=YYMkI2({quF3)q*rp7@AdaHy<5!G>sjYRD3Fb>^Zkr1 z(e`Go>C}G`JRtY;yd3L17cLDQNipu@GH%`=(t<3@d?_X}m5;C4?qwXf@F*jo&Ed4> z#l`E@T0^uaO^TYiafp2VIzR>ewu%+gX}~SBpLiX!n?{A)h4X@%HLwsN(ZNN9>{1KpgvA%tY%=6iH5}u2Uo)k1k<2Y%Dzi! z$Rv4gz@9-Y5t0Hn#Wn((lc;H^Ak{ui6b^vyxEJDE$Zfo`Zu!f=&F z%ju?3Rdp&7ZinUZt1eth&I^-^k?{EQ)!DH|I&RjtL%;7hSEWX_*QNfXkyrP}!#$d# zgWh(tAMN7%F!ApvI&?~DP6nTa;nd*lZ_Yx(ybL$jWpYy^Y$2J}oBppYpR%`!`R5Aq z+uA(cQ|#H!U)7?Y2l+GD#n$f}j_0|s&t>S7?Ch^K%jV9e^+}?jOFA;K8pi7kzLFkU zXCsx7r=iM7!H=JuJe?e$kX+`M0t&Y3cX#TG9gC!xn%*IQq^%A55-iB(-(`l-8> zLXpf?YY$qhk(*m4jg+Eqo%7!#)lB#Ox#Z{WnWpSqz3E?*$l0-QA{x+LU%M4I-E%LC zFB&f@J0s`P5Uq$C$O-|%1kE`fXwe5~AF9Lef+TVxy^!)f&k+|A9tEK-KxPDja5EVV z{H+NbHRlA>OkZq<-yDOY$uE?egoZ#Oh*wzrF<9VT&{lR_aL7AYiGn&>ov7s}R8NF$ z$Wh8d8htoIF)2=H~VTes=pUhts0aR#I*5FYkIsg%q2Gt+$GDxvlnF zGg-&YZ6=@eMhq}OU;*nDst#e5``)8&s7GNLm;6ajV>JGwdHUPuQlh!#IKA5@uG~)a zM|!;W@=b~5Im2C9pYNT9{MhL~aGXUv9?V~T?!!qzNxGlCN*9g$;Kl=2?z22UHnFMw4Zkh{SQuSwzZ_Y*4L@6Hn#yxwl#=9 zD(ye{Oo1*_+RlY?=`U{HvA#jo*~N6JOqrJxKLOTV+2V0OU8*}g-~6JwHd;nQs&qP? zxahpT=d zrf{UP>$YJZEzB;?PUiau=A){P`mWpsZYOw_smaN{uR5*Hfj$!|Av$lLwx+MLY91XP z)8{PKj=vU~-E6gHCm9i`HWxxq@IO8NN-lJ;{*5YKW}Q#UeWtn1&C{F9boCWNl%Kg6 z{$ujWiP!Ou5d|yN8Pk{CW0W+860N>Lx8mzIsnfXa@AMLMQB7$T*)1Bd4v}FWWAL@d z9~u1z{DPV`6z_Rb=*ky@@-$H_XI7|B(?Rm%J<#n!jF?ZtxtEO?TE<*$+LUjyhP~gO z;KL;_l1VNxo(+_)RW?%hD``kQf3nQbAB+!1NLYIve%Ehnx!-qk-c-;x7^4B!6?v)+9_Sk+X5zTLr4Rr?))ADpL&nTYy;- z1Uf)j-r{9j!Xb$po)JA+opC=mz*Usl(04malMTdc`T$e8uxfjMTEY3MwYXhHE@MM| z)ze=G_mU69{%D`*%upO1Kj2}_{3iQ;oQ_wHijf(K*t$PE=*ez?=C<68^T~C&|Kvd0 z@^xH~5v_vd^mGlj8jt5>qut7+CEqQ1@BZ0v(plFXtKG4isQWr3`|m$0Yxw>z8Q5-F|2ET!rTpFn`snOv% zxeN9rB7FH>Jp(@s(fXJKu1{Ry+xeREUTpcgdHl4s#QT={o!R&>=AyIVdp=)AaQHq% z+WBC&tTn#&Sp4YzT~;Ff@;P&A?zrBM&X2iC+^9(2jJ}nzwS>cCdKjZPEpGnU0_>)_ z?|c}I5y$Y*SOl6_D4ssr2mO}nxwTj2kz;>ApG)0s)7>*b^xdw$!?;JaP5hvPkT0*q@N zz%p%Z@c6QF!Xh(W$)znevQy>MaNqx8pn<|H`*6XhOs{6sSaQIcsUHH5I@h>Ry3|^8+7wze_ zx|z%~sp_r%Sj_49b}2PeoaJ8Ob_h*IjZ_kIe~!dOarxVno-0=^yU{Ij)3atra}sk= zA}utLNdkPk{cSjvBNU42-FPnA{5G%{YJrEs*Y4xxJe@FV^U~_uc5@D1$QtdN!>QcL z?!`jWg%sC-JL<^?1|&J5HO0&gy)WA z=bOIdbm{LMRhXxv`+A2fE-asiq1`-^)Q%5bkMl>FjD%^>B&ji-vkLzbS)r8JtJcd? zyKBvsn@eY!E|ANUFQCuP&i?;_Ff#nV5Jon34(9(s7+LArnCbsF!U*YNZZ@h?RDA75&N&yM9wwzu84Jtn~~cG4gxD|W6$FHeubRe)H*>T5LJcEi`v zNnSSmpl<{-_%65EW`! zeNwe@?gJ73?Wg?gHN8ybFg>+r@R${HJSN z1WHpD76I{GM9(8jgEUXT3_3O+@)W^!kAERBfd(vR1Mz<)&95L{H9;--U!l>W27_}CV!!w^C9UXki{*-15l2qQqTU5qT(Hp$9!2W|a$M^z zLZ9<~;9Ejxy<{T6FWUDPA;-T*&EACgP7?ccfB$^FVNM2nD|ivalc#7`NBJhRZMg)HD8FcEsn;dp%LdoZdr?j~oMTDHLSK%$?xc*i66 zbxH9|lV^K33fM3L`Y-|P97GPUvyT*9rz1j$&;Jr>pa7&KmN)vBoGui()Frtm@AkA1PX(Wku(f{_y7ag<#nQ<2eT;Q9-68BU*B|;bMU*U>o`|**uv+q6zBmHM>UKAFCsrlGID(2?@;!BR}eYnUA|5=|sWU z;B~qEHXvv~W=3^*-`(~T3`#SiGwahF(Rc9LM<-bZGyiEmrlceCiW?l?C5f95iuqlc z{To4-4Mj;RtT8>n*oES}NyJ+Sbm!i<4vanIFM7>`n-dX7UU279jE|10=STdhcnivp z09K2N29`(kO8_wbd$_F@!B4ISN=gmPN~0Lv3K)k5WV}NZXP#U9K-@>1Gzfvu1-Bk8 zgJVtOA7y2Idlqk9JuVzPopTXSGu_W0Kb=DdOrX0(M)2L$I1Mps82o&E{M=&lneo!1 zOfpV6>*$y|b~_z@sZ!N8vpSDS7yC(-d7*(_nevAwx|!r)yoJJWbsTskRhD(IsTBUGij*?Od^`#UKg}NmNo>J$(lWZ zULS^=BpvbL08t$x+`pRIVd*tZpl}{t7_IB{H2RX$uWuyb)jDp<+c~H02&eWiS}oyJ z4Phiw`bm0B0GNE?7Y#YAEkusXX1W%7Bo?x=Wsdh=-3ocSw8^|DvQouVS%bcmNrcxxu8e z0M2m?LXz?vL?U|FslIO|q3ooJ#DW49bW1#BnLw$0cw}A>-LgOsz>_=UG1^JqC|`P_ zU<`^W{#HmB!K+!Q3aPlzz<~-l(Np*Y(N^iAC15IvK7xFTWw6sujrl!&cme*K{`wqd~5+3QK9%>>akAh!q|y z2lMLcS2VR9tsXBgv$X26&MPXP*;;m&wK6CwC@Zfw*K;bXJKyNZSi>AwAYUFU+yjj- z4>u@<%iDu-*x(9r;D}d|<%fC~ozx}=j!<9q?wHy!_0v7?ljuXe;M>W&}U5GaOU{SD^(l8J+)*6^$2Xg@@dKK8adPz@qbU7P8pgC_dr9I;Show>s ziXRS)Kqr0O+v?UWB1oFztR4^G7MQEuYb>R8#^N`9j4}77PRJF7Csd0t`Le;k7*+f= zT9tU!JMT0h9NWv z8EqQmId(PgLbW42gxV(D83Y%T{E-V3w_3SkfZD5Ju}=s-#)bRjn>$2BhQv`z!g{BG$Ut;7nlRBa%ehlm1Fg0q7Mv6Y-0DivCFS9{lZ-PlCnXgXC#OdT zm&(&?bIZttaaBQeb!}~FXK86S4KBFJIsl9lz)_Hl7p`%2q7h9UB-T=_*?bsAi=i)& zrT~~yv)<-tIgKBApsBMhxmR6=b%;|w4Hc^yT4KSbAViYHfT`U0*ff$SSoC>fps3O3 z``9DP-6_bOMS51QC}+kxM=n5EX9gg(YP-rk5kT)AWordx zNn2=tD@q+OlW0F28O&6D(e#a^;wFk>4PG8kO|ykO0%>vFWHe*4BM8p2#v-(W_2Hf2#xHWqAla7y zP6+}6Jgtdj+!IM0t@3Qj=BDOKo?)<9oT~4WxDCI1ewm{3^5W_S#Hc4XA#E9%0q^-_ zI(6f+wvVhw<8x;cSm$ghPOePM$Uq(4vklVs?Ue+z5{_MsMw9q9w`5wW*(OpAIJXqE;NXe+t~1HZ$~N#=Vv?0n zUP5v}V_uR%A*>QbJ|+4Gl&QJU`s_-+jU9PnHnq8#3j8C)!lG#LxYCT*Gum)68KwL} znB>j1p`pT2gqv1~WLacRtmLP_5hs^Cl{IryQ3?Hq7BU(o^nxfjnAUgs2CD8f;wyY8 zq2H)t%x-y=?zX0!)`bI`RrSmR#pYokmwY|u)K%u^JY@PmghNqw`Z;FDyS2eQMDN!N;8Bf)=}eYn>F4~AgL{m>POdZ6 z(I7Iy;Y8hNj9<2F0UZ5`1i**No@?CT$)NE-%)JwVvVUvhDoJ@CM)_De9gV5Wf=bza znKdJ%xDrt(gB#lEWIEo`CqtZW2?n7-{thPIp=kL_TWp1?Zs<{us24=S-EpI$dntU7aWJEliwh(hgXJ%Z-MR z{W(6X`A$DXu3Ch66F9O3LZsBrd24P$tnzSXPS!CI{MJuy>IC%Ooxvi{N}P&ZA@&WD z7<2A&%I>$nZ$`Qu2^Mt9J-q*!nA85-XR5h(dhaPlw0(UN#zv`N6`2k(uC3t6r%=62 z1xrTcX)aR;G+|mCXE|XvIw@HN?qAkxzU^70u+ehXG*eQ`rm*yLu0uIEG&8VY-riA> z9v%jBk{d3xzQDJU!7RJoLytcLjm?SXy!~{fw;?GCZ?sHJsz7o=N!d^n%7|sBGojH4 z8aKDZkd8?Px>hy`ws?)$R%cvOu7NYD%iVZokHPfA(W@yFJ&KWhi8U~&xSlenOuzPy z3qVJ-R0;z`<=Dp{RC7INOKeZ5`Y#UEvI<3ns1Y!*Q3f9_z%JPi_3yo_ZrsThAJ*b( zP8RE(8y18h-x#Q8K5~;=FJuAIU`Z2}4Pc(D5C|#BKqtXKCcdDss6(@VVE8uN_t_&T zY>pBAApS^Sq+ZsP^uGagsXRXMRbzY_QlKvCz5+tAuV8#6>%JVo7t}&0J8Cg=Q@7G6 zexCuEs9pvTJ}${lm)RkQY4T82@tYo^gGD)Vs}@u82cWY81uly-1?CMR)!K+od?PKK z7MR#fM-V+x(b8W;Nx>!ezv(0r3kf_;_4mTfp$4Wp(Rplc4!|_T6B#eqx$J;yVmV%XVAxJZKd&%1dfuNRV7Ugvn<08xSJ?C3tLYaQjkprO?IWp%(94bxXJUdz2rP;3F;x-k(p zmNQ;Hk?SJZ0J~~O!h|*a#k*7C?({g9^{V=~-w$-tuITD$JF?Gvv(J6Q%Dq$j_ZLN- z{JR9n+tNI9@$~)~78Q;^bA7 zPpizdm1Yhx*>ma2!op%g+v{;Ia0kkbTRM3YE_%2;On?C~<=sK6rSVs56*Kzeolw64 z>5^YI4WF!_K-R|r(9Hv;(*}hq&*lbh8 zM4pC_7bqb9=uo@w8``rHp!Ki7%noIL6k;_~xicSUHNu9nq(tqm#3CeS6*vStJ&^D{#P2}-BrrWvhHgW#ln@xhqx+}?YWh5T|O zPw0;nAxV;qNhI0!XKynMN|y;SQI$aMjC1(De6Qy2+kaZWoKAuNTyZDc zAlYhCb;y*A8&M|b>m^9Y4tXbl{)7w@jm1dJTMKp2AfqiiX@-rT``{>8Tp;w#nJoKP zJfmYmi@SDPHG)-HKM3G|zB;BP{<-?1n5+2`Ci{Aadk?oUJY|Mi8o-Tt*@R;}GvqlS z$wO{crqWv59u1>qyH-fW+@?Kw^VSeM1hr3HXsmS4!hv}?2h{BT5YA6?{?-Azh37vh z__^IXJT?I1f-Ey@*5)C{%2yxIBLQrxzWz{xwk5q#tPb=-oEzKY0CQzn>(kQ#q*@bk zH((Qux|@XYJG_9dG1ZafpNP;L%pkgWdIz~ip#rDAT!$O@eAW$pf>{?3FI5KD%EBP| zeFF%Rqh{v%jsXPwF@Lu}uQH(zTBMgohR zsSC^)O5~$5`&(II3k)x;9sRsYf4YR|ITo}YAhuoJ#zWwWndYGp9!JFJ*sb{NFgCh*? zWy0MH802nJjp zi!myFPMbnaFYm9e4g~BDR8ASN$<6|sEFw3nke7*9 zskQ^$4QVf={g5om>2k5!aPgYDILNPy`WSfi@uw>{5LLjkb(;cseaHq3Y@^t^&5O|? zVtpICbwvz%!L<4V9+H6>hBgEEaZj*d`j%F`4j{%gqXK$vVt90pR1nw5Mx=xe=k{Z0 z5$!;=2ez`@zl^pFfq*v4Mj`74b*Icq+1KO2=Y>^hNhMQ-Rm~y04q8xT0{O!@YyGCj zF1te7;3_4e#er)x`G0lD?uC*`=MbWhM}ldD#ZT{*ByIvpORM^RQi zXgmvZ9Fg};16f`rsg5fO@x;OoMzvjSgvrw`NZrEmlx+xb{T`qk6_)d?Ub2!bR_Mj*D~F5D+9K^aHK*7C@0w7w2;KJK1-8oxva%y}`W>okqfmQ%JDVlW}T{ zaeqsD?ulhucCaUwmYbeCbnTKD{4D7l8ruBa#QF=sAu|RBE?93&8$+oT1G_F;F;JcI zddGTuuD+(HN7<~f?(%H|!*@?%yh(dcf-Tgeivvou0XXWd&XzgKqKr^HRJ3aBoY5|g zGD$vkSr-E2Y;LP)uh5}#i_$3;Z8_n(tB2#d`{RK)+T!pxzDa&*?wu1SWZ~RJ#`M@@ zWB+|@VT?a9(E1pgR_Ci}ynK>NzmcW=L&jn4`1!g%h8pTCKuEFSNiG%UXciw_TVQKW6yVyp&|yp6chSXqAiR4E$Z;*T-&0 z&}*Dkp*6H2t_ zxQ``lFl0Bb9=_nF{^cM;mn1$f!@IB6;&snfr_oZyQq*;LZ0`07L&;Ye-J^KU_&DvW zU!pHh`^rxK#RHIV6PejC#JFN;7jYxq>v>?2QX8k`v++9GsD&+S44N~i8t`cGf1eF_ z3jdFvwhbjNn>?c>ubfw9ryGi^*(+T*m9oz${pM7h-r|e<@SZ>%czr?^PfX0cf!B0j zm*JCxvKd&O@7Iv8HnDKefd;8>c5h>gzL!rtUIp;BikVq~3@cR8MtM2=bx&~Jy#V%e zeC?>Z#PFwF!2#OQmB*V63-aPE1D(m6kyxwRn@{NIw^g5S^{ZFOv~<*9JL|)}r)kK8 z>Nx$wDAJx4DK{fKry$fOWWn5}K-@RSG;QWKpsm2zqhdsKKJWwpe4D{gk1ilWF=CXj z590dW$m^ntUR}VIkf5fdu;K(h#iISI3tZ=Jm7N5K8!yc(FXBy(r{ODd zVYGy>{WQnZYPfhcfDtN2(@-}@1?r-RIJHV~7;6x~7S4T&&A?w}opHBjQaX_My4vXY zbPKt7U69s5IuHGPMU931U!NM^!)$i#C-BD>=gc~bcI?MF3gBaAHW_@5i@w5Ol0i&w zEVtfJ=t0w&T}Gd|3OfJgOMyx>#(9|v8SG(jBag6@K?4ITPv1QZf;`PT0qjxHLJV}f zp&PgQl3h&Y$KV?JTkscldcsVYcG&I54;hD!?=zm=_pGrG*z|3~cXH6^J9*UTGfw^^ z?WZ*$3vWkRC@DhYRy@mc&`>UCZd`VeK$Ixn_CYuIa-6-LqwlW+c#m@fJPFy$Fz>M6 z{s4n*i-JK)uI5IC#?|r*IN<`TAlBLLFM{^_{SPVelv$+%GdY%!i5p&NsNW(6uaT9^>XQ!MEge*V!Il;*K6> zknQLZZvU?gMyPAQ4wlo^8@w5A(>`4`V4fM?`tYIQVYy}a;YYR%e@-?u>}pRYgLU

Xui*~G8XBg|&C_fK$uu)<>1Cv)G zllbCTiPCQ02cYeH4c=xjNkEx$#VY(XLknKWynkxELJyD-_=H1Xt~bGI0B-MVX+PRQ$JD73UZ5bzX_ z$#nhAH?*|Mx&O${{{{mmJ|i!l2Cm4cJ@){BCm=nC8TjmZ3d>E23>~%R%zBh3JId1^ zrHWB~2NM66i4akW3)g5w=Ug?gscUe|XfM>jlWNo+O;f~bO4R6=QSj9g{H9+YNz>~i zv`d@Vl4;7>oZ9|hSjz^?Xi#fe4mh~CphkCJa2Ii+XVhl}jJymO<$Es!4;c>e- z02}#XNKZqe$>~5#hBn_mu5%xhJqqc_;yV5ozWR2CNLdj_%KQmc1WVcwiG%}ze2*tT z5C}&i4HE~ty1E*hN~1EF9EcVcx^{o*oV=nyx_(0Lx0o)Mzoq`D zr@r20n89Gl+}l4*`Mh&KM;+KTKP%_x9^=dS-dBg(b-e(jvSvGI4LZEp!-p7$7Pm7v z$Y3vnJ_bSoE9Gp2WQ=2HQ=(!9Be?37u^L+3u$S*AlB(*4t>2A|;0Cj(n3;$6xT=Mby1twP0e$Q7OgB{V;^QB>3b|C2DckWyz6SYg04L}gBzzeLFiKyb z)9gs_W)pT)rjJ9FADdAE|3waEdl>wTL7KrD2BQm=TXNJykWDJB0y;QEyAUPb%9XNZ zd#Fs(`S_wM=X}MSkJR;5OunJ6E*Yugce{LH#oEF`zt8J-=jR7Pk#K2gB#NwPtX(_S zUX^UlTXRmjx>^EfHY_a-M?!)8d}HmkX6k7wcp z+sybbZkY6}@*2#9>)vk|Pk#D0kAW$A%%~)Xo7TnrIr_Bbw-%k?T9{|DK`{&4nil36 zi#Gbe-Bm9F70_aeV`|yZ3kJ{W7!6uqRuBNZ7D*!ub_*N*9BB7!;|{!{Ug8WwBe_Z_?|s1n$?4vV|OFD$!@#tpt=uLdPx&U>Fyk z8tnKQd%o{8@G$rmgO4yDArEEPXMTg{z@e_mT8XP;e8FcE-_kJ|e1pM54Bq2C@ikzG zX%#?1>Iz^=3KV^snP@xcNt7Jzl00%rJ6>&awbAj{^*5g|uK$O>GCq0x;ctG-xcMpA z^glEjC=KGL$dSoza}#b2q4s{1MR37lS=^5%zu*h`LTz={PIi6g)i?&`;E#dWUqYJ2 z>nu1ZSYdP()u689p#&7Li_Zi2Dx`0!`X(O1s^^@;tJ==s9aaP=`@JmwCMj24-N=>y zq$;gIkOc_Rx2!&3?sEf(F!!C$Vy&F-G29OT<66(Cdkjc}u5t}C@^Z>i53?U5HDzZh zuU;s1VD3`()5{f0V&4wv+W~z$uy4C~1;B40eV{UsI0q2tAgSfdj!JkJOE;4^l7L;G z4Y_c@zl61&WtO+lp_^v;>_xJreAau80=Nt=SOym?gG&wA%XI~ZvG?-^zluQv7j0zF z$3-)XqA#bJ5V-#yV3k-h6UF-EQgF$`I z4`ayc0LdV2JWUpunN<)D?F@x^1H_njGt2@R7B|_>)tzF$*%In#G5ra*OuRkwx1YP` z-XH$zp|3pnWqF0%aN@+=lXLe-@7y~oE>H>n$-73Os1zM|kJ17=L*D`m@N5SZ-xL5S zhm^r8SaMhPs%7?^T>V!^FTKqsz)BRbA_9F0O*Kx}aVGy@R*7e?JgHvE9HzJX2 z!vm^BQs1bA-=(sZPX0qs-U8oKiHd~wJTBOB;cKR0SoYYA;&ff(U|XjQ7bmOh8*0}? zqsxX@4U~kcdSa!r%kA-a!l6*USH6*y=CS2#+n01@%4$Q!GL>4>Raxot+pIk$#j@jg ztiUVl>$?rp=`1Xy7{>gp(P#V?=&Y0fHVy1vr+B46U39_lLLEp4eGBJp%2odjqJ#q( zR=N}w!;3-6#f=N?&}y((0hFv{>5yA{~&GJXsCVE|97FBrhm*PUKfVD`Kj$ zO0-qBQCnq~?I4j-Nhxw1OIlmDV?_k_z1RJ|nZW>*)`@q2ET@Ke(_epmysNukzkYpS zUuT!F+lmr)OQAS)U@3LrpzzW-QGeqXdKhHC9Ay6=uTso2wL40PD8|hMLRcq!5lu(n zTPTN#S{_MiiAJ>w)#f zzFLXBIbcgokSG70O8%Rb{6kV5SxK2lN)bE*z!j+o@J9{&sFAXEiW%-%KC+=?64w>= zOkyR5&oJ;U2419I=V*c}EbgZmc$R@@GIC$T1=TRmsLEbo;H0brwNnFVC)5oaDFB-_ zRBxp)Hu9Jp?Kxc*)%FDZbs>gs-$9W^-^V1$7h^He4JvN`Cm zB{~sG$(0AT$J`XpEdk#P@O>D*Pr~;b@O=@!Hj{7F)Frs?lH9Ab1IAeJDxatz8gCPj zaDja1WYn(WjMJ4J`e%pvFuGmZ$+T9We6}h`yVz;2#ad;Cr<5~!n`28nNBK1YT6XSf znF$ZnmTEshQ$D8tlHV|29i&|_!67+>wZ6fkw!3V#%vs_Ay}V**FdQxrJH}71{>rj# z+tOzSdd2GFg)J>Ry4yB2ioV{udJK2ezxtEb0%1!XKBSA2CqK2Lw%+5y@Do1JruXUZ zfNuK7Z-Y`)F=H$=2Nlv{qX7fR;8dD2bcjv~TVz;>5M&6k;|#lAv4_e(9ZC_hs2Z`sA!+FB?U$%zXV7Xv z4rga4C)-+&4z?BBOG-kuB_)fCm&6}U>^sucDTE_ovtsmxn$d~X50Or<1)YxZjJNCe z<4MbYDO;B_jWdM2S86S}ihzZwhtn9!}T zP1;>rN4Kc(Wi&sirljiZCf-dA!XOYlhBwIEEi~iB&98243y&Bbl(ZF^*v;X`wrZIu z9BP$2%a)lB$lX_T1Mbnzv8Vbe0F=F^N4v^y;-|D;D4|zoxyq*oo@3y4+FPO>l_4l@ zh-Z64Jlo@ajcIO0j9YR0&01lh7O1*F5-~$BY z#1^F86yf!AR0^Awj^c+@&=GTeMB~svsJCC#jZ{@uR1NQ{s1nugKtPn~7HdgO^+5lv zw?>Lq6!Fp=aN1!cV}DcB>~gNQlHTf47y4Rt(WvS zR=;;t7ehm*R=+KLfX_h4RpRwlR8)s6-o^2KA2jK^`rpx+y>H}r2b#`OmsNx0fikHK zZOh~&Xr~<%br9Un3dYVOwc4Ay48S#+50~zCm=xGmAhC7N0cM;8(f(%TZLx=W&Gj%D z*rWp?#^cy`3I6Gp>(}+ayGXG&pkqxKM^}72CxXf4tiT~;W51jgVWUW%)>jstA2D!B zInt1tJ)P&~^+^T>l`*Brqa2ui#pb}r7&tBg93E|^TYne!?t>~GiW%$Vlgj5&S?rI8OQe@s@@@%joi^#L+%aSD= z%1~C#jo;3|u(D2jdk1@MzIt4y?z^Nv^~ALwe)VfQvgY`AUt9hAcivGn13r8M$o}!0 zapBndKC18GmMZs)uF;PT5wO-Z6}U=&<2w5K?b0;M5RB9PVjC{e)hPXN)FpJ)5<1#~D+%`e@uuhUm5?&=H%mD1~NZY(V>_IfKTs%t9VS@To+9m}!91LMSx{*7ZtA&ng# zGPwVa#*g58jUSEd+q!1_2&gkG>yIB7^wHRQq1J~Zus(Eat)kWRWkjEG zjm*8oichi){Q?7>c^ge{vBvfA-W>u4ZG#Zk7qK2#&$F?P;{&v5%GRNP7a15~;4KCW z1WW{K>F-~gJSRAk6qk5{-6#MDwn&wtf{#I7Vd?GHMKiOjoQ_Z?i&|keBVdU z96+DL10Qv}y>6qT!tM3AD=Lf{W5?#rLUe3azKAzE^iiOhUu)Otc#faF+5Lbob$rXs zXQ$p&4xWB>q)&MUW4r`|2miZy%pYaoVy;7lJZMtBELXtIl3K6i*pTuVK2ISjm6cgY zC>Jl$7gzf6T)6WVgF@^%weiy}x%j&-hI1;11Bg$Z#F{QCtVx*|teMR7_Fe*})0tndrZx zY@2qLcaz^Sw#DZqrHkTWt21w-PkHux@Pc}>{wlSLuZ~DDRZdg zN=`sYKZO&P$`6nInJg>UzUT>1!mcOv>NrV>$+CrXqFb$%8#K9y#kHRm8fcZw@GJn| z;vaSZ%6Xss6m#tD%pzBqbun028J`__mLJbDn_OX_jN^ix;uMp)?EJ`$s3P5W3TlqM zce`%qc3GKYKfvw!3IH!KXNUOlZCqy{6Q<0`GUy~hQ>Vu9abwORH3*ATnA=&Tx8OSb zE&foiYiw*=>gg4tw`XZ#vwrc?c`~Ht*;lu=y4`Fs)sOGL-i91rR$X10XJ3``Td@Q@ z9@IW@l@8w$hrhxejSn+$Ei1BWAT#55h2|FcR@@DX69}|(tbA6n_JDr275w* z>}kNhCEeQ8xXm93G`9qU#SR^&>6XQowsyVX{^DSu&S zt>KZqhW$gU$r2(%y>3}XV-+mFz60y5zk%=1;Cmgu1@e`xynI!_hZqtP#WziC9qn{q0oXt$|;RG9t1iJVY3Ow?`L3|fe!9) zlj%x}LgOKCd|i4CmV!8yQuwT#N9ydVDytBp z!5at!LIJ#*yiqbCm?C>q&QRUO8-rS+TPnb&JC7CVM-?X0g0i_aHZ3yVu?tDQEh zwa8ZN^mxn48&0(}i$J{2Rnp)uaoSu?o5SJpl!fX}G&L1ki-`AJzQ>;?2%V)bsu@XW$otd1xw6r8# zC5=s?f|jjc65@|0X4)Q|c&iSm<2vmu_+wh{z??m-;{^C`u9C}&ia22K1l-`Yj6pwi z>HcG|#2SP)gILwnP~R|vL}V>`>Uhyp$D&jxi+%)vr+5qg8l^JIl-=PbgQ=PrQbI9V zhEd6Z*qBqiAmOdH9xar}s@`6&KjhDyVQ&|`dia7qa{A8JwoAIuZFX;IO=DTe=_)9= zwD+hkwhY}a_N@M_*y${(2nAhkAFg|<%ikp)bizd1036!HNS06Y!#tJ^W?#-DuY1Yy zX*Pp(zr|BO71`MasIdZStmM~b$vp!)hO2t%?Y5z}^Glh-mUbRna=gK{ji%RYe4Ft| zqE5c1RB=O|?=nsU1dqhZX|JDw*Vt}j<&<$w`AY^)Qd8M;(fP*>VWafCIa#S8w#$|HlGvnSJ;b??!0&s(-JQIDF(=qZc{#^NIgbZinBdCtZ-0!5Wk!npgPaq$S*O!o z9%*zSgXK@5!T*}$MlAn273-LXMW1FM#=wtqxC(&*=An}eG&5jhFTk_R3BO_=&-(%R zJbQj_;l~3^nQ5jV2cXjBvdN4&rGUL`Tm3cDpqxb&{f#la!L;<;!~=-RO3}uEorSNF zO+|JF&NK19#`E3J0Pvsr3~-Lm@xQE@XRq-&{uuice-?m0=F|=jx+`7P*SZN8Ka|vG zA79Y#x%k8r3wrzuAb1}aAI9(X>*ABEOC*07=dB*(uh{aZ<{4rRMlzNa*U`!4I=k3U>>*psR~n9l(?LZ_u5XmlEeT030P50p32zGg@ zCKK01#=Wr1{!FvbKb9FLl&s59hJ!0#rJI3;eCrOzg50mUO2;RPWW+n#k->-vGDYei zGp^1jGJqmrXC}HtA&*!J2r*ApamoVIbb*Q0$-pZNoMX!TkbzbP494(<3}A*uFJ_gm zM5~KYY{n6MQo31>WqBuG%D5>Pkz+O5RSb-X>U-6*OQPQth$(g6XjOl1u;ZXDe8d&Au z;0m=k$O0SW@`5yGh2;F@DL($(g@8QGrcz#H;3z-R7`R4{nAcQ{yv~T)!a7C8#IeJOKR+C_PJt6r^QdRjh0abkkvXJ|DIQpBcG zkJ_Hp%mAK+>K;9|QpgCM0g2Th`M zkjPK?E*%w}Nj4JWIN*I@r7H5-RWdYrW$~@b@86-4nff0^Qg-$D1(FKsl+^`D}&-$Jedm{fWy>0Y@CXt(3)FCZJ;&; zD@ypb35v4$s{SW0E!^^mC|~_wuAjc*`N=DfI#=I5`Ivre^}mU)QKT=7xG7^=yaT** z4R1jd7jf!o$eBVXFB{zq9LZWgS~)tV8L-vKBV=Z0zGQ_5lMhPCl)Dh_WqGxNXIb9C zS)zQj{PHSE6|BA(riyqGV`k%5-94KjL|&jx<-}gPjx|k&)s%s?%2Z%2xuNS)A+{Qn zt<5cI;nw8VEoKWU3P{YG6IL_i)(fmzaXxvL2ksY0k4slm^&F#ZotHD)HJP8M%)*TH z9O@YqW}G%@+{g8BX>Bl6EB>jb?ey^0;o(GErFdlZ-8bG4MXSGFSQy(e+SglCTO<}{ zW<;TWuuzDdyOXoKb{1I0-y+TR0=KKNY47fNF=IhdZn*Ia%SrMP9o25tA410_72V=) zb}l-?fQG;sBDG3+iU4_O+Bi9M4$6B8)$X>r-+h#U1qM6}TxQ@c1|A_mIy%d{M2nV@ zJmcCB3h#Pu>{qmLk38;PP8$H|#Z0wPU{O2N)(WiK3IkIsbhMRDuXF?B6iEeRXv3Ne zC2&O>g_lP=VVZOSay|^-CvjS+{Nu+Y)4!=5*VK~iIL{o9XHA&ekm=g82C-gD=-t4% zJ5pU^iw)^E8-fn8+f0YpQPTx~4?%TM+_*gEGY*6tH;?(4yF5$m*mjoP8WVKw zD@w^CKU<<_g5#bG83{nTvDM`t>M`$QTH_$wh=+Z8@TiX(WA*Qsl@DzV8)9Vq^vIUs zCRZR>(YNK`*6pG!)YR0mx&2Ui<*wVu3vQbj+!XNpN{7zf-_s#hpAc=WBj`_iJ?Zy1 zT(S&H!xFl>^>sJY<3+lCt3PQC`1{H{rOq-@Uw?d{zTW4z*@mjB^ubhuTAp1r~8xHOi z@MwUSGDpb_C(&Q9Y~D$-zz#&C8Nkhg=w{K(K82xX_8CUa+gn#EH^aG^v(bEG{K9y%6(c_VLztFLw5)Sp4>vd`#v3G`NNxBdu@WScp5^k$y9 zZszsUX4+~%N!pw_RAJuj^j6N5PEwaS8HL%v89A=)mb;J3a@gC7i$jdoVZgTwz7|wM zM*+ASz6Bvv%=g{RJJ^w-TrDQl%7j+)JWaPpo}R(^(x6sLmHDOi@q=dY6V7TCT@f;SfjX!X zx>*U`tb}e>k^-rqvKpbHK`N`U6T87B_hRR#)Lze^sZnqrclV0i6|n>JmQ(P7F|80g}0T6x{ZSn13t7hc>!bwO8L($B+A;hjolUHK(H%Yl8&DxT&l zrnrhISCQsnGD-j)2^q+B5h;|KO5OUWbR6%{fKFp?E54gEa9LDW@4F>zw-#EgRW-Nl z4%dhWEiKL4Z`)m9bvpem<70z^b*%#fT^IL`qx;G4@2TnP>i<+%hqx$0u$-){5@M`( zK!`r4tHd2PcK7w^`oO@<&YIfZc?-0`BTBtJeO|B74<0y!t|_-~4hHnQ?)=DIJ@ugI z>KnQ>?Zyo}H=rNW-vKSOAEvrC?V$Js$j}GK_9d6$Dkz2-tJ+)|R`AeS%_+5uPL5t-Q3uSx$T)z>}KW4_!(Hr#G`kerBbkG zP>y(!%CTvYObavdch)a6gK6pgEbDM^+a26?2hZglv{uII8&yX{lk5%pyXLindxZBN z;++WvIlCMq8wOR~sAUCAqyk!6aXSzdqFCZX`rX#ucvO3vc(NuJubmlG%EAWK`wz?H98B7_M4VY>F3vTb8qlHO8Tpv8m1Q6`P^HPg9-mC|}KP zZB#UhA4A4@Nxed@tC0DW!^K`v(P-#I*$CG#s!YGQ)haQkmE#^`8J|;^uj)#OWRPu| zd4%elzw(iI{3B<@kH7Ps??AyV(3UE03t~Xscm5`~*BHFQa)vZ5<*mJL&&saf!MS%OLhU)FbQ@ z;`d+QqfhIhH78bZc7GfzvY`&zcz3)lO-9_eb^D@qzE^*;Xi_7xC=)a3BYT9G3ce!V z7F$u)q$ps-c3p{sWm#h-+|`W%h{fBhPO@qYy&Lb|cw0ZAzoa#Z z*U@NK!||O+D!nj$)L?a`nWyuv!FL(H=socke2e7xr^3FJvM?K*a(7OOnHgus7of6- z`ONJ%)B&;@T3wq)pHj66Qsdz}q?Pjp&Y+8UST8bPtyngL5R}qNL`LW>QNA5nrXN2E zU4so&rJ9Nc(lt6e|10raKoQLb4#<2#T8K6tSDMxG5IaMs;v3W%<9op6KcRyS9 z@8|LO9NQtzWlrunG`7@JZkzTa$c=XD-*60}Px0&LCstvjpVE z2@>g~_Y&|$UU(S3Rz-EcTo?O+ll)MfUly?dz(uvLM73D8LTacAUagX`qiZPWYZa7_ z_rL$5loQV56H-n&3MCUw9Kz$^mMH?-ok&^~lh)L_RzSseDU&)gtY$ zZb5I-o}PmTdiwCdi`Ex zwbFGnGC(RySCuKWY9oXiSiORzlY=;JQxvaojF(a_#s|gt)~u~xkXtR;8Eud$#2JS; z;}y#2>(4Bq@gjEf5>Bfv&>IMQYQi-}Ft~lV(>AhiXM3CQdMmefKPM`V*+OMTU7Zo^ z6?Gq|tq$)E8%E7YNIxm*R3ZH02;im{BRsq1-6D97C`A5(d~)5q(&#c<&$`Tu12Vx3 z+!QFF_-#CJ7NUTyxO0JJdHa$wZmFry*9lt6zmy6k9w*t}?BR8m&3Nv-)DjgaM zD9Z})_luD5J@~!?U-Ch70T9MqczkUIo6)FFfT04ekUP7I(jNjKp(u?91Upd_kAm#o zjc)GJm#~xg%_lLB_v!@9>viN7X6Cl<{@km-TX%2o>nnG=kGF?{9&hFF*zoSc;hu1L znGpV9xIPeU2$h9|@RnAUS65f)UoQ(deSz??kX}$x)l^?r?ymM8_q&|sRZhF*gm4y@ zS32y4RySTs=)dt#mKJ>(=aFbF61%<)Y~uv<%k`m?)`xP*7E~K@IG6-g)G+iiwed9i zmYfSwlqVoh8j%ff=Ml$ubXIfW8-J}PHTck@9+obvrI_BC>kPU6?8J0AG1zD6GEYKA z)g%N<^-A{-FSCFGIw{sAZh3oE{{py~idzKBS1CH8mv63wAu^e&|>sX_)); zt>&8&GE6&qPEdR;go`osfK+C_00L)d`P@Kr7@TZ0y*ELdF`@Z=6SNsiU6K6MOtPqi zJw(;A`mEB}dst1aPf`++N9lTTGo4tgHzT#&NGSs>7)B!gnD+8$_>!A?+dLT40tvl!8E=ieqKz$M z>J@EQ9z~VUcZQ z0e`;@#Bsx%0Y?A~%~~lfJPTPjgIYEB+l0c*;qFqIGzx_%bMR?;cAB;(+`vV50CZ46 zSG040=m%CP;{z<+2z*QX9OXF&xt{`v2X^J4P_;Jne}?5MF`+VRo8}lM9Fqwha(;|$ zmRA^PD>Bgue~+OIsJ~OvVR?!&?Nx~j!1z<}_hayP82&!AEcxP#7#D|p>zlLAaEIuO z6{#6^K2Xb>!3_UEKC!`@p_{%{d()@Q8o0=CG^CA*!xdh>y8kWo3rZ&{X4gxg4Pqr?Vu~dEl0wGM8(0dA+yxZT!N z63%Zsw3qcwq8l`DAZNcosQm)m3g{5;zC1fCEkU~a92Q@~kA9csor0=@+Y25q9EQ(b zh3Uda3!k@MwmFM-*oW-c8z^Uh({VfXFs&%x&{_gkLB`0+mOEA#!_|3={Mz*mD` z3^jz#(dVUdqx_#MUaNe%^69ECRlgOU3QyH^)ppeVeC?;9sByH(+Pt&nM9W*79&77q zd%W%O_OtDOvH6=F$2!})(%rB19PWLvuf6ZP{U00Lxn*E@=;oiTC;#t!ww?I*{p=|F z9eu9me?}Mn&7ZH1zW&>O#=6GtpwFeTua3R3vuEewouAsdyeqit;;z?s7wk4R`s_K% zpS|103&w95|KYwX_}Tx!E%5_iKeX@A-M`I;grQbEN|s!dnx`~P!9sIezOG3AXxL6B0 zcPZGZHJWgV<$IRb73|V#oU;lpr8dCKxxfyUjXLjFu+X}Ef2m+yEAnqquthuJ`?Z1# zv<|;d!7$JDA5gGWYw%Ah*rr`B9Z_(RRuR~vV7nHs8dR{uURKqp;9{+#al3+@+AStr zVtc~RZF6Zm8X5LzVY3Zh&E@Ys8cC*&#I%u~jT%$2nOHh9H+SBM#wQa~(J5m-GC3QI zM~!4OG8LJaiyDc=^c*HkMbZ&tI*~LMl8LFs$yj`bN;q+TAvztIjHWRCYz&KtrHskM z!ue!uW;P8!pEY{Ay84XG_-DvC7>g&;@QyJ)Ke4afSXx@@m{Um|lZp8bV{C5DpjT7S zhEz0pHagW|oS20|Q;F&HQY0D03b1OZa3PvZpU2LuDK-+vo}4!z(U`!_$VNw}+Kt5& z{y!B8ZkcQ~y0;7swZs2gy6FEt zV{9q`y+3|Fm5$D*Bx;XI)E;~PsLd(F*bkjZE+mo>tQ654OLN;2$<+Td%u^#fjJ?Ul zbZjP?#C}AupsDD5BzaFBZOmp;6K7)3H>@odHzuLm5%_z0F&Rru#U|6SL_DRilvc#R z(i4FASR5(`XhPb7j!tbaXO(v$}E`I&Ajn;0a?_V%`|& zH+ClGriM|NPDYa{c*W@M=e-I^vuOll4Mhh##~}1HW`b~f%qB=2`m|~c{aKjgZAEwuca2}un|x_ zus{l^Z!AS8Zr-L`iBZVH7DPxPMAE|~0MWUQVWX{YOG{VlK=)ve(Kpn$xvzU@Kgju( z0nqPjw2ZM7!CuYJ$5N;aBo|Ia&qn7G3&{7Ve2`L7dL?J4NSPCBBCX@V8@pyBNf03H z?|5VpsWKKrJ)cHJ1yhC?DZ#|z%&Y-rC(olCr|EavfFhO>i*vv|h*qc`g@uNd#YsS1 zYI<=F#1r@{sTg}YG9Q~epQWy+KsagY5Qm0Es0;Ivdw@%+Z7CQJ3>dFs(-{?kQK}|nV5;kr0k-i zlk+4H=Qs|-h{{NO22lk?04dI*>|yFsWbPh-rPham3K#?*QHPO6fXB!r44zp+1_L1Q zA`BrgA;4i_F&X8VnQ9z}KGJ<~pxuxoAk?G=UZ6RMH>n+XBvDHJ-`!yx2l6fe_l}Lz zIFpE(4_QfOfP*(2XWfDjg4>XOd(E#-ojRrH(#C#NgfG{MD*~R%t z9IypHWzCRpk*eNGQw0=7z+#dIMyN8CkkpLAya-;J0+dcI0+&t#OQLAdXbz;Cya#H- z1_Pb2F^W?6;wed>BhIIo?!ON9RB(#uw*d_5sxsB|B!*>4o9W&OB|0 zyspTaOl_1&sYLCl7SWPgS~IkSHVyx$wOK6+f2XvVHUr-@JfDNlc}R`IfVvWp-_RD|e=KnkO2S+-S#3B0 zwJrcOP4z^zl$rl5`6i0Qr;D?pY{9K7AIxJz5uh`T*K&{u%=4Ak~>)7=OpAzsP_#;%{2UvElELsY=2TcT_R4JRs4|YYg9W&?LvH|C|{Ctris_ER|_V^ zBZTSq!Uf`5V*B5Zi}NY=+j1}R(j>Kj@s@`74akX@c`sgWfhTwZtXtax{5wRnKzIxA za|Z4szMO(GB<+twNhvC09{y%??XeuLJ@z}{+KpRcX!{iyPH9%$UgkN*el3{ZsJ4v}y zs#T~5I-uUJyz;O#S=MH=l*8H)NZk*4_rtR>f{#F|0srr%7GU}wNI4GwBkspRQ|y7y zAxb@=m1qw7o>Dq&7Vvgfjs6oR7FpXd4@^^A)9Y%MsFECs1H^e!QAuj>X`EF?8a6^*$rVQvMgSMxqGm zjA+(;?dBulZSd56WmH^Emu_$f?(WdIy9al7cXx;2!JQz1pur(H!5tcRcXxN!+j+m4 zHFMXRZ`S>LSN|wEyK0}a_fu6*b)T+nH$KaLa6^qzsIfa-Pw<^=wgIZAbv7i)yB(;< zcFSm!UUEDYGaYX2Dz^JonMxk@p0ZftdSBtp;v95()E~>D3v8doaqr(W0m&)+BpfnP zk8JibNbx5>GvNmDxmLb$n+qE99bcA=Wi}EqwRajAF}##cJYk5Anh;u&2*~XHVKmWy z>nv+VDgo5`=SVo3l&B!UeiJcDR05BR3V}iuPH(C#A%#OJ1whs$MNpdn8-|6&AvKk2 zz*=cx^U8aM$r>=>7X_~(qrc^u__29fs07~K_+6awSq??Ada`<+w|^KuZSZlCxL?A= zv|B|i<~l3(O9&uthD2wH+6;d>Z&Vs;?x1}3idOC?lN-m`43Bz-e!#bs`Bb9#DIxiG zu7S=MJ`x4n$P6cf6HzW=fcJOuIX0{hQ#ik)x z7**XI=_lOi8dnp$RW#usO#-!Hl#qvm%_to< zy{$j*$I;*nSZn2YbQRe)dK2SmiPYhA1A`x`EqB{hZkloTnIk@5P z8T`jx@^XQI-)Q1Kz3mPWD_=`K)&&Qh{>0;giwn0D*5dou5KllS159^Xwi{z7V+X8|Sj z6w4ivlq*><`!6eZ^*@)5pi3JJBIb&Cxw>xX`c^+R^J1=|3I+29!^RXsGBZK}vA$|F zPgwb(6&l2oQ)`eqX=0eN5OD*=d}yFYHJntxd|61fN=t>WnUjSpD&&`=bY4&z-BX^w zGP=$414`oTp$oG9&eW0XT5uryB7~OQMA5tbQ>4ohvgtiy&pA5WRtCzm`zmkPQr%Ih zJd4`J#y6BkU%XyjnZ>CnegJ387K56&L|fXZV4LM_JIEHZZQJBj)gtB3XJU%Q;Z)iN zv}z6K8Z0sv3Fo*6%&ADNKo+o~sHn&7=H@>HvR>!Wmc8Ig#W=dU+a`h$aZ-4fhH&$L za@BZo@kt4;Abbenw?iA?rr<)O0l{g`#&WPVX>?yP;I}g)?xbQ!B?85{rQ!O9MCGoWo>H%D!FabPe?(Jr-x5)c8UyCjTV2Qyo?ZCh<)cla)RdJF1H zQFX5YI!QJ^q`q{z$UUmSQ8|jfty(t!;nzlq9@_o0NDn;{+ZSSZPLKSU2A0aUnacN= z)n_vO9wY?G7uN}s0U>YUyo%#bJ0U_W45^^7a=$n@&IR+6B8Txo`dj=wW=Xru#YZ4u@~qOHJaud<#qSk!Jifhfzyl+~ znm(-i1fW>UUzN_o3!>Lo3@m7-C{1?Ct>s#6`YJ!(#sUx)YEl?e)XVx97H}zg`J)lf zQ!~>8T*aDYiu^O&?&f$J`n2rGzv5AF(7B}NU(RakGto_w9S|s+H@=@xs&LX`3B9Mk z;KkqblvQqLp?kBddCM#P@+^wYrG-fWW$WO8m&KwPFbpVkj{uTu(sv3mlCi=9*uP*o%p0T=qR`kPgWq{JiZ;V76A*+_&~&uv&~>S--6 z(aF+WV?1|9YMp0iOl9k|)^RDrjHe*yNV2ZC?Ac8^pTN@-m1Rs?U8n7hcEbWoq-4uO z+~h!ZvFARgeTJR;>1=+Opat20 zrfj~7k+mkFS8UQ;ePiKwHRD+{?O2Z6)Fqqe>RKF>}`}lF0LGn(4 zs!d^eSq)u52;*=@)1BO+63TkQXF=>FvGL{eeSDMH*J?8E*YEFb2TAm)In%Z|UNw29 z?qjQcH@J+uSt`dtpO!BWY7E%hd1hkk?H|XtikH##MzZ;T8@4)}KJjPFIdjliN)*f3 z45Y>y5YDiVdc9_!T7EyMQ)TpZfNk-V0bWY36nX-<>vSvyH-J{B-X^yG2R%cdI=`X1 zMwfF5WX~+L*I6#*YHjy-So5A~+F24T&g*pm^4nhO*2@NFmZJnIFjDYi`I?_saphRf zzf9|X@XY%$Q`C&`>1uxf?204509J zh+HNz@x1#bI=FqE)7(+j|GvJo$a%1iTda;w>#5!#5b^HPkZ0^|7=3=8D&+6c!pXSW z^X=@?!vuvQf40X_GG?IT$;Z;$+@nqowYR3?8|58@H~$0v&n>v-d<6F^+3l!4b}aiA z3Qp<4e0glRq~<*F-!X+xGSlcP;yt(Gf$0tjR6tQ-`Q1sv;-b23eBHpvK%_abZu#$G znF{czfrx`K&I#DhU=|dM*+21M?zc$sV~s*0YAU#CQBVt=zsK$*-~*u)tiSl4?bYuP z-pTI42g;L!e`>f6fOwkF@YG}qsHr{ausnphX1>=RD?9md_O;VHwAsPWJx%uwhY>VX3GX9Fg)xwR!q$t69`SeHTs}(5NZyETH zX;%&Y*mW<8j_khC;%Px50&}$ly&M4!@*o$}AlI0&7mly_La_x0eC}xZMR$N!zG2>F zG)v7jJGvzQ^p&=2cE<(Gm3Wu|d93WkO?_?sniZq*P|NXJ{sBeQ^py*BH0z4DLW?Z- zHDl{+1;-d2vN@qc(c*UVKnusEon7E$hw6x)U;RJ%CN7=HU9 z)_x!)ok66QKN~@NvZY ztn;E`@>w`TDX(LRS;AK7BKqXF_r7>Vxl=nNfI8v%1%m=Nu)7**p;cjXo(wTgx!>__~W-m{#+0{B0 zBFb2vtO0ndPVwZ*<6EBA^36Y4LMIMkS2@sq@Q>Z#*w)`Z6a#l4M80hv$Xz-WV;xL| zD3KqxzYz=C;9FGr>{;Plw*{^^3sc!)OGm}&8EuXGT9!^s#FEdTs{2rnlemlCm!8$nOj&NZ#N zR5_9MDOU1je_Xh8Qaq#QJ6D2224FW*<@<%)B-!Of=;$T@?uj~^EzPTa7wpa-bF*IB zG#%fM{>;y=sXljwe69HEx38jZT^W<3A@@~-ymz(~xfa{a>UqUPXR z^m?Ewe-JEQByR?;St3W>10uV|Fte9`m6k^B7gs27{$bIvh4}Y|YaOxk+A(pa%8sSu zE8iZC!|mUKJ;Gc}c_fd0J?A-*d7a-tlrwbCu^mPC!;3+;sh+I03(ACfe0Bg4Htj&>q; z8Ziv~J+t1dXbyG;Qim|8fK4c_XZXbpcsXYJvH@CatiY~Nb7^UM`pmEOmVznEuac88 zWsy|@Iu5w%E#fV%L#MwLZF1Hz9lZuV3b{>H?H$K}wighPxVk+GdM@^I42<%O_OIk4 zIrpV^()8^P_Rap!mnAJ)F7neq(|Aj_X1nl_DXXHN&UYjVbQXLR;Hz_PLr8dHe@H;ACWHzz%)awHX=i%gTl z5hg*ySirnlFxqHeFt@{```}o@702UA-)a_guFWU4oCgX!Evf?}Z5vhKQ(F)!dQJ|^ zDMzT^(Y|}aXh}V@ZN)p3nb_-HWJFy@nP7qu>_bJ@yHB_L`QE3A1WipZo?bsxl(%sm zcavY+asOj_xM<6nJ-Oovs7af7kdTvC0V7dkD7M2gR?$I! zyeQR{IJ(#~sr}7qDVo@ro4Wn?plq=^ z(s2}$NNw0k0TIY@T@QP>ykih(%DU*p~s7ZfeU0x z)q78BH5GsT;gqb-eCj1~wekA3!g1sU{}=s{-#t_mJyS!i&+5An+I2CAIu98qdwz|!w;c&bc~8kE3PIQhM!I3rDQgJ6wAO=K z3UexDw6A(qs}*tGlBjB_KuEf`mm{L2%?c*BcDM{>D*lL5(3W2u{sohZDoBw0J0vT+ zDpja+r;{cQon_O|f!eGf)uRqkCOB0IDq0jIor}mIsRnO*#P`qy%JE-nR}^_^?uyOk zT7x7v{2UV9C`w-=>!pHVwbN9ZIG?yh3I@YLr&POywfb@emA6@8O_+P)?5a90uAxY& z7+ju!U*kwEc7e-a7oGRO(ka&_FP$PPV;181Ah20q&d6Cvc;D5YEw;}yFV2@I>6r9d zc!w)VdSLEix*)=O1-}+pg`A~-xk^^d`-u^&1TJKA(HP%9IV4CIoj;Xbc!t{X!`Fj8 z!BUF+Gdd6s;1tr@7P^Oe{+!l@dVb9zfbouXel0@2J+#PXr$?YoL7|w)EOiF~;s04` zN-|(~wy?+_)dJ@_QjlIm!)X~+#b9yrD`B-7+CYR*bT4)J&NsnPtmFv&lCt=*C-L7~ zBGj)y_6Alv&uH-b^qlyio>IYU|z@fIK3en zVAK+uBa|X}p$cO=PAWFDzo;>OS-*QVF2Cv1G-9d2ydkFQLc2yct{`fB*Lg9er2+Ld zhGI&^n;MrnuEDk(Av8YWdV70LB5MnfQ}9iyBL|cgN~nBD!rkge%^qu85%V}m_aX)T znA=g7M9Uwz+DYI%wf>8s;BKoA^i?u5Sc2UBwh1EpH!Rg=-Z40iV~}@VVe`mW_ZW&? z_HeyI5DxE9RW#lXT)AySX9MX9?92~+LfEy9lySi&n}*_XczfjiL)4DkZEgL&yXt_l zSN!hCL92^gTVfKfKf<=UvBU2XW>BmS&>CUGM{! zVXL5h6pmplt>svtsDxTJy9QTt?pj#^QE+S^1w9I<7Ec@pNm6^z3^Vnfn6wh~%p$LD~y$? z;MOf9YjiZJ8I;VlFth5KQB}2#Zze=DJ)3PcO~D%)dvb?UD^%89TTEe49R#O~JYEyA zISIzjHpvWU@z@nP^KuoO<+>Ucc&PEEmQttV)QvB%P*pl@ZUC<0WaNc0qNP%nI50_^ zuAQ#Ov}4PRZecaw4r+###Nd7%o02Y%G~AE0=1o{+wi2a`JZZUvgw=6B)chs})R?G5 zHsaP0Z6ypmaK~jy9phN7QWd6S?!W(pku14Z;_EM9S-OKJYlT}X;v|IfsglFa&=CIe z_{C0^3Kzi}rC)34{uzCB*Ewt-o&{AeHXhwQJ2sx~_68%to`j-LLwnYB8|_LwZe^?4 z`ct_?KH`J(R)~S>;=V3b9oz{v%yhTLfEAlva8))$11}Nw9xkDedyP=`SSjdVd|D?V z)C5)-^~$M`SJtFwcg5m4?dB($9ZPj(97nhfOX^AV+Q2GwogNKug+q=kb|T^gUiUbm za8=ormqPTf^2VcD^E-~;VHY%Rse3{}ayY%wm<#_)f2%Uy*0k~nbIzM3$S`O#H* zZ+V#xXbeS9cRk+d$I#K`#~@NhKajzosE|$5{D>>nBG2*>=y9?rO@h)zl@c6a&>*K! z^ySv3QG_O(wI=tKtlX~ZHB`Sv14{s_ zf~`BU_Lf^LGliK>7;OiW@^t0_vLe=Cmug=YVb;mo8%uxwx1qWK(t;>V)9~J%;9;jT~{>@?vPqb=t&2o{qwsO8e+~XJg zymYQMSd8?;&)R1;#=Xk~_f0jJON`#W+p=o1+;%p_a3!jiSL3%BChMzx=#<8-rcLz&W(_)y{ma~oj1|Iwp~ubR*te8= zLtA89^ZD)%h>})<=l_XAgBY%(i47t@Ka;4VgPXa7n=8p*3ar8;>f-41pNyJ=hl7!g zm4us}g^>qDs3lz--JSlnP-PM`_pmlKSCJH9Qe{$eF?MiuGIlX{F!lZyP5wtvP>@O9 z+|1he-*l$*w}Bf84-d~@wynaXV(#kb?qX{03Q{2M2BPhtyre1z2@5kb3+F#l zlB(SQl(_zuKpG@KHxCk$VEJ3i`j^80tyOYyG*vZs(`8Z;lVDOa_i|&Bwl}sk7x`Br z`maPEqMFd$2Z8EP9C7h>R2e#17dQa1UeGERgN7>YvGP*xGQSe;6mQ(Iyni-g0-o89oI0 z$2(S21`_=US5*dfSAConDxb0p16pxt2UdX6w|Qu)Lz!$!MTNR3B}`de=18Tw?c3`x z7r6`(^%I-71^JrESG0It|8ns~n)Dy4R^^Vh24{?}c95%4!Swu=6LA@QFJ|NkSANrLqsSpI!@6($L`e+vJ?u>|`+1)hIh0U@08 z9~=C?WA{I|q9E}9gKZG@+5clu{Cill{x7ipYxDo`(7%T@3o92F%YWbf_GRh*S!?)y zv7x_rQBCxaP0N7FWl*G2I(#PQLi;mvAbVJp7MU-RzD$AMyP$$?0Ca%57?%{|JrrcB z1=K5$@_-pP_$@ z#mBXMQ`_6^o#xu!*{dV@>q@8Z+ngaWV>}c1yJ?Tm>lx?`srToy4e?mVaZW0^g{jI6 zw#K}O4O;d70fRUCN&Powc~kzAEt?{*nC7^hJ$2p_q1VUT``9za&Nrv0FdmDRu>1i? z*Q{I9(=+AwV#y`@9}=XPvxaX5fAQ*dx93tM3-E|JTugPH*2Sp|(gP_nRP_`7Rdk+kitHoHx3G#g+W)!;dr- z|9+Z*@-RLpE&ox%#BWm{HKy05=Zh>)ES{%nH2{PaQ={8}Qyh?)n4g6_MnNX~o5t`F zLEyX*^I7o!EA8i8Lju(UI0%p+;@;y4O_9UFBtHh?aFGT+Nq&UK1^w;!zZs0|uaIk- zZtvgvIL~PAzkOdhp#E*cv(B)6__4?`&?-&)zdG zj-F@69cqg(#SMnV&8-Yvo<7N6)%4^TmaTJ*gr11FAYd~tL$!`~`REfJ3?6N_=VJ~m zCLQb!_ujsl21*~n+o*hPKKd#P9R~WF+&w1}=DNl>Dbqrp1S|uMY-#-eZvSs~6c*dE-zN`By zq!XVr;+?tf;!gRD#7^_PJ2~>8hd;!r`nU$v(;P9ocy_u0#*q<TaXu5hu=q5hx;cWy5z}c0zMwGK5j2u%irmo+xCbT zJgtWWp)Td0fp_P*_@)mID!Zs@%8n$drxcsCn2FM%qk7wzXd4ncZ zaf(%lb%sUA&_JMY*E`_pWk=#%^y{zj_Nx;L;~N%C#pbJ#kde5zdbSlOX+@qHpy~M- zK@QWhteEV{ZING)K~M3kdZ^*srCN6Wjk#Q85>d%`I#k-` zIAGPs2W>;x>Ek_~JzJ0~i=;5sw$q)H&5^1#7V#DP_F#xM5|d`RX97Yofp z^!TIU$Mrf@nuf^73!~v_Avp2GhCq=Znc(-^?1o z`E>cN`nq#KOdKAblfBU=1_1y7ImfndwT8{n$2UI4hhqLQe z+b}GiZB0A3v3Wi~m$`f`SAVuZ-%Z1}pl>mj3C_qMaTM(vQ&pE#(M-Ym`gNs{JU%<{ zN*c#~&5h85s(Lt)^$J1%^o>PUk3ixpt*nM5(n#s=#McTOx%3^@h2ssu4j(?#`lmI* z?Yi7KQic5?jg5SJW4zLa_N6-~F}fN*l6UiEY~lj37lY0xmWj#(?+5!+g_1bVd#cRe z>6urRTHxC+Pv8424{B!ZEVbO4;0>5Au5V1 zL+|WNtJ|~Y98{01W*?GVMd>G7BUWCfGo;*{RF52?RrQ5|aNiQ4KF7r6Oc*CBRBxx$ zva#L!i;J(<{bO7tlpHW?eW=1wPZ`C2Lf#S!VQw|LjvGcZEBMh)Ol$4jr=H!#p0Yn$ zHQT*4f&S`=LUSn7t;`h<4z1@Xk}WXT&mk%VfY#Exar;#HD&p#(_7k}N?^nHHiK7}) z4TaGpUnBm|^m(AX0Vk|~Uhaf9I<9XBA;fZ3#4FmFYP9$)R=35 ztN9%$tkzMvsVeUTW!#4(o-8{qv(@h8g7PYvID~E1q)P=E_ii#Qo)bCyeec|$xFtn6 zFHrGpq{P$94kz{}#dT_}(|0|<`K{e$Dm=6K2m7kkrtxy2^8CnaOZ*rom{QMkxGhq> zpD&Ser))B&Ju0z{=WuH^IYYAn12lj<-_!LmxW*RGm$xw=-iox0!+4tf{l4T6xoDc4 z3%n@*rZ@pMv3P90mh7s#R)Ht}6w`O!r+o!-hRHjq=9Un=M?nbX@9`!bOkc)J^wuks zzS9on9J60>op%a+Tms^X1<$dsR-l5j3|DQsotQ=}NBjvt>;(}PrtDMG*))N6GA6Sd zH{0m14m+K9y1~x$vg`#ATCYK%x{3a-$3tVk*H@2=c@v3SqwOM$kqTi9X}fe=(Px3p ziBH*F(DR``f5FCnDvwe?(^z{KL|{`%)-%fvt;zJB@9%PdUmg)O(uf@!{Bv9(PS6e0 zCrz}=q~HKw=({imq1O!)!wpG%)Do5w|3ps21#m^KyRLCX<2#jhkZhY;O(bBf*sw#G zhOd#Z3v&STgj*fEQDh<1r~>cS@50}uH+;)h*zKpVWVwK-RdWNkre6M%KE%lrErvgc zwgj;3HerK#=(hmHp3Lx#6l3D52NPWG@88?IwoWG{xCyz+=;_d-K!Ii>juQu;&PZlF z9R@dZ?>MGOg$}v>86^zv!1*3Yhha4vCyAInRmp^PSnN&2>Uq<@;X7@PUMHXXFgr%h z8u1m!$bnMAZ&4E`;@Ivdq#7=><@?1WZq@~{=sR#ga)rTg{->?iJzK4-JS%5A*uqy9 zCwV^G0}lHqlbDm}AlthqljQoZS0-{Vc(BS@LatgPnvP&xv8N{f`EEj;)022^TI=J> z%)==8=UkY5)wRgVh8p*U)jod=S5ohuk|s`GFrBG-{1uk_4+eL2cH&OfNV1_VTxQRB zkE=)Ho8v}aO(xg;a}CiBCis}{Pe_R&T8B3PnPECbJe$?@8HG2@8gY;NVA1enmw|nu z7A)Jworg@nZ!D4Er)&lxP_L7Qcib~|Oyi=hotkf|4UwMrpQ3CNC!3Qwq*;!E{_Z;S zmWo6R^mop&<_oC0h4KMp3(h}&$sMDEJ@9mZFg;5Y};fsRTJqou%qK35| zPAOGa&du?w+*S{;*fS?PzN@JS8aD$y$w7%BdSn_t(S!*ia{Jo6#0!@Og#^@uhroS) zj-XN=ms!uWElAw_2s3&cd_4(+5vFbbEj`=FDX%GNb2dSjsJotqJjfQF2MPTPzBUHF z6Iz#W*vZAxEu=qsvift8#LDBF$_UNYqu!B-Yqc?TN(%PpK8cJFN1kQOiZG&^F>ORvuq6uXl$xWgLH|5og{GX1aBBoE1+Az$R!#z`WevjfAS3(4x~S#D zKSWxy^VC12bxk9T0gX~VJcTf5bqp-?v}Q2ie z^4FkJdE+C9-9GmO{Q`9Zy)x^BEC7n~{;jPFS)|n4rNtET8=Qt*Ofwo0 z_i{h9u*eno;Z8s7?@tzGJyQ*wQuvSepCm`H;3ZcUF(^nmOX%kpUX_v!BabFQ4wB3X`^%~L?jJd^XVXQRLtmyht=98ZM z?ARMAaM1wOh5?wb6oI5w<R2;cvTt^f88S@I(D{bGUXlQ13kA zGCB|m-53LMe|6IIqi@T75jN1K{ATm(ti$FghCX?dLjtb|Tf8Y1T;4^vlK~zi;Uuh~ z8T#$^i5Cl!lUjI6U)RjJMcu7X`CN>w>v&KB60~Bdzf0yY8QLu5v1dop%L!rYGf|w0 zB?<+ono#xrAPH!zje0v&1uV|smg;FO;OGY$Fw14;ViW73T|e0?XQAkVU)QwYZK=Mj zeIYruQ110X6fU|laH3sLlB zCA=8Q9@fb&>+*@B(<^crnTZ7Y)E3v`k$a2G2WN}5HF|AdWlsaTd=li)){``6vRtP79dE9=jh7ZMkGP{;ATIB`vs-b5Jwd z{S$VOz&q9&Zl@dDG})xsG#~m!yOQVy;M=t%boYS1q0{{6Q7h0 zs_XNqCiklq_=oBblG9QPT)u$qU~3JA&f)2=S1V#<<-RPmDDz?@^wK(oTC>`YG+1|> zyENvXv}3QJE0YT8qBi6td&&u}epktQLXM&BssAd3&PvP5R+T84!*cU|4Q|kQx8O~* z6;3?S8*zhNL<0p&DeU(lp{*T11Yfs_;f(oSTWj!P!Hed+=cGx(ID;A^i>Aqm~B*{hzVgbhr#|qoN5PIB= z;*{2T9w;}-D6I!&aO-{JnBEWxc4Gt2IxY;FZur^5b`9=?IUyetd)4p7bGVcv-4*Qk z(aqAb8Kz~GAwnMA$B+Z2)HDRtv1oogNjP`(T4s$APmk8V%m zM}aSgFa^!%U9)AoPVvta!nH~7KB~SsiW8N&wZ+TBW)VLw=8T!;ZWcS&e9>56Pwm&i zz|63$G3oj8;51G%Ano^?E8kRk=;VvefqTDF7ZP&SBJad$WEOQL8Xw2D$eMOOD@tpB zgryVIG)M2aN-t7;6{&}Z;;ET;%Hol*rJQ-?^I->$<-#q&6~{FGXC9KMz`zKy+l$WKHYpv9si zf5Inc>7e)1Mm-d+g=};kr<6NJ2Oo-A~ z?Qr$+r5Y)Fj1zRfM|U2x!QJ41=1rm}kOsvDSAGPUq07@D{zA+daii4lw)!Gp@rbO$ zHi9emBCj^=f+DG~P6X%~jSaV9PKUbzcLwI0%7EcZ#bs6BRkp>~H&yFWy3Ggjw!OlD zXH=Ovm`tB1$kDXXQ5R8Es2dE~UcSY3aF>J>Ng)@zfNpv4M%wrbui(trvJGwDftSD# z%&aerQJe|pwekwYQ_yIl4MVBEHO5z2hX6y$sS$<_e7ci$gk~@ZB7>ldh&SxNw^{fG zj1YW7N^!IwlSy%mbC?^`An=@b2O{LF88;G-W}?TD*GIM^)gL;Q)8Db}W}|y~LGe;F zWTNzOxM`s}bu3mX^W+2PBOrwF%c9=~5veX8@!X_NxkyKB539HDx2KFVSbqWgf02vh z(}Aw90YHwPB&}HrDX7R56<800eWclnLDB^xqS%*L+><|~Yk7#NOp(^ig-}<51UAWa z&lYI;^MU<=cQwz|T!Hwc%(g>%l2aFi?zGyv9GGUXjLu5^;7uNxu zQ*3}?JG6oAWKd;nJ!a5u(O)B|P~3xzfLTxi<7+|( zzTyT()6knC7InmrQ9zweKS%soMb8^GflMn>O4&wHBFc!AT)a@Y49W_M#wPAZiaH_< zZMMcqD6Pt@9z(PVo{AcOg@!+SL6cWv!uBwFG)6tAc|pVw1&MeeXf(&jh?6+}6u1ws8%Au?lio*xasht(rHuy+&X|(uP-}pu89?2jl&8hv8(O;3~vRA8W zlUqd1@f0dX|BEVa3DKAIg(jbRb|+!10YC>Exhfsb!B5x zNuuWWBD`B`Rf2wKPPr&w1f1k~FaOfVu%9 z<}Y+K;JLKsLz2mRm1vNR-Nm7CY}0~TKho?C>Fc|G+oA5PVhnFvG5}8l+|qK$x&G-E zi)|ZbpZf)45+3O~+{KO`jC7NmSHUuNMua}dE;~Ax06MU)1Xc5A(fg&@hMfZjbkP!) zQzj>twf(BspDjq{F$geEpCX#bGC9=?P1t!4nZ-pmu<)fjvWly*3`D9xM@Cf5r+tf& zNIdTp$7AV^9KtL$=#C{Ew=aHv_Cve(C#Qp4#&s&)TnjmtRj3P(McKQ(;HNZOMtZ-M z?cul)xg|S3p#sK@$Q(-PnziR@tWexAWVbZ-aA_eimmyHx%1g@B@alAA7D)ci{p1>? zC8yT)*QKILeRH)1#Ue_eiD6A9^jBXJtT47BKcxCHB#N8b32h2sD|Xh_J*6Cs;^UeR zSy-DmtvV5XRD1~fk6c~Q?RPt77BT#$-M+B!Uy1llGKs0W1lTqwv@mD`q07jh(}TL4 z6Pu!Tz@JK^Rq>A+IAA%a&GFP^cSP)iwxp(;lwMeb+0fV(&@`2-NC`bNfixcW?@jX_cFp9R2Vtj zj>y{qq$GHMCLBr_J%GG1VY)F+S*H!jpqpnC+%%wFn+Ay9;a z2(*RgR?r5Gca==3Po5;3kbz0P>Ys|CSKVHthwX;}adR1bj+x60(|AD{QsCIfoow8w zkP69~aG8R%6r7>l#R!mXrLLcNl(UYtYh*HmTo}8+oW2nF&K=t3~RJDkT2y`Rowm|?8eeI$D~)WRz}3aHw&VjUec1q{8QPmRCy*< za99TaY9~n|ZlJptX;U70+ySi}5@}!4e}w`Yy>hl3M-kc4P&wfNDZLw_9#aywgwjWH z_PYxOKOZ5ukG|}*$(9d|Pt;S8hcXD>MV@c{VZTFV{_c!`A1%Q~#KupWc7Wt&Qfb$fIV zcxpj-4Sl%9CgPfSV7j7YKnQ0*0%=+KwMhGoQRA+?a;QyvKj|wSlnsrij%DVLz^++vgK}Cl@phwM8$5HME0+F?W#O-*$F>OF`pr z%O!RH@}E#**B<6$XT|ANDOI2QCIby3Zny{>?w%mtMmLIwt46>eTTF|aEKq?3=HMM?=18O(67bRg_t42y^khzEGmJ$my>qoP*i?nV$+AY5${l6oTXnZ zOa(FZXAo02&#I?*8&1s+^Vk07FTG9sDSzCDkC*J8S)dpJp`2y=Q%J3w_+KID5z?w2 zqaR&Hd2KR1v%ipEj!t>ZLySSgne>yDZHoJRB0oZH+qZD-Z{cvuv}me3_7Q}r3UCmZ zwg_AZ$sne#ZOH)F@6u-5l}6c>Mp0Q?(-4@W0?j{<J`=iybva&O)va_gueP z_*+mz;c+AqZ{ShbOSZ+bjOw(UN6|&wA0IM_F3-#VeFgjxE>5b)*e?E(e7LdX zo5~=z;59?%O`u~LqO8jB=Yu>0e^v4o!DmVK6wEw$jcdJLj0GvHEovz(D`a(x4Asu! z<7Gok31)Uqe5_Tvu~j!h%Jkw&y#_0s6|~7b%$5pJ8pVMO$VgqNnZ$bKe3=lQ;m0l^T@Smh&m$C# zg8d$5dx3rc%btg2>|ixa2+1|d&R0KvNo;UWyQR-_6vL%u@)w37YPt3!ATQYZ2)!+| z?cW%Pj!6Ib@5bH_3sJaa7gvG`@SXJVcSg<#zOM8{>FYG@z&-+Ehy`rE#bo2UfIbh? zefyn_?JEDnA~ONv6Pd=8G7pq>LN#CDlf ztjtRVFIvTP4Kk=htGJbd@?3?G`3^2GedH+g40tUnpdN%L%?nFoFfYP)`M zpBJ255@G4JNa<6`4d^NBpqg|VzBT2n<_bt_pXHrt!@-uvA0q z&<~ihCje7+$vyKXpqC%|0lgenm|05WpP>GvMK?5YA#>^iEBVn6a=f?#$(;V+Cq>iJ z9q=WRanXQeh4;HW*s}gSW=$Kcwjl2xj+q6Oe0*yW588}Zok?Fka8wN|N09@2+Jl?E@xQ-shr zHeg;M@)O*{K;U?>ID^VSzfZR>a!Q(i*oAhBOS%{u5a_94Qo@-M}@H>t|mEov?+{#85Tc5mwu_iwJ`- zDaTS*FHP8A4pCbOj-L)ReY8gjj8g+iKJj(a{iw(L$u453Dbt3iq3jiH&~?aVqAQg3 z6tm)0F{Zy}2yuV-(fG2PMd?%}l#8wuyYvu&uuA1erqQ_6p(*oP{@~TkrgIzVGrc06 z9!R7}VmGrKsY8yJ%88Wzr~6ZD2M*!F` z>;?qetC`F(rw2KUHtTm^u>cUgSTOmbv2Ls$t^>6_K;tVvwOt4j+li7yobe<*hcq$% zj)k^Ez5SzBySUZj2V~DOCa|MzujM`wft@_^1nxC;PxFS*FKI2Z46~`ob?@M}42QG6 z3M-RHZiKO*zic;I!Wl6KXd(8sp+Obp#9#TgP_NM109?-r;QHRh?ZUm7=m$xnuP!A& z2`BCluz@P=ltFWLC&*KQ?O23!BHRS8s)?}gakQF(>;za9K-yY0%ofKgBNt&i=vANO zGZRh>0lG&mGpE}`3$@btafD5Um+u^jOomm;WG7^9n z%zz@szYqD2@>j@J*3#sC0wW;Br}xz@b^+;d+zQ)=GdZLbsB)%wWLp^LdO+Gb`A8IS%G5}Q&#gCXJJ>sOt!R2;fEeP5AfMR~mI)g!E$HvYjK~j2 zNoxr`=#_d?{ow&ZwTTfz078HqM~8t-#QCwX&>kj)CedVc<_JgaPEC{B0qRd(VG{`K zw}N7teDs@EQz|Pa)HReV2_khTbTCIc9mF39A(%e^q#)VbfN2*kqzWeazVD3hU&GI+ zOGc3r9tUrfY65mlvaF*Q!frDh4j(P_@2A3o^gqzmTB5-1bc@05DoA`XNGm{_T`;FF zvR6c!%7v>i9T{2Fg@hL(}d84>5%Ub_5HAE&Fp% zCGnF*w0d_nBrZ7>wDxVyrUpIN`?w6tIDz>b0+O)iUlv>_)rwutMPyC@?Aroh|8$uF zui-OT)L(G$OW5!qmgHScUqH$h0QdU=xL@Sym;EK{0m%xEGm2frvOAZBG}8ZTf!_d^ z$P}Qc!1nfctvhsM$v$6zIvBkERbDv~r?Dic@=jTB>R&W2y)`#hD0stVNN8h;Jjf*j z#D}mTQX44ZuSkFfG8?x;ATjJP!)`;giEW3mQ9U0G{17g5D=EetdIAfy8<QqV*UG(r$1x1W8GAfO^>>(E@{ol&r2A1xQ4?w7!UY=o^e zicwop6IxYEs&QN2?=^v917PxD;zaa$gK8o4D&ow@dKIQqvvg=48D=qU&D}%V?k}#E zXp|+@z{@3W!WgA5D}Iq+#7OAQ$WBQH0P?S!RP`gX>!FsM+vPSV*!XiV2$Q?ryCp+^p?_^R;oLmYl7&@i;%wQ}1SYfT#IcKNB{9r}@u1a>toFFpKTf(iaBu zhI~bNw-qiZ%K$Dg{)_(MA=_{N2l~GgQ)&}9(kA+oOc1|&cM&swJDrk$ww>Zp_UYh@ zHArd?whrheq>X0yr}jw33lMrx_gA_HnU~xxV)z0^=5kEO{g_pZP;M& zuN0?xVps&GajyH4%1jLMj0{@phFWH262x^l!r+r@Jp}e( zh>d4%P(-8yVJwCN9@`KN(op!~Un%C>s~&VUK5f|g@cu`{YvH-%vC5z8@l8Qpt4FA> zXX4Xb@Uvnd_U3{6t^Y;S_7OvJ&k?xa*LsOcdj*gywX2^Ri$Sl=B3Q<{&@~y1SVP;A z1WW(Bczm-C)(SCnpps>uK6NiKD~DVG3NYY!sbiE0|JIU-q5Z;!_nNyRY^aoIg7rFV zR*uB_iYSd14N81tM}J>TSZi5YTnm^4xB`;^*I{@yx?pVAaK!QHnhoOwI{q*6rTetM zEU$8#)fUVnYWjnBOzVle-PNW-6dE5@Tz6uVXUKtVresmB1g@Nlswy!_|)?SXc#_0@C(LV^J@rbiU`$yxzZNenMJKY2iL>d-LCi zV57?gwchYuuK@dmJxH|0JiHaFi`eUsXxDJn<2*GC9msj4QvMKTpPDCBmltB^Z2+yg za~~R@DUFeXuluI5KnxpG&NP+E>01G_>;_Y_-OUzLzA3^kq#kJDrl_7&Q-7qVtEyh5 zYvS9(Yu{jFhu^3WDz$Sk3}h!O{1{U3(i#D5qb zeHK2e=2%$z2I*31X-C$;e=+R!H>X^!DzflvkY1isiFPNq6-TF3*Dt$i@=rn_WwtBj-sHnUl#CT=aA083| ziW(XX;_K1g(}hAo^y%-a;IX_!kwWqzbyj6QR~Ua^Bw)8o_o)$LCNf-IBHThw2j}>_ zRs?6L?=^1P`5aqlF*Y5O|GFLH(e`OCK_`YKki!QY3GUia6V7C0fM*E9SKvLVW`7)q zbwvC;%Liy4yWRu1mg+AHr?XkuTJ4;wvRpY=0gW1|#Fy=ckb`j>MGe4k|Bi94ksJ>*kTnUGz&P zlDY1C;z*<9V$|y-?0#E`Y%N8D%WyAozNj^+=WLMJ3K$yNk>{~50$bf|4$(^=LQ@Mz zT4Iac3sY>vMlFlj=02KYD*5hv4Tv(ucao?M(Mo^I6;bDo11t*NBYnkJlpOkF>6=%3 zV+H@CG>6BJtA6yLa;zQ_TV*kiW{1x%Ian!Q324SO;Xln_t1ln;yd3eMrVrl)D~<@W zLBiqOrB8E-U)>B=S+><4mQi>=WAYQCZ4t#7<)YwsJsa@`s$9}Zm4GNuk<2&&1_F1k1ysd~!ZGk;r;PVAl)=wGd-%`XIvl?{f-Lq$DrqM8ZBN1(hDhD3%_cmmIVUau$BwI zfN2$V#Vw1rsbi$d?kz~0CVAXF@W%{fM<6fG?>?!=9&xB`R$;C4w0xu!7W|Dh&2T_^BkMpweMiD z^;ci6((@)Kf~oA6LL0|>W;grH68@3!^{cI!){|$DlCS4DHS-PS^GVi@9*PbR=4`F$ z^?!nHt3SA#pZY!oxRAaR{4a8O{^o1_*W9sxWwrc&K6mWDWbFJuoutFUM9B8<9JT*_ zk`CMdAxY=2ng6dzIvng=T>m*or(ILM61Oqd3nS-)F`D}mYmw_ItPbX-B`O0utb4f_ zegtpE&|sL4%FGCJ)%(LJK6*M|Z%fSlVEQ`v*FqKT2MKmng3~XqAN_;!*4|z&Z^yUG z#t+&a&$pM)+0g=-UTxlY@4cHB+HddMSMROCz&D`yJltO1*WVC3-*#u81>W|rwu=U% zv%S5ZuTLw#e%!n++u$#FkKY)4?WLmKK07nLKWJN;9UMHIe7`T6Z9SYk|9BPQY=63Y zVzGAvxJ@QEo@XtR=SSpwxo9ck&%A;6rj0iRycf=%MwO>uI#a(puw`kzwGqQzeT%$PdUG z@5(#9UG$f9lXiA_;J?np3ifVISUtS%>2vUpFKe$M8Vk^kdeq!JJI$I*+<3U*37vPo z?Qf6&VkxTJ%!t~-KxDAe7^Yb{o(Yb;N{N$ zkJsB)tG0kFU8S`(Hr+b7=qj1liKnHL~@2tZBT+HYwHKv|s~c8$N`y39`c zI=|sQcG*|Gd54ma$a-YrO4BDxLBm?Q@=$d|+PXyu?L9W^PWQ#EWM~FH_OHu)?DT3r zKkTlLUiG&=A`0|-ceb;f_ka9EbU0JUgJiCy$O;TU-`Aqj6hK5q6Mmihic6PFj9RKBCKjcxNuUgZV&KHA`I!lM=-kyNrsaVbf*rs*aAzMQ0&ss9fa2=A zFpn30?O><+Pe07Sh`h9MHYYy?JbGFtc_9!2WxFq2K1iLFfU*9e0_Fj9)u;Z83djc$ z_NW=Z|0uG4f1W>f_~;D|c0OJB(C&P`Kb^JtAV9p>$k5{LaDUnqSi3vFC}Lb()UCMM zbq!Updi`QVHP(+m`kEV!);p{)hrgu1EO1awXv~!QII6<8SXwNGztj0~RjHK8OO1*_ z`iNT;kP5zdAZ5~Y#XEChmW^!{O0azi)vhVHwYD5*{jjX_nw%|g2m967{Ntm=IusUd z{E)*orNjLd^W$dxqKHRd`}Ov5bX^AcKHbH+?A&~jBb;{#xlt(M19RJ>^< z_w()hZoEKk%jGAd-hH|LJi`Hct1!pVq_VrUjv($?cyvwtX^k0Kn#XLORjb)z? zM+aYyAHq`g5e*g@92F4AaCYs?ou;~L+8Hn0yVcwqMk_GNrasFY2cYX1MTKquBGGzc zaNZ4kcf|hqVI6|s6M3&C=LnZk5fk{yI*6uX*I{?ut1p^&ao}vo%BN79dt%a_P|FSe zfuDb^pY3>Ybm8_T8hT%1O7qKo)QMTB9mXN~AvZae{zFD9XD>t}!R9Zm)1=?ViT;mQj!-b#d+YMX0+v&wsnL)ToqFq&hqfbSMertB zw^byX;)U8=ePaELU~g|l!K1HQOrGEl>#<65R1d4#1D;qPs|Bh_My66)Y|hWovYC%O zXTn9B-zDu0b%Kt%XAl&5KM54M>^wg-&6Ib>{F#-8?i^&|>34h^=~>aue0IhU>RwCJ zD16)@MaVJtpAO@n$x!l$;F#RrNgq&+z4=72H6gKYp!5iPK^j?pW`L)@*jX88wxc;j z&d8_(j<}e6Rmic(cRWkN`Mk4Kx*C*GdjlM*WwiJCn|n)C2yrt+kNvyGOj zVeSh|9SBm3vz@wC_a{Ytiqa*c8gv-?4yQ~(x2YOe2fSEOI5+~5e4CPK##i`KRf~^G z^>8C9%|v$l>`QAlA(R1fk1bdeF`0rc6TxA^)H(zGQhR45#E!F?+J zSWi64bmuUf6t4&CRn(7u45H`%x#lWiDQ~q`I@!y(Z(#zAtRW0l*rJ+WM|{NtNiX~+ zR-k&vA4$Co6_aBt07X3`eC^cqNYjg2#Co$7xK}u)G42JJW%9QAU}g5~sY(lwlKPfD zXcGtIHHaeW1{aW|HHZyNHO_@$XIwf=HHi4>C>=7P=Q5%MTCdOdi}HBB?dPs-(J};g zyyd>0nApJMr0OpIJ7F1}3k|%b+ATeu=yn%-oyvfqF0Db=EHVxYqAF*6*fWlig077~ z?yAF_{w^(2kF*n|M@(k$d+82cvA;&WLWVsXMM@@5`;BnMWx`aI{M2wqkc}(ySBkTi z=jves7Qg_K4C>xE2h^ZP?Mc_)& z4QtD@s~irM6^%os^tBGNj{0z@5 zIn34PRYBK@O#6=xk|s4srlCAIl;eg85)T3)NUVGvoMfRaS^0dQ)c3cVTX!l?p@!hV zvG8M9h9ZWxgpMtbu7KTwTZml}Zy_yNZJVz;DlSBx-AzN8C;7J!mLTim*n3*G@W-$d z&xmVztw&@ueNMsPCX;9X7oWze)zX%eqkFVadH)%h<1cOG>FW&i|D}il$xuxf%qxdL>_sX z8Z&62yxDdDT*PdH7;~Ti9gen%5>vFN`HvSFD>NkDp{pA{cH>LYCsa6`{WzTzSvpKk z69vYQ0D1j(4re$laQ`@Km64!@?2773`uw~C57-u!3Lz*hr|Un{CPL+0|#SGg6L(P_wyA(hwztd zbgZa|;SPZF6Y6HC$Bd|2m;dlmeTuAGm;dW(A**lV8|NG|P6CHuGa^;H>V zmGGEhX+H;5shouibgWl;lsKr6KL6mTKavl}SzyV;vC(`>1`oE8sLdjmx)uJV_UR~S zNN*slQs%g$_~${(V;WTQoHW?BgPRC!=3H2uy$TLYL(Wg5vd5Nh^uH6E={t;a$?Azw z`E~odf@9*rZu%;MQ~|4HsEb_-7-&i%+b{pX_z-RNZ6SEvM5}`Gf50)_@QZE zKsM$7)uHyJ>#t^-vleS6_E$;L&6hkw3#sxkl`BUp+S0#D4r0jaXKH@pkY+l7bNxnx zUu{yu3b=)Qb6+V+n87i4Y5PN7$PosmSZ?u^vcBhOXq80K&Ht+U*psQfn`@Z(r=&F_ zea?4XgK4usCdqYi9Kp&nILZ2+6_C<4IpWAhsj@0|*BW0ih}W7jt5ILMy=M1Or77sa zAAwX~S&euKN8H>xRGozMQJWkTl~iC)t)shJQ*C)&6%$c#qDq9T)uT&bY{OI#?N(Vq z$GH@-z!I#nWB1!iBDbr>QbRiLbKBzXLuXu-R-!uIxgid9DyIl@t`7 zf|~~RnTqM4Rn;h}yyjZ>uW(RlQa(cOXD=k|F9}h%Wuz-bm@GOF_^s9aVgBoIj*-Fl zB9q+G1{*JKrCXHj&{Sl1gw!Cs;V?liWfNc_oB3ZR-8E0Td&2EXh?<0=26-Ui-K2%M zONx5N2#g>)XM9n~;|_no$8;CD3SK_qj18}he7oKIY3(~*$SqmFYj zf38LCMZx+WR?R`I^h!>IRZJ8BL`%w-<5?D*wh$(j*MF03RY|z2L!ICHY_CN8b3zF@tdu6?p;Auz$0+B>diDTe zyiqQEj<%Hlnr^?(*IFC)RD%V`B>?+i0@!Eep@V6KLlR5s^1FGRbqO~Lx?03NUke%` zeoz6pT(B;3&YZ4_TG^DFpjou|wdnmfQpwUt+bjD;9cGEL-PGR>4l5`CZAuQyNADnws`t)5&-DR5C{ zCOXqzX`JLgm1CArCK7YtnO;(@@&;qGk!NP1+0~;PULsDqhVZHRV-K3S7#m`qKx)Fy*BQ|etdh*QPUiLU>o$C-|!q_1v|iC*exJI)2Cj?ro}l~-bWlr>nf z6bOCnm}A6`1M^+^`!Dw>hXC{|!t$9Oc58F)x}m;$3Rzr5!=9e-8Bq7T(>s&AfEl~M$;_iQaJ0T`q=)8FzxXT zpAj}#Bk>OMhQk5`T(!MAkI|a^4mFog;mltUeQ-54ofhP#qf3|~qywy!Z-9eJjzGt5 zJN_9p_(wY9QeGX>=V*KWOh$#j@-HK0U>PW60TYcMelXT#1h(^E$- z%WHS6ZM9BF=izut081wgi|UW~&q8_q0}pE0Tfc#;v|N#7ey$8}uJ2D*h?C|Nu__X%O?N8nEl}SKFULrXrUJTcE2YVEOkO1@8_zQf0$Lo%Upv z{Ar>mqsLt&+ld2cw%bkgZ5Y^W2!f5G#Ggv}7@#nRuqoyW4td*(ZTBh)zf-B1OmT8A z=&n;P#SMH`*>)w;oa4-`;4$tNizHFxj~ar<0(#yqC6@f@X+>j!Zj@5yMNl*6@PgPO zZ4)3us3XQXjxttg_XsnXGhg2bt2*pvoe+a30vaw2fK!7WUu?mAL1cw2^*!o>U>)liK#b6NYlt(%zUo`_?%uR$ov6aOCN&` z^6J4=QazP)UZ(x{ilE0RgeX;&G1rvg)MM(20FsVZ563XQ%G_U6|xt*nrbRtkxC%E)H6&;YIN8k~a}5C6689zPjS8KX54V_ZBDfMM7r3F{9FtXt?P;C`U6&HZ9e zuKrzSsj5RaZFN&pI;N^nznM75W2ekDd~VQv1J`zYbO8b6Yh$pkmaPa}pK0MYi@Vf% z<)k0ZCcew*r=ja+q}LG8gfcG3EbD#|Tbe*5=?SAz3y{hhiHafZ0he#JL{JEjstEJK z5KY;lM2uCHWM%qSIIB|q%3A%O2LW-Ei1JYKGc`;Bw&anyhn}jbJkpe@PA5LQwd8Bp z8C&hXn>uR0YFGU)?Zgnzxl+i4&iO#7C+-45Ju=Wik%11%anp|u7E5@6kw{)Tzzm{vtj3kBqmfI+T+ug%3V zfQrWfv~Jo$4VU;fE=uv2jO3biGKrUdM2tVy6)7g#mp>XP`b@GP>SovM>KK}+^%TSI zT_u`dB&hcPBZLhECBPcTOBq@E@GU@wY+G36y-lTosKlJ05u~Al$SAe<2!~I5P2oKN zhj1T;EKT6zUogg&WrWdqhNExyE(s3N!S% zfmG5DZcz#9MF+-Rm)EKjfkn;$xDxShjtVpJYLy_4VVsP-5};$!@u<#6$Zg`yK?zZsxtecCN&gw!J_z&0Q4-$g`CH7_}vc#x!KtCsP~LfTAYm99D-q`g#Y;`0$!ClO0I4E zHRByyC|pA^uV`WOtsf*tLU7a>@2+)M*)`+RpO8Rv1=o~kCsAzGANa(x8Q0&s{I0*D zz{Bbt>sozNKU3^m&q*?pQP&QWBncl8Azhi}$Timyay<%}xDwvI)vaztau!khf#1*p zt8jy5yiX)gz*6(e69mu_XAx2ilA?@{-U`aZVfhVU0gVMmPlS5!2%5u&$q65d;c;-f zCD6M2<=3O&Kv7|{!@<}j=b}Lje7>+i?)t#6j&iY3J2k;2xhIcYr6nM4$5UX=k}8p%#?#0hLBe&zI2nFp#RS#YYEgL zw;|%heb$EJ;JtH0W+rTnDG_d9b*$=Bt=mv8#6Heq9=@HV5LYPe2~q6v)@l13SXEAN zf@trxs#^-q96~t>gTGpu2%e(ESK@FtN&Fdo&*8OCDu9qYdxvRGPtH1zHaJrSM6P@f zjVml;zJN~FI8;s$!!tw9?Qf1>{~*mtM&)o?WPO1N$h4aiB>ddfR%LJU#KUTd)^q4)Or=2gohUXVVu)wMN7#esiYb zLtRbT1~BX?rXYdAdm8w-UsvG}0-&EGUTOSed#A!f8Tny>q$YYC3&AyzjjEJSvLc3H z_|(C~SYcS(q;p1H!j`a0ko_K@tUuYes;}45s+z0=#77``730xrrZi1!Z4>kOy$FaB z+Yk?{%4iH<7#6|IS{U z?Ei;l{J)m{zb@l5v9YnT{!i=po~sr61F`$9AaA{{WwSm`v98+?jBqLqMeAVhI?;2N z{;dQfimKFt^uq;q`nM192I4Wp<4u3IVq58QrFk%ESeR2as;}>#l?nJeURKj9`T5^= zFe<(8u7J%kJ3L?RX0^4vpWYBZ-kwLZyCv7ygip1s-}x2e_!wvT&P54F9X zhfhD|1>_p(`8=N*5{bHwZ`7x!e4L4qqDtc_&jUhE&V#*UW&3` z_ve9ieyk6+U4r+QW z$^F!Kb~$-%y88F%&d#R;%cCr>o448Q6ypPRuiMnMO{2F|n~xtY{lT$8Y&Ih-nv0u! z?3;e?OIN9Syu7cnYHA1F#z81)64|M=x}5wh_tAqo5x{{9Y_G}5hwuN}ofq=E2XJ`t zLeAd0z#W`lVUBg*agRM+F^=u_>JDi>*kIaW;3J5f&-7{%Iq&u|4XwYrz&&3A2f*(( zJLK{JFzO*hBZhPF^3xt%K31jl0)(i)1b%?<2oQDw!q>k9K7eow5M}|w#9u;sP=Bj2 zJ^`w|Q$(o0zAP@T{!UIr=;{Zyo$7OU3cHtTh>kQXSTej4Hvg9m9JscJ*qP(C&dz?+ zgUT!cnMyC0ijOwWcMF%hj@Rwe>&ezb{*GsF+T#awqZ8}(t}o)G?`Es4d^#sEv^5{k zIV+&f_`o5~KB|pRjL-l5hg=3TY7*qd z`z-a*18f^WU>9V6(1w0(T>~f1Syjw4ii8qJ<)Xy*8IW^d|#?dwu?j8VJ@0 z&bh|_Tm$g7n;NvaA6)4o|78NqMf_LxV6d3MM>OBfV^zrCYw!usWB;n!?Ii~4m*wiA zB6|O^#8Rkxb)GsnC~EM5$j8Dt(AUjGjxdtqqVuuuo|yftK8$l9%xFEj8)z5>-+qRX zM7{F%XS1v$2FG}BAUiQ-?t>^!b|(;w6odQLYxT|dTWOB*i)UM3l`wA(b^>hifB_MdC^l&nVtyx**b>o&5|E{Gq0 zD29bX2s|W}+Vom(onmWaTb)~bKCsNwquT73b}gJ^XlC<&?8_+IY#V&E9Hh&Xj1Jy3 z7NmE0zvRBYq-SSky+rfYyJv^17#p^+^p-hk3CmJd$w|_XntJw>S^~r zkIN`C(4#=CE`8j+?zn{04h7xxt25A#K&!W7&yr1(UqDAF6tQ^^;tTEJU{=1of=(o5^7bfdLN`<*o502 zto($x%f&Izr8%pE*|A7CWFPr`YNfxCr=eAxAJA-#f{&L{ZgbMZ>@TSN_yBvX8hq|e zEAk+)N$361;$u}%tR6hlC zfuTF^`<%Bf@BHQ|#TPGz>?vDLY}(D@EN^^%-OHEj&obL4)o`8b-Mu9lo9PM2*s?kS z{3?Aara@cakc5m_3&jNRBdar$k+wt^L?1B6^U!`N;8jbR&xv3;?xS(l&?@>3yxsnj@A}cM@>*Tv{YKf_6>TK@Yh??8 zvvea9Q&Mf@G`y^v;R*=x`Hsp<+=>2NZB>cWA z^Va6Cg|lxc-Ung*HtUBhp%!y39CD4U@y!T6ADbXEX;_e)I#zq2C3E&mWXiDoMngxi ziun7>?$q}=Ts@1N1EP%I&CnAJWS~wJ2-_n3(OVd~FKtG`9VsM4csM&mLA;86xWW~v zH!%}^8h!`n@M{|IE*UB)=U`evc*=FrqPW9LbzTjsQShC$xapqwosxIXzWN;aoKf)P zpo2*nTOo>aE>Z0-I$ZbX{@Y86Tvf~6P=nP4dOE)%-SujnGYS=!Hkl4~iO@J#bR@-a zpqE{AULL&m z-yY8gqoXf*C3F=vHUtYQUB|cGLpqLZ4*nS+NlEgQl^%sPs$YpK1N*Sco)gN9%qEI(7Tijf z_tWWqwlYc@t5<`&&XX!z>|^Sd!RTXL&m=nmufVE@&8sZsp!jI~*kpj7PWoQvmu$4J z&k_+%{790*+k5bYvQJ$ElQ0ygASZ+T-tzr33yuc+ba586k)u0;U|8YcSn)Y*{0$c7 zT-J3T0;31n7mE;lxX0JNLFecc2zRx~kl~}nJwENKL;K3BxYHwS$>m>ZZanl2vO4VG z-)cnTsFD*s3Y`*=d2ojX77>hdvtx6zi5o@)kKM9OXO!xsg*_Dpber@}LG?*pkFX8E z;N`&K6JwOfrIop>W#>Ns94=<*xr~+mBOwiAOZ;R4U+o)3?iUrdL`_m~;%Sf{u;z%2 zE%}>a?@>;EoI^8$b6Cc_&rvN6T8)~hbnHi@Gj}x6q7Mz1BX~M_QJ{=LRys^4XyXJi z%X*e^=&>2mmEwk2e2r0PVjfghLLO99{I#J;O$05YVh8jRg6SlvWOvLPo=7G_TPix7 z7*5Df?igc5#)LJ&Kr)60S|D90DNQm-jo%zNLnl!SnbWe7pP;?!>6(7f(pskCYrVTZ z%-75quV-(V1P88XF1~BfD8ZceI#idz(T|BkCQCv#vIhlrllgUrE>ZjcI`u5XP@bmt zzY)WdC}Uj3)F8%M18m|y3ho~tqXa3ToVJLPsgu~vMFL0SmJ$g^9}ia%wA8i5+`T1g zk=U(p$Ilo>D~rUF>)ZV#9F^VmR|GkhMr6~(Ulvk>#O~i$2!~92*fxeXQ98456&}yv zkQA>lxIc_+R&Qwi)#*qf2U|@P`C_|sp|XG@s{6{&WT~ld>ycQ8CqUK6=IjFVgz*&a zYn`u2psJxw98Pi7-hNj1op>fwJRCyy0+j|iWkx``LX#WsBy8p74H{*V4MmG+@O1IT z#IFywy*3NHeLda%$abZtQBv!&X!Q_%@{nK96(|xdJI0B7)M{i=9gMqz%Qyv{vM3TR zYQ|Au-MC~XiCi=F2lWCJDuz)LNWIDVjb`3p!?@eFV2-%ZCzO7ra|(F8kiwBI(C~B9 z81}FC_u^O9guh96%k2k!x1vz$M)2l+V9jAYyApZ0^W^LY2}`_tD!aT4&oO`8F_@eX zT;xeHi~aKtVLP9J-XV1OydKgj!Hk{@l>Bh!3DClH*0qWM#F^!6t^r05<|V7a zgXu~mh~si9c=gj|txorCOx@5XvGGKX&mMOnye&h7$z22ij9upx*C~gSmcQJ7>1s?@ z%p|dQrru~?o{fYTrFn?% zRCyrh;N`GX;U<0H39n;T;r?v+J-uS7f~71X+hTweK=>%=KCFOgcI;0kZdLmhj%ssHYf-8&nrDoS`(l57 z760sVLiNmxrR@E6dn}90Ad-(I@nE?Y)xvOc0~#zmqYUQq3)MZZDo}nbn$Jch>I0yzth7UpP5@a?{;`@BTtMRFFEXp~*F=uR5$)ms6U7XUYej z2;cE@l?B*z+7C|^2Qajxwl&mtU9wc3X5HpHQRa50F9|^>fus?L;LE7nYz-WRh87;v zk^38<^W*!np=B18dK_)R)^Ks>^8-syS#y{y-H!$yiPs8=i>xQ5Q(aFUwu4M%eisHI z@Gr7)9oYAgccBWvMhGDlC;}}9XVt=1btA7Cwn4G@Rn9PdP-*#INJo(`p|Rvk*%6g9 z0`=a;dH&k{kne}Eyk3N#JV-=5)}%n8Z6zQngEF^#h+CvV=Zg{Bd`?6wXs3|v(jdM< zMLIm0WgiFXfLPpj-KnJq`Qy6Iv?J#)Kn*Oeu!;sc&ymK^UGSuw85|6?o=37*1-;d? z^XzVq&R)JHfi;lx(Cmc!TPnGa4cscWSkr8Ptm-xj`YmAUMi`PnZyD8HH4Q-fk#PH^ zg?pWU*8M60+P5FZG7Ob$=t4*EMI6QtUU~@|OXJ=rQ(M_nxfQkU+|2mfvgRMHDo14= zuzQr&mCXH;)|FH{RaNUic9RSiDL318MU;>Y;P-; zf<#z(;;t4_a2zH&NT4ghE3P$LHV$6`>HU;iPT`n6RzTD+xJP9qr!_-rjzir2{)Amp zFDtn_Wh~bww@r09dMZc|gDjOSEIX4f2Ik;IHC;fL(D;_hD#JGuIzRi+Ogr|aledrs zkU2>jDA(8;$;Uz1+$RbVF7jcr;ljRxQ1Ghy7Jn;qYH(*XOG()(kxEat^7VKyshzDq z`HXciY&N)xbasKT}wz^D%abwiS!#&1; zah)nh*!>n9>&vzhv!v2nQ**>R{e>7L^AWIPmZdFwTz3|!|1qVvG!ey64tPbJP|L<^ zStDv$oRD#h?o#x_GXa5N99$vKpYJd%LXcuEiEt%+Jdjy%+_}DR&v{YVL!3CnI`VPd z4qx~SQcw-PfhrH@U|(OAU1@_=7)&8sr@vQY6co^n>0)av|ECgD$bZ0*tHpaSE`;jR_I?%mxuIMcs_HF zgWK7KWL^Ta2`>)mU|QY0&Ya?VLX`0Q8AefcUg3#7{pwDR{u2_r%*JG!CT+A!RXmh2poC4PFRGKP8wGz&$Md zRHNZYAp#HSzOW*F`4ON@RlHKKFHh^%1PT9T4#V-45$fO9t5>X%{_A?SJwN~*8(umI z=B?y3Br&D~pQ0UDA`nczPfe6aK*sq2&4s~+hM~?i|5A7HyYZgvR#N--0{n}??=qZw z&nCy-4g^|@rH4<8K%C%FIkq-N*8!9AKD{A-#`*kA(^Gn@9O=3lN&Ds~4EA;>h9?0m zGIfc^z4z=w{=?u~dYfFqA@2kSWSJhLiyQ^Ll*BPI+q;keV!#wMX0c7XJ`wr@O zIzM3|I#dHd3PI@j@E_f0%_kY3(dprN3E$`d#{N|>Y5dpN+24EWy3Jf%5#T>I1R=S% z!7#N3DJmH`HUyG66``l*<2QAriCq@_40`EPedVr>@?gFlXx3iV>1nKdv7W;}4T$yCOaSO~q$HdYrx3N0t z;}qy4_2FBKhYwdQveDM6_v`8Xim}n&ug>iE;cCbxBrUh+Hl*vTSgxqI_H2W-fws$; zWqeNF&pb6LK0Y9W?m8s9_0>Ur`9L4DWR~Uj&hUP?Y9|Nq#AcRn#~2?H*`yw$r)_DYCd7NuV(!NiPwQ5Jb<2DvPbjFL6Yy*?dWBq9 zW3=iX_(6K^v$PM4Qm4u=ZkAZ3JDfba=>rox)DlaQm}W$RuR`2%W<8v)e~M)tn?Dh? z?G=C2yK+_|kgE{SmT%+#L-6}^FstGov0>Iwib|R)s$*&iIeyQZp!{| za;n_1sHAG>YRO85Raz~BuI@VZ3SFo}Eo+l4IlwXLrp141CArveJKoYx_N?Hl!KQHX z+y_a*rci%skEv51d5s@f=`APzoQQzoKI=$nl^0Sq+0*N# z8i?DFgWHo=2Z8hKopXU9tV!c%=+Uk6R)zY&%CtfD`(jTVXSJ6#4g+ojZ$qn3N$dHo zRkZMyn9sW%NAqN1|%3p))&@zvVgqEx!en zAEf)LQ4k)%FxC

p93}3g%&o#zt z5tz4TjT7k;E#U@x2AGuQWomiHcVnal4nNkkM(Ufl&YfmN%XifEWiL zgk7jTi-B=OMP&O4cw5kX0+$TCgfhYD3Dt?Hk7=8uaV8AFgGKK~HVO|PP;wXsv9 zMQKHf=iJK)@-Ug(!pljdn4R&v=~NRR?^uyE(YBA+qK1qpWDrmKCYRT7B7Hp%rbSi)>_`%jn*GuxSxNFd zEJ?)o@Mv-<8bFq|1~~;+E{J~M*WFY0uy^jbUwm;ab2`gGR@&FLuiuAg>4bdaUc zgI>Nmq{`Vys$^G7i-J?#$ap9L0m^m9A3zuY5C~6|*#QK)4x5h4d)Y{(7A-?y;{LgP z$8UHuTO;GA;<7ew=<$g^ZIgcGnzhwH{ zEBs38bdLl*y2BIfd7_59GKIMxf0dr};+emu!&(n15jL*YgMUP~%GfCPmAcp16uGiP zS8`xaWH{&$riiu#X%z=REvW!m)9A{3#ge1$sQIR&3wW}vG^p2$EFm`O(Gl1$@!QEb ztdsI|K`0}F-%e63?{TpgN3s>i^p zX$1TYmaFtW&I5tum&_7vhqZv4Tw~!!8;NY?_qNy&N0Kp$Y&Ip{o8qU-`O^age&g)I z`gfcC!9G$$V01c$&l_WkcQP%luIDF~<%aa@srwih{}nH1=H54+_Z=y=70u~3Ox@{z zR)2XORZ|=HD`o7vJteT%7~F|_^*x!c=&nBeBi7}UGXi98Rd_@_o%!GIm!V*f7uLwSi9o4E(q$j- zmRL+n4(kJP%#dRg0sb8Z*0r4rox$xsj{;kBS?xxwCrCc|J?@BhSzOr1u0Za2g0-)% z%2UO){!one_a6Bmk564uTBfE&-kWPjRsM)5E{Ei5T#s2OX;2FtKgiz*{YssKbR6*o z#cB|m&zP4_80{8+uWLMZxyOL7>hynp&O9B{%cJ@U6EFd8o{TBFaeV^$G*he==1!Yicgh+^(1{SNHIF^MyH z8GiX4>mPEE4}F<-{J;|F%BTQlb4_PsksL%Zn!V(XQdK=S$fet+o<(>`Z7T%s9{TCzaMMvv=zH~EJ&tbO zD)ECo?0#vp?{~dDOgZ`IsZKwh`WG^60*MQ?xi%a0D;9vR>378lo~Rn-({B5|$jX z!3CFdV7d3>D3!2@?mL|>p-Hb+F$y`VT>6aUhCED8YQlEmaB5eM&nR{m_QcI~3_lT` zQG%8lKF!h0HT+QqoAQ$OzHu$;RJZB4sedRr_z8vV)2mxb?`4@6ABfQi@}Z)ZyoSdU zL@au9E968It8z2(E!vW9PKmCzGdl`aHbUL&~4#CVEgG7$tpQd|UKF_0x!ap443 z2QBjRD#bh8>~)!iMR0%d;E}XPaG1gb=yl5m--bj&Yg7MMlkiDux$R?K%qtz z?l!`@!fQK#T%!?899f310Or7> zjC6!Ao(j?z!SzJ5QEwxU>}eI?gohJ{b`_JQds5y;4uvlE&mJfwN}J1N%73FY#-+su z*2bFeIMf`Z39MnLLs%HpfjtuGfObV&h05^d%fnDDw`=`_HAwV{Nx{DcS~`~+6U#Q@uuk@f+PZ+Ay^JtOTACYB;(ftf3Q)6XLxcYB9tHMQf(F*hl;a(BnI^1fp^ z6yB>9hm*QQGL}k>I&5v9a%ceWL~#1s=C?p=Rdt~4MPKjHpLk?KeZX7c@;4)OFl!Q?KT>tX7NE(RB3PiOJ{H}#c2Tia{ ziCIQ(3d8CZ6vyO=jeE8dlN<gc#wjg~JT2+TBwE;I~(*+e;5X|ehTrP-lYZz z6}1q-G9(Be?hq$%D_ia@58NeAV9-K8RZxWnXt4nNTM1p%Jf1iU8}Z@IZzZUcswe1w z)S&f?qGB7R5YObvZH9~~4Yk1a5V+E2^tQpRzYOG-bN>rt2*4zrjW%U`PC{@D>O&D>E2h&i_t%G=?q*DVxnEd__?1kL3q9T^Z3itT8CdO2K6$dbe zZbpWV--FuLk+>^arJYW?c3mH?{JE7+QSBXJhB!OfTK;?%xZ3v{Mpe8G+kbwms_)?4 zVBsC$LRXGD$==CEV1tW&z3=yDl0J#3_|`&gfdItYIZkXs0W4yCdxkK<;R$PXu@b0F zz)K=w82@Af8^Oy{mpI(nHlbT`8|Oij-!_q6a=TQKz`S1GHj!X@kW!$`hF5_JZVQiL zP35>g`Cb1sD3r*4eR5R)bWEmz@5*ys%xJINncc&4eFIP0jhgM0`s(=}r+78nE491x z?Qmda@hadZGfScHWzB$_j2`^}AP)aR09eO%3iysZ*B^aciC+KAEQO;1GMhatf|ty% z=X12mokEYy0X}w#$VMuivw3pglZ+(?9v*^YnSa!)UQkpQ_0F_&sa-TTPwDi`&gjQ@ z3R*G~1lb-Oqw&Yjj`0r%bU-6~I2{ulUR!-N4gC1Q;cs__s^MT9n9%RB8~MED$M((J z<0kU?rjG!(Bg1=Ii$N8kD-5BmnP$TEV1?py3ud$Lr#_lYZlk7|M^7=5LYZI^6N~4S z{+DxmUiln2K6#M`aR1AGShH7hXU}benCcOQ9VO<{inyYerB*l2U&$32CmzEkgUPg> z-m`fMhMPFv_?h9*zWEL@A^DnKAL+O8?ovv0h`;yP3XvPU04>-nCF&+n;*X1=^N*e1mmU9cg4a z?ZRQvUzN&JDl{_pKyP)e`aRH>3hbjswM(q}6jj2!r`J^-?#n+tVB2Hc zb&AIC8x5s5ej7({E8Z2SMso3dvq}!zlzPh5`1#V0;^XLTCw3Kujr82*^W&rSoNoYT zZN@1@b;)FJqp$JlWWMF4AA|E>q3V#&nCU^sy|NM| zzMlB6W-Gt67c#s$=kvy}l?`_vS$(KY%y}Bg$z$td>ScKCfWG2bh4PLwQ5Om`QP1q) zFiCn{2~&HK5u1Rj8zt7A+!np3h`BteEf{MD4_?N#u?n$+5n zh~ZBtHiWJE1!7zOmJrvJf&gf^2bZ|*P`N`~UTD8)dF9!TGGVeZtCMG8hrRLT{ugA8 z+*HLYV&y(d4BJ49{ED2+bEh{P?H7n^Gd{q9YC1W5;XUN3_Y!}H>IQ%@_tf%YhwHRV zL8Rbj#Ox|H!w@A-Bks=;+;a$!;Q1>9dXaY2@=}))&1%ev>e2E7y1c2g$)*{~n;D6K zyM}V%{ukegT)0X`Oq&MF&8sk`mOSCR;F#e%S-ZdGXYvE?I%K@|#=~ER&&n^vwV#FE zjiq6CdaI{vJ0gC8wh`Vgn(Mezwn~t5mW^OYvz<9*Us)i=kVtrmt9`$y zX-`Z>bftTTshEGplRIO9_?6~pD5>j6{5-_ZNi&t~?Ej<+>nY)*vg+itVhd2;Rbqaa z2X8TDt^P@?*5Km~e@c5Dh^a=*Kx-xm>Gf`x_`>#sBj0wOBt)Wnm9lo8guiyf9~NiH zw_AcRI!eS;?YKTLPyZ^%an+J4xWXIL@H8q)#DK2+mV}=Kri&Hi_EQFJ1_RX!Dd_}T zRfyT#RqIyWCqT3w0*ny1XFyj82HE{9645Mkiv%IV$7w3}nP{YsUFr^oZwu$@>v@l` z^)-sHlnmb|LTiO4%R?t(z5FEqW=}NdL$d8qo)13_hJk%eRZB$B;wK+r&xoS@Zu4qFv zyuPIEmEoQcAq^^ai%T%}u33q6?>Gvakp+04a&8x+lrv~rJ4}lxG1D$q)-Z+2yEhWi zPfK=7c1l(jTpqoWQW_KeP>xolo(Wf8^-G=9j{0w*^N?q^iH{aF|IK)f38S(Tvj1s3 z=iDNO!}4f(`(gRHX)IIPCUg09o79{kGOILJp)}`e z4pCT>00$~>;ZX2^nWtSLaD1Yq-TGHx4iKPjl0jOqNmQNBP@6K;i7ynQL8BNkH_VD3 zvcn$sMw3+TZ$d&gP??$~C;J17l-(2hYwUyrPC$mUT19@lD#Bb8o{HX7I|QkEchBZG zYyeC?F0qTN@l1k0-Qi-0^vPHGf0Ve(05y%R3KKrJ#m(yBk@G+x)v@8M`WHeN;U5U7 z%H6$(Jju7z+KyCmx9}wCzW=EMhwAhH)-m*W*;!1GfO}O(AV^MS?w1|>Wy&+b#ivU}4zNa*U^!dqs29@^ zwl7nWuno1y0Q#nd$l$0&_78pIWun7o2F^)j}k|FU1%`f@O)A zD}qj6#=-szQ%ffaqpgM5D0lnRiKuF>L%bf%KT-0xFXTGcaK zO2;2YVtI#wt@7A>`nm`kbp!sJ1v;i`{vauW{>uU>Vg4%wH6>Y3u@PHjTyJ@<;GGtW z!r}{|-36o2sk_Q~nZv!pa(9Fgj9b^K;ff6g3_2wF6v`&(xl*F%dH*Ci)xKYBf2Rzu ze(6+xG2pu#Wq|8!JadlvzP4F91@qzj0r~fk?L>35L97=)WE-a=BYBz!lH^Q5XudPX z4rX|h*LMNI}fU^ z9yI<-cwVSS79H^Jl)W&5;U>_>UHT@e%Y>hz>}B=mR*5CdB6Dh}%nOK3CwE0%PTS1F zexVc$lGw02g%6_J!Y!iO0JERD)lg22jab&mX?s5_VS<>J?_|n{9zvean^2Mw*R8=Jem=UP(E76o zLyDJEfv70S(8j(S`sh6muFosiZ}L#TKz}Sb#GL;?*rWAc{BX1%0b<)yBiBPqGi#oQmNQf-#vv|OCZ#D{0L?BS*y z1+}Fd#tNF^F5R2Keiq7i1Hl_@=s@~;g$^$ds%QE^`gtQ3g-lQ7wNc0NWm}SfnfA3x z-3+F-R>3Xf#Zw9%*m9}EBBQIbpbxHk_t|`OJj#zXSYqzg^V@!50CdiFp)s#@$B;tz zIzoxvM^w6fg5@vMILOJWqWb`G`)$-2q40VltN75Hly&7$)n72G%F0F21E-$+@di{_!%cAG$_?-^jkQrG6^n-DmS5w8CgH=95nSg%B3m!~} z`>s-Q6`r_S(@6yO_VnQGFjrjdh_@i9-<8DeRB=)wt;LC zT6VoeYl_HNIKY;iE#s)7rVg7ENpxb{ zQjxQc=3%iK@navktRxn$zeMY=3=K4$m5SPg5MO?iaW4z=1%5|u*tR+3M@C+}_kr}^ zR=q8J@uki~t42og?jMJ}lUaxJJKBg(+LRO<&uIDE`AIuTIKwvl&>Pwe-bNUf<4Nd; zpG5UF>5Zag<+g`&f)^o7!A(%*^WqljkcS|OWycxWS^vKcB2_)pyu&EBFKP9#F zko=z$S3ClD5+ehw=l__vBF8p34naugLqA@}k0&;b!wOB1w{RFlPQ;BwS-0X)HS&!C zkC{oZA2{9}ZcC>9A;I>YaHN7kw(G*mr-)JF(@;BZ4UE^n%6jS8l7!Q~CT&}tpR>PH z)MS%(D!@ zSPoGW*keM>00ZCq%fQJ11}>O|jS$R9oc6v@+^%{->W3oPMn@~4rwF5MReIA8{f7 zS-HRsS?24^39@-8{!f~mTh*bn^3D9P4l$3js3A%({$N#Ga@_7ZlXhu49_&-8_~kDy zUJu_jexgE;)H{O0)B8jt)6;aWl|xDZZfO z5+4!UV003Ay6n}8`(vTKowsiCi$O$uX$(4{nFyO2BnBO)AtS9KTQD0jQK=<9?J+ne zS|n4On%2e^7DqzK2&e{$xhD^sw$y5U3AT3v6`KcK_SgubAIrZi&K_WKb-i`?0F#(8 zo0zATH(K8kB%Gs0D{e#rS+Mk(=tZ#ur$eEA+WtT`FgDR(hBYG9F&std>PPkbA7LM6 zx}?V}Azg+6+}25|bcO-0+DQo*ZI=`2U-1u}h@zS;w}BEC zry^&;EVtzBI&4m-LG?P(*1kU$KZ88Kfv=X zg@lVvvw2A+}zx<$Z^s4^9&0)0u zPC&{2YYtN_7_!T9%q2ATS+(H# z=EvGz8SCi_=U5M~O$$qCU!tMh$Jl-M3|_$|uFG($c;?IEGc^_ubzLH|%tOyFLYK^= zNwGzI{PD7JgM_EA(r~SgYirK7Zkl?G%8OGmfyG2Mm#$a~^5X37WRsNncxlTsRc3i< zi)o`$mFy|j!KM< zdpF4)M8Wd!0XTC8CjW5{a9u}8K2F@q>m$JU5oWj+*qje6B3-@EzGqxJ&E73(Y2qKs zyBc7aH0x{AI+{m6c0WV;0}+keK^;8!;-AY*pt@SodU5Vg@H^$OAWXBhb4doQ#kJFg z_GiDS`G=SRaf?kLbIf%WG@?zXWng3w2bb~t+5RWb5jgtYYh5KEn9rFHU12R?XneB` zEZLg%06}H;m-%Qwhbv~Z8kp|sHx(bztj+hf#)jNJrkn(E%F$ANqd@O{3iH!RBEnD~ zN4X7-e@lTxua=8rTN~uf4ve~?+G#YCIvQGRmfM=)7?keq!;g3Sq6TAmR22fvf{Va{ zgv5J+Ka-aTtY}T}w1;-rmDRCzG}2WZ6(S81-nji`ou1EL9L_n)6J~ zfqy%gdgMvw97k|vTUH}dM_M;o)jq~2eOVnAt<7J7ddqJu?R)q@&jH=FQHFAClUj{AO9?2k$T#=GX1VgDLPWp=Jo`7lK-SAv)+Lw-QWTuDI4 z#}$9`3+tzBrIJ<%N88aUkJa+HM=LkrkaW{rZb+n}wnN2`ODadVIPC^m=QarX10 zx42ml;6c4-UN>T6&Te(V#o)b<`r#Bk{Y#T3xyh`7f3a#iI2?W0_e8a11$jb`cU&`l zWY%#b$ZaD1PsZf_oDb<0pB~I;tIun$kwAW>U~B)rc9F|A z36Cou_CFbC06s&}YpO={;-`3CN37&J93zyXu1$K+u`({==13;`W$4x=K(s}*XAZ|- z%HuPxKf#yLJCWLAt`|x2u$rPCx+VUVrYeAqH5I;^)bCh#kYq{evfMNPCl;<9nRZhq zJiYy|R>5Vt>+n1m2k;+W3()B!Gf9T*PJf8QSLHNqznV1cB<-QpzX~x;2v$@mFG6BdM_iF`9*8VKM5*UHh%Og5E~t9kGkMpeh?>grJD4P`DrfH*tw)? zXKBvb^|l>4s-D4WB{h#jkua{Fq=sL=YU;QZg(mf!|8Ex8Ek?RfK?yQ@CNyR}$9xs1 zwvlt@(%9UZlpQY;-JWv+#dIm$R3V>HxpT8;|bJ=lMhJ(N5hLu2@hz zPqY2ON$=Xg+zLa$eIBx%5jOYQMYq*u2J{FbLaK3-PN?|EXHVO zrakN8>m6pb@$>#QlgsFuzu5ds+zGGt>{{2WlZ4goYnwjBiJ2HEgy=`7-)mZHAH0wK za7$BR>+|%Xc7T7I$m`?r}j`HIEfvEf$(8z;xW?&ywb?m{p8oo`Rxog`nFg^ z7z*#GPlWcEjdy7w!>9e@+Vaw;jDbvwv=S0;4~oI1cB1Xk?x&q&wNp_0^U3tFnrXts za(KN=-%2*i)Jl83OjuErDxP)bbllnl@aJAa(M_f*<}Z}(|1_5C|5PRNe79oa<@>5` zC3qb8$34UN+Qnk={#a1IxEr%%MEUa3v+no$$;v+GMh9lt3-EW|fhp^;ifG1v3aS-4 z1vv?yg31I=LGQ9|d!OJ1k3rV_r?B(fBPF}$>0W}uhQ<1#sthB)aX0rlFQYx1qAwwS z>x-A75fpn#7R8sMXD1z)zCNpnU1F!OV%fJ6ju1brJ}-(8KvSRRDqcCExS( z;60|;?^j<>_l^Bm3-q?RF2>NiT2fLLTWpkbHM~fwmojRO zelacDush4I>Jb6u5n|7GZ#HuoIkWtIQO?KTRCfryW``V-MFZe*YLHMkyCs0{rd{R?wM)U_ZJU~;ZFWc?Mtqw ze(lIty6`7Q!QvdO?sfsWpU>|7NYI^Xb$^U!935sX<7ak+1lA1ea`h?knMIb5^A-5j zex7I>S%2_>^&)HBY9DtHvsc+)eL7r<6I;ny4S3oO2)KQkIzA}zCt8U+e(>M*a)1Q9 zY>5%<-gY@>;q?xBwUI@wH-g*H=GPuC>fPDU`9^UKE4R0B~xjD6dTd8(do=GmSD z!7GoiT_>5llzB(vYhB#S%N|^OOuc>&EkhLD!U4EBFAqnHCEd(yLy&5UoRa&JrOUIc z`{%U#pRFPR)1#*C#=8Mr!hR-EY-}g&V&UR;+TOtwVxxC{ zUpCmr$3*=6A5Wf-|J;}4u61WqtRLDX_@{>XKYj9=n>`Cx8=-i`u>|pozRnkATyw0l z1aywF-rY~n|9oeg@H#U7c>U~hn`~NlDjHx^lGe?Fp%1AsPMGKY^%buH1BPUzrE#i{uX`(?+=1X+6OkPO`X9fWDAL9^ z_ix(my}SpGcg4N2iIu=+n`d>#e;Cl?1o~~asS^8BMqhpq)(eBL?U5OFx*q0tQVfjy zU-gXoyZv=uUceWF#++;h)?ogs`Y*Gd=StkOb}buKo=Z;bCzdb=?V~FgErQ4q*alwI z?pvL?D46%{mKQEr%H6&?yPIzG*_I~rXJ4{Vk7p~>*G^bx+I;*Xa*SCg8U z@BP*EW89x4qXBPQ}tQh-`m$X8GOKPiQi?7s`2C2*apU!e@i-B>iia_7mg*B|q~`y)eeMPC59+2wPf5@WqbtxMO^{ zBcUz1(~V2ruz4EKs`RC*G?-HNhSBxWKYikt19|Bg4AoDeU|^NT@`&>jGOux{BL*CN zNA^32#eY7+DAAVuz^_%Ox`7CCM-~U^A&$S#R9Z2UNzzyNf3njJiN8V z8B;(d&pqeS3sB_tB=@_h7H+sPPP3Fp^IRDE>81Q8$|XDvy_72oVfljvXaV)-+Hla) zDM#+}rv%fIyOk$-mp9n&Uhcl}xqRD^Y9sB-7!WoE>r8Mb*4fdU?)6x7W`smr#ETv5 zH9PDsurXgew2O(|->cCX7U1}N*;+`fIo_0AI=RfTO%o_sKV`kX-PYDndCBP%Yc}xk z$~~kac6~qjNkQ8G;Pt2VCoxfvb4=qLzk18Bo%&t#0?lnR)R1tQx{4#j7k6nZ9HyCA zLX5+}!Z~#(klxmyLFN125lq$K(YC^(=w~NpMedXyuAlop*b7xtSXb1Vr6)NW9`$-s zp+S1M8Gx|K2vGv<0;OF09G+V`whC_y4Ua;^=dx6D zBIn3Id_^>k3WU~#m_Ht@8d+*aKSr)55YsI;&QO08Da}#2=3h9X)wX_L$6q(oU`v$2R|uK)x=bfEp|R;CdCeYhmLDpF)4es0)t9*kTEeUaZWsE!@M=?H@Y=Sd-?&qhxJ*P118dDr=FEJK@khduE7?SdU2PJO)9$5`!)*QNu(Oxa(?1DsA|!X~!x?mN zqPn@KN$7ahG%nBvgDN2C++gdhX52>?YXq@;`0_woBJOrY>2#&D*fY7r0ofzw-rgJf z<6@w(z2^qNRCJ8yhpJs7X?m#rhbEqXHOXPzN+lF%!{EwQyYR!Chz`?DJgo>s7C4~G z71mw~$j#?b$;qvr6jRGpg8^MTUt-@kkHc^78OHNJ@FGgat~UOQLy+74d(yTS5Od)S zJr&h$(DqwaAYCEQz;-6M{SO$LwsD>=+m?ia+}p=f?~;)G`V*aw!X2oW-B%qO4y(o(INxqzI3-0H!_f#qmvKzE7|87Oqf=*71S zX8;O=TaL7ydUg4ucxgTSiK*_0aVC9_c@X z0q+$mBJPEblAtgr6UP^1*O+=Erxk_?ihT%NkKTv!iw6W$00A-*Vs1d79#qreivF!I zjM2dbYX?x^$M7Et+W%2N8Q$F5;DQYZ2!?+s-3Jh!DHYK5!PvLQp(6i4Y-~>3Lm8*m7Nq>%5Nsvvrb#qt2+&i z@M%5_0lf%;`+K;0GVy_9!HnbTeBI1?O6XJe0##Wr$=pMyb>*7=+(Qa}?aVs5?X!0j z4m5=#y0=OscT5q2`fOFZWSK5gS1ucjx9N^5AfVybaAoaqu90!3HCD;l|J(J8gsW zY5>G&#}0*k!T4KPoNC^N!Lm45E_c$AjC9Iz+woM1y9585m1j2CjBsEgJ}gcmZ^H+S z%|^Nu9aaIHgEtHdH&R-p!4+952?sB&;@rMRaKv5XL4c^AEZEIa9{dx+I(24KBM&~z zA_aM31XH3@AO?lGfH}}92LA&DI~!7C0FL2)>ZrCLJ~{i^{ke{fR)Y9MndxP$ZnL@} z!n%d)$K4@|V!xd{_&NjU5B{_xU=syN;;Q-Nw+``PpbU2{mvqc}8L0eD*Y9>gYz{yLeF)!$l;I89DvHaQ-sc z_9S{Oa5|rdeHuQ7Vd!si!?Qm0c-S$D=Gnm7tp@6Ul)JomzdZ z$W&=PxqSDpFb!@dJ;MtzFZIjBN+o5zL0?RN_t=thc=IVd^-Gl#&gI%?iJ>RM zEtiApKAHnIF|YK8`QXZ#?y1p!klYqZhi!2GGw_tG!*((2$#y;BX-lWD1;IG7J@FOA zA!<8d12yoeg8uOWkNQ=C2j!lDDf`Kmh5BOr+G?Ak;cdbU_B|pGohb+HYiYS5vdlKc zO!A&z#8W|rI}2+3YbSNeQ=AEU*OwkMJHEF`ucmau!VQWoTUsOs??=NP6&oY7^U~ve z_;6wG;}9>7JL)}A@@)&v&Rc|wU#o`4e@;*4L)E~&0k2t*byXRTNcz5QINXTnCy>iY zeFGIudZBYeeIXpjl55n;_JdlwUv;mA6Rk)Jx)o*`597Wp5Q+i?d*axPeA+0K{@wSn zQ{^$_tl`#8xBV~Ttg-gaj`tgZjGQwxdEF&-6OhTRASog(>UU z!9h%;z%DJ2(t;Vc_R~!*4WT#uKDJM4moV-AwaU{_@NGO(&GO;;MG_3O=o^MJ_3_A` zT2_e+jL)k1?}8i*44v9tjn-E^<-Y;e&5OmLL)p8!NC;{iqSctW&jQ^Y>u;Xvq{X5y zGsrQ2Xn9%|55#ms5uOVbxg^Mk#8+0_3cV*s$>v3@A_gopI zEB*?(yd5~jJNSw8fj~3K4;iDJpn%RT=trP;enZ4;6m|(~AU+)`ta|5!ts=07iBVv= zy8uBs0nnkDBhR9$PqPkCU7KNm{|UZ5wtgqV&RA1T=I@`R^lf=k(Q zJ?Z&(nm2F(U#J_Xg1}x*5QLOwc?P3}w){S+9dlNO5GXHKKfFrg9S)*V##Ag`#brmM zd{8y!(o*-jQCezGVkU^UrUt*gJ~ z;5Wc3VWmn^)qps~9u8UX2Z7=L(KSRX@sF+)IH8r4B!0$x@Dp-1IfN7jm-qLkqr`Go zEf3k$HRaLTL{GkKupujHychB}+C;%{t`7^Ml^4ji<7YKkhG8~wrtAHkYZM4sw4`XCdTsP^Q4PQ6l1AgK>f2x+GH7BR zGRS3SlQOX=eq>M0&=C_@pheRwdxyPaSz#z9KzuB$UtyD$kyidsj=4eEyZ34Z;OvRg z>^fVX4E_-N>)&YpXxlv#2C=;{2v*@FU2 zNO7ny7HLuK?7kr*keC2yI9neWp4SWo&FGBEDV8IJlV zdZyrt-J!&dkosdBeLeCik&4KZ!_Ce+ zowb4!(Sr`IYKTA;jvSEt|msp#oxmEt&9!8=osfqt7}gDWJ#MRjXWj}UxPIdYWUA_UG% z`y=$pBMbq6CLm}$_d|0lb)}GkZuF#(qSNV!%ZIwbx#iGoVp<(kw@TCcdbaButh)Sl z<6#AW2ZMnD3*Na*{|FO03fEeg0usjH4sVIa6P!I7B+|0QdoMH?|@O# z9M&*PWv({EqU>b*^`zOpw5V_7<3szA|JsL38A?`F-*^4azM7#r5!KGpA&_l?<*pBS z{MVi&FKtnV?-=QY5r9QBq}6et-8aJvBTRl@Z0;G0OJd>H!|8P}D z@w*jf|Ct}(@vRKMll2STSY)XU{>r?%RccBx-)?l!)-{pxG>OlExOY$(GWnFN2d7yc zKFgFV(Wv4yiP=EUxe;3NehiBlW#=0(6qpsvkC*wa^6 z-_dY|3->Py(#pJ8^n|->rzYP_@y#&@g`;vtWbo}W1N|xyf}{NC#*n+{+JrNDdZ}0F zpoPteQ)(bU?L;JOPE>SZRuk#+8Y0SC`OJ}li+=@(19yK4!3P)hSyp378-UtHILBuI z)UFcwy^F&y94qxy@qhiGc=vzwgKrtlNjysHo)#GIU0Ch&cK5Rd@ExT`mlTres_h1< zZLtkEDVv78qon9AfPcMsvI2qeEY3aW#F&Y&Egdo#@@yCEy)*)OXL~XNdBk=pu#99X z+uv&QNgX>_LEBKQG24MxRcNs6iLhv(HntPWQrK8$@yhBgNJc^}>6xRhY%*+Viwp+8 z!M9IPa?XLh8Z@Xu>X`gSxf0$zqI8lX zJteo6-_{ez1O3P^%66!o4VtRmytm(wl1kY1h#BN#H$vMB&LKQ)AfUtYPa&Wc_%i1t z=tPn>1`)@NEQ*8Dj(L*&I#F$4W32yl)iN(Jv6$NBaWF3dd|TSH6n&3}Zi;gbL0qf- zGfE?LXR$P1$Rbp!H9>nk?}Se3@&4#rTUZNNV%tcG_atxsN5U;ZLKr=A)0Kd6u(hc} za;D<1o{NIf7<7K>)+uFJzvqrv`@gt*%don(C|eK+1b6oU!QEYg1$TFMcZU$%-Q6W< zaCdiyg9LZ?AnBcZtE&5buj+OGZvGtDOV6Hr?J>rjleIL5K!jG`md6R19G;y*rG9xd zi{z927#lEfn;^)WUmiFVOlV^EIJEq{BM==mM`g741&1|P@!XxE>CgxA)O!j$QW{G z03_!p{^1F?DLIVpdt!~~wp4g}p7#f9;Z1@mjFs#ZV!zQUA#6prpf<&4S`?(Z83dKW& zilGshBs{R?`CoOK_CKmq#UNN77q+NfegqfK-m~R>o}jq~@38#iv5+QC-PK?7_|7sj zM^hn9!|og|gS_}Ob;olbQ9(YIA|U)*(T>z6hqz&St+?rChq7M^@CmsuMmZ9ykw!QSWb9>^uk_YBd-v%J!lvErkFFFjjt9lUvwC&JA`8Nz%rM2gwA(@+=PnQ#qD4`2 zFE?ib@~KGqZ~95#AtbvYWC|pTYp4~DqmS`6rQ11yWrcD5e1V8b5J5V#o!{bFh?XWA z&lBp*x2*k>y(5*w-oZ1H3hibRpN9`a?CKM?k_m%wB9+pyE1a*laZ?EL+(mTfaa?|= z&tnK2k{If9Ya}%7Lg3`BTfYCf@W{htfUrcIo6XtJPgugjUB)7zp~5f(Ykj>L*zuAu zn`6>&~7&HX}BtdF z(kHTml&#lQmXF1q)249h0@tr)%_2g3Q4g>!SX0`wdVp=&hY}$_fA&L6OTaxLn3_F# zcncut!gSZPVI@7d%B~#;CQ3jgPcK{Tp&t~3&A#B3P5QEwF*y?sqSJEb5TUgB33L)Z zoGY*2QI?OEF5v^*d9i^V2pyhS*^Zx)C$gd*tHP|pT1 zi$JTM3sagL0W!!38keWcQoR^OKY0fY_j>clOhbS(6 zLvVko&-PwCa-)S}WZdizEm5We6qlW$2!nBwqo8O^IHm>CqOT#eq^SXtk!5%6!O*=K zA~WImw1M2AdDt9k0I7-WLBf9Zg-vsU0dAk73ezFV-QV`pBuBx~m^6GzqIH zfJvSphdj6c5L6LPds~>bHpX2+E9hQrWwLKOjUKY<>s=LNp%h1R1cv4a_|>Ky=GU z-tyT^VIY%8{)1WFhyIUG{rC4@3F=F(gVgQ`1JL$z$P$bL-$oQXuZFyFBlceS8nopo zsD*2Iddd?&(`cdC`%^XajJ*+d9{_pD50BS0NEGiXE5fhy?OaS8CU4F*WPC2~ik*;{ z)ZGZC#ji2loE7fh2Oi6*c3zH)@nA3$e2)!@tG%gmFFlBo)BK7fk44TBkn47K#O;a*!h`QXsgORo`W-M078^$F9DOl*R9We}n5SiD;wXBUS(M|^x`JT1 z{w-y${OK@3NbdUnbNuhB**IGwyE&kX*>QQDj^TVb>bYm0Ehmf9xtXT3_1$dTiT!3t zBODhIb;P#SBn3dh!P@49HOwADyx-%G{uabCBp5rPnod2^V9P7N4( z(A;Yr8YVVAOcBn=JU~&8Y<#D7|D@prorJ~gjvTTM4k!;9q}Fyl<$^b(3qW~5$&G9P z+-niZ$sI6=ILQT(OzQ``RI{ThiO|AV+SvNH<>YO*)s^_j+c+w$!yE>Dg+G{xE!txr zXIFu+R4C{&KF@u)oFPA4R^yI;U@F#qhl#he{-ayYX84DA5?=c@aw4y7`p3h}{zn#x zN#?C_1#o;u)3|H{(_>Vu`n%mKf{D5E+Th~SWhVohk-7a)hM#vdWg~N^uj3QR0j?>2 z9hZTcJeXp1{GF!|`NAnNp;u|pRQF{AbF{iLxjKPRbZ^`Bz?m|DRf>r(+JReI3|M6u zOh<@31&ARaNsOq66%#YI8KlSs(*vCxLjV!Em{1p#snzxXX}Zq2Rg8L6CWB*SP8}5K zEj&cez3o8wAOy`eSEa5%3{9_Wd+x9efsZ`Wf}1A2biSE;Ow#f-^*t+b#r@yblNnXZ zz5(L^M!BW_0S-(B4w%Y<#l&3y_Q$`y@Z@9#b6r5t)!o5;9jEhsPnniA=xay&9)(3s z(P77S0e)OKIh5OE6?Vd}F^e`T@jX`Kcdv!9);<=qbg5TbF|lo0LOK0f(1qilAb~ZT zb=fM*M91O15AnFn&Gx~vBLuCeIZP~r%iVtAJmSoedb%Z@oPPHDMe z@RULXh!;`nuna%j^RovJkI|{&#TiHLmfo-WpfR^uTUev^sAh5%vYKUbgS{J9*v66T zt{`E39I+35n=1`G2*p1Em)v&;l#Ev!p@7(d?|uD;m6EC3zl|6(p&&oT7HQo#xbS_# zh9(uZxY-3)HTnGc7m&TWzP%h*n5J-gfrHD$7H_?{H3$1m1^D-iAPPYeg|A-=0u6ak zb^H*y;oy@6N^v55hdyh&wz)`rQa3=s4je~@g?y4QU_x*`{`4nuMbV_p)hCJzHw&ia zz@0K1y@iuVar@VeGlZ+lXAX><4k`|n!m2=#;#_K?Ex}JnNDh>Qm@V>Q3NA1Vf;1?< z$hLc#dLsKo*j+G)t=@=M;fEy#234D-OQD>05g~%c<>41*<6#UPeyhk}mIcQMi$>3z zk{Fe+-?HVyp=OMBv2bJ_2@mK+Q;3SveiEgkHzElsk)bEi$O2|A8?C80{)p2Sc;YO--Xagnsh4VdYMDZ@YX81;o7 z)lm4Ll(0P{m)KyLW<^6+Q=EX}!NdUPW+Sex#u%-r+Hcw-z7;b?KPInH97*rdJ7`eU z0yGHX7ffkqIM2FSQJ<~jmQ`_gHCSx43m=j{Y0iV(sY7NwT(j?kXIhfJ57<`@9z6ex z9o{?{Bwie98)&8`LncQEW?b0#-ft8Se!h-`D1p>s-W3^j&6z4w5Ay?<`X2*(q=4(#NwyB+&bx}4uJ^Wkx0>+M_fi-cU$ zTB>#@l^o;p2}`*B5{d11ZQ|EIA3jpIfc~2-MrP*!E{&1p|1XE;umCBUOf0Pbe4YQ{ z1RX|kj!(>-e{X{lqc|t<>px#!K!8!f$=+Dm)J2<7K~$Vk#ni*)-{eK%e?R`mXyEwTTyC@hs{gWul^?yok{5ygF*W^ZK4rUhS|0TOI zTes$*DgN*h@rgGp6Z|*AjJ$M#9(cddCP$`NpzKgicBBCV&qLitz{W7h?$WO7O{s!L z(MyBTe zV^4gPD$)|{v0tij7ORhly!Gei*?hA95wvCY3L+N#b9PxnM5K>=CkX$xElAw;PMqui z5Nfe&ub#VQxKW_qwT+FR)Ryg}~PArJ;edJr_#k=|&y^1y-=XTTWa&;6xULEb+USVWcn^ELd+ z&za0p$}gF%q9M2TB~5zYsTZu7qVMr!oI5`{E7$ZAoUo^bdLbUP>U}RRUp6?_iS1`u z7_XICWI>QsrthC|`TL9hIh+Wqsx=dvbmvD~^_nlBW$PKN=qUH@a$>B|YCjEvw%>-1 zM<=0!`IW#01wlHbeBh$+TP;`6--1)1pav-D0xtdrF5mz)4XN<3F8!1RDUkjiszYeJ zbA*Hb)mUczk8_%ixM13EUq4*RK;P-9?Rg&Wi>*yzvs=#Cniq9J z!9M?7BK_E!&0#?w{68-jb%-_Zxm?GO9AWt*-x3i&Q}4g;bxW($bxL0AN@c4 z{8O>@>ul>u*8LA{+S{^bpnKMJX1@!x|HqnE8fC7Rnis^5gA>0GHLY!16XYye{@;K8 zY1<0&LUef0f6Q#v`;hgv{6?{09q{+^#68}xv+fJd>{G{{RsZbra;=XUKygWB$~Ut= zuHESs?0KvHi}wFC?b7?+WMR_rBKuY=@we>)awHot+W)sdF%TpF-fMKr2mSlZS!Rlu z7-mPdp@I1`!LFK+&$P-y{1z-Rr<$`?vy1l=iP4yLp6mISN@Jt zAc2mUKiuz`e&LnD8v8m;24R0ZpZfLv9%_ z)Cr&P&FXX0#2>y#x}dmnJZ6b~3%Ss){G!RLWiw212$Q%|4kB7*`f86y)aIwo`r>-n z9{FI{N>ApEZb$^jz5V@#b^!D8=H&c$D6;*o z(<7zEpAdE8-TQN7;vHf?%|BNtj8$Tr{x7v^SCh`K+l(rAso34o3=H-=N%z5~yIIaH z&Qq3>Q>!#N++O_7CI_I-+knV;F52kYa3a!!PU%CW37{eogw$HoVz)`yAuzsO$c5-N1$(__B11 zJS*$3(|sm5DCqMu+MJjObiCMpzvX+o(sWe{>~DB%)_C36KJmwtrooYLHaem8GM5PS zy!cXz{PfGu=lyC2F)c)!ks~0JRV>pH0)J=E{_I7&U9Q>gy3RiId+Y8I$Gnh$jfRWP z=pj#M>tOeQSUX<=qooEL;uzTuPP_BlzLWJW_R=ya5|jTd^l>`Y7TWId)%Qa4UA)28 zCpaux!F=r6-d2Y*X4lSrZ8NlBoqnMmd$ z4xdD!ordK0okOXa z%^eBR3(~S<%Eu)h*;xZr=Fv=oloajI{78em+NsaHF57JBI8H$CmcNjA9E|h(=>(BI z$H#*#0~qCe7(~a{;Eor%p2)ZoeL2nCLLSra*-r4Hh8xH01s&3=EohP=y-uk2twi!! z?XU$2-R@q`XefHa?WIIFbyzO^<%!5bsGRdP^E!98syaWr|s5Nb@e(v!;Jt|{$u3B`Czr@O+-hFCrfD2EQG z2u!NAz8&3+ERZx1WRK-S7CY_kil=#!6MDl^l2hb6zpZkRl5M=lE+Ry~Kv$7CJ7;Qj zl04z9owlg|urIZRQ9IEXURARm<`GBm;9iPVs>u0bcHM}sZICW$)8HXs63vBes0>--b(vju3%9_E-$55PHkL>*h;MI zLj%PYYQ??sY1^b7zCy|VQtYs=XKAmGfbYAA8s?g-3blc%E>finh@uv5o5OVX#$Q5V z%#tp}o@aDLTw}}srH|rJk~zKGodHj~sm7{ z0x#t+{hx6dJEH%*T@T-%fEr(ihqo8o4;k$TP8PaM$q>%$QYT_9LMO1oS}7;1n7PY(T#B1cB4$!brQH0n@1W?eZ#(1 zo$-D43j1^R=W73y`JMHZ;^nvM3giK=J$A}@sv*eAmGOB#mXwKImbnLms=!+2Qy7ey zp)iHJo&SkWP{~Xylyzp0kn(J`PkW+AdugL=SS4zFI?n_tt82N;?d8T1kNg4;!rO&we^G^O|GnSpks634(7b#5P zdkcnGqvi6ZIzz>qs(P?*mZV?q8Z`EE@=FVJpWWhfGH7Dq3+q92y~?R$kQk9Zt%98% zuz4w!6JQHorKAB?73+*&_DYd{j>!Ackik*mXTHqS#^G4CP9TW5BE%0U$Yy_FHPfk! zgju9ya~foE7wG%|TbOb>VW1MK4=&EGdJ&>lRCccxUa%DD6H>;@1!oQK#?{Ia=Pe2+ zhDOStvU;7MGuc&0`fDsm=(ui1E`QGpCRI2-NLt=BO!a&bC9R#YQCOKOd1bwBLat#U zw4Qa<7{G*y84-{KQ0kUXdGDa-%YOnDwjpn5v!=3+WpBXqdEV_hK=Kf>R(F78B$7X2rpzNMpZla#W&I z9ToSw%xCb#34gsyhV^%So#z=BixPwL$Y_{x)Mu8Rx#z%D$8{uQu3&LBg@Y-6pjTHS zCzc%tx=&;b$s6LK6ax&7;S-7RZlKa3``5nUd=J9zfj%4kbsUOCp`s7fwD|o>P&-3R zR0TE&$|qbtCEs`kq7A*tZ-$s!Ni4}}IX;s-Y|ySm8%hxlunf2nEcF`^!p6V_7P0@- zfWCpRBMdcdETV3u;v=8jCgJ9x@=wl^Z;8lBuI{TYo3I7!iRKNy&YFDRtntCML2{8%-Z5wtOA(*_GY3y~^2xpCHcg?u@cb z={G%Y65q7o(8q$v{SQHMa%Tz5LRUZBnrE8pMAVWfiQ?Cne@TAgZ(1gFl53QGOD5-xi%HPj8 z#_u_DCDtiV(urc%L>6881nsCF+JAz#CfcAS!Kk!M(|^sza#f(SLv4%=?4PO2Mee4p zi*-ejI?$5Fc)OEMg1wK%h}%;3NV$h45dNlSyghY3$Q8m2*;m?+# z=t$m)+U2{DvdQ$flCT*ItBr0i!Xa}|3Y>{Ru#|=#=iGG6(H?y;twC6pPQb&N58}KY zV5|9=Oh>gnM!fk$hC1rd1H3Rp%$)9^XVm$O@3LN*=N(l$s zEI5(cep)nR90k~}X;g6UPbd;PjQKtk^Xw;lCtPfkboYpbVS`6+F7=q4>b#*#+R5JF zI7?N-(8r6pK8qmRoBgc6MsR!dAiJbo^{m={eQY&Y+Kusm;r%@4I8fR*o*E}YoZF82 zT(16_u?nsRlIukcE!yPRbd{dI&c*8uB>*p9l0{Nsd}99z|D(e<5S@Vf@hZOX3wxkE zH_A;bo?^aLFJlH`)!cNkMwt;oE;rz6drH_PIdqVUD$~1(bR&6;Q+NJMIViWuffyP= z!)Bk!F)SwM|G`X!@tM3*gq4b4S3Y_P%KT0n6~BD>y6`H4M&#pHBSeXqtG1{ZBut4j zn8=YUiOSupQMi-1E5!=Yy{}RtX!1WCqf~gn|FJt2YArfuplLwM1FkW zN?4Eia23Z!jvY){-0H0mBS(|^iBd%>FSQuWVQOC`Y+Zse$gUo{?*sFp@Da3??82-U z$(dv)%3YFHNSm-NC*qn1O>Jyt$&tBtSjKjm&nw?f&cPLrhcg1`{wYd#vG(F_4Kyd1R%`Va}g%y#2cEC|Pz1o@JUHo!XPO z4m_v6)Kt~l04HT~M?^Xz0bI48*I!6@o78_SHBgelLi<9%~Z-FCQYT9^6*lD6gjBQ_#; zpx~LWdc}^gscjnGVhwcURSFs3iV958rA;zBvgou& z#idusfS=rLh9`;ZkRn5(BCOP8&>~^~E=EX3K{AV0H7Iez(2w$Q6gc^ym!bf{3RV}*Dor(jqcjB|09dR9}T@y&4g$$S*5S$gQc z&a*+JcBRWfaRBxsJ*o^IqXv}La`Od!oj#~Z=!R3DMVwa^z)Da8^EG4qG$5Q{okx@c zZ!kOxmB%}9T2#L>!RA7E_fjJ&bg#Z)P~^rck^uY+5C0uxw>JW7q0MHS z?&L(O#W4!&KI{%IDQ34*3x^t?#WOGM)?8V-%zK#j$*vyW);ZBQ1s2paD$A#&&(c09 zdSexhkUvp6jf)zVk@RxMOcrRlT13$_GaUGkLWDdtZU{83u=zVE`RIow)G`F9EPXra#F^p3}891*ked@Q#=KHKbq z_lDax_W!_YBz=PA#F8Y~Q#q=wPC6k$f)H~LS|52; z=s)lmW9AFYWcVOU?PQoDa8Mn$2APO}>;xIW$$fL;W$J7L6F7bpblJR;%R4iHp>Jg= z89{{58_hYdcGkj6g-Pa?J|@s-4g|ID&QZxARpNw_LNdoj#no#?PcAK%Jo z*PABhT)Fejyg%L}8X|^d|%YfD!%ML0XemsJw8U0{Wu*7duJ>pXA2=IL?m;rw@JSCW~ zGqtXG7JK#9`A_5yCKL14qbc-Ur0aDkkCxOiLqYU&1dB_Zck=Bbhbn-mXy|?Y#|5%C2 zEssQ@-Gmb(V$v-cRnNU2DX(Ky3m0F?$C=h&6}Pnz>C^jJROu!HK{{d1(Q}98 z`(jyE>Bn1y_z^n-7X4b-*~AW>55rWhW(>?4(G#9#OtI#+>q8{U;A-O(FhukRlW2)} zr_qJtl*4qsG0(j=;sLTvh?EXHy)JdDOKuy zl6-5E%8J;bBup$%!fD>2tkTCXSa}pV?hgOrr!%zkMjvfJHwI!;{$ai`bp86eF|HNE z-@*_3YTM;!XgvRL1wZ8Hm8H-B=lA<=A_4W7Y2$fQhee0tL$-t+CtU}qGs!-hez_=D zFxvil$j{^b>D51n801R1A$Z_Gk(L5n_PIhl8dxIEB8 zkD(CQ9F$3G?6S9Z@X|bG>-%Za)l2&JV}U7c2KFUaj)k5Y{+@*%sN_2zL>0m0I0w1d zZH1>IGX~L_7W`g%@zqQ(Iq;c(RbZOf_j5jH_c+cJjaA2MVrq9N#a9?Tee?Wez}!so zwYoue$2??Uyh#?#-iqJ-r^GJ5Te|~%FFgmuiExdXrBARrD_hrQXV_4tlstW5!`9h~ zP1-6ooAAj(|H;cY@*7NHR#CkM8#GVlqq=Eha6P7W8IZev?hItbIG>kcxlij1yvY8k zZe&>p^<8b)w+=otkrjiV$`+!F!Mk^T3D0oFxGa}A4B-DKsVPyqlH4h7u10XbvED=*&;Z+8U)9DllOAc^ z^$IbtPuf8<=LAdeIpS?14#$KkW?u-byY5(cPpvD=Ll$NP7wVl0EF}*`FbjRAHpMe9 zR)0tp?cNEN&dLzxKJl(~8$nd%(6*7j;t}$cO z2(C5M%XXAY}1urO)&kD*m}e6NKn|BGXVXlWUGNt#Z_{=TWlx z6J~ma=dj~CVv*h^P2F5a9wTP#eT0|3rm0a4W(PF^|A=@r2|8LTrJo zCe$j4tVTnM|Hf*;q=Gd%4lCBeCi$mRN1eY1;WusyR=sKtLnHGvj$!=geR*X2 zEqwl&rlek@f-OQ*;5Z>^)5M4ru?x3&PVip8?njD}?)|AGA zuoBEdxao{+WED?HMCU-b2S|$++R9$M{aK3h?~GI*T?Zj5fom>|BAe~ zDlpec{`gA6qHsZE=3~Us425dp7ksK>5&XYMUZR}BiM0lhuo-b%6|HjXXsKMdn15<7 z{~vI?)%_=>tG9-8v+42G9>iXw6ZqY*3fR;h)A7~6jG3>kzo=jNG~Z5r+#s~VG_SOQ zbOBl`(NbqPG19P;r}z`^8&%BtA)g>l5fvSXM=1*bVR71ii@3sK>-G8k<&s#BztjKi zQlH<jdg>k6~ZDZUTvCkWJ>Fi2R?kCEYbZy1p zBi!uAQzFKtL&smHYo9+pIcfF7=m)af2h}ji`f zU`zC0zv1iv2>0Nxzp^%GyRII8pD3}$VaRV!l|~=#aU_MXGW^~do;N1e1gWg!v*gLHxF0{oSRF8 zHrG?_4}$b`QN9Q4h}Y9u1-odRs~=YiE2eziB`QE$gdwl(-wn5ZKNy@=4}5V3g=kpl zZG(@id%TSJhL&ADF#kc?cHw@-GOVl~5WUR^X|d3o{gzGOweD3KweB8{H+y>t%>KHul9QAUutzy-b$!l)`v#mgVR(rjoM#*@tetvnTFZIow)MS^>#3nv;Kf^R zOFYUV3)l=ssLuGE1Jo2AGZefF?K9DsyVM=QJfl+;fMX#{E5(h5(-iZXquhon0tlJjUYH(X=GoE2SyAo6MMF)2sppG%7 zQ69G|g;E`8Q9d?%o&hy~HMj|OlKC>h7F5JaRL+>bVU*|DC@!FQG|vicO5@`-nlIDo zjv7}NjAfkX`9m0it!66hvl6uR?hSV+tYex}b}YAy%s9pO?aLPQy2#hX~+f7 zh)g*VkTE+Fq|RYa2nVs(EQGPZ>3Z#5$p+6U$Ji50K^+Y(X-3r^Fhv0Uv;15z)0Jw3 zv+HHARD7L89We^M>2ii%Gu#wV<_W%?=)~2y!t1i`d!Qyb5A}y*AwbPhi-OMW%(CF@J#Q zyEbh7-;kk{?hQ+Ew1|#1Rf!n^WS2}j#&SrFi3y@G#qHy{=&%T4S9b<(#!QydIv~i` z>mABr>)@pv#uG{@lISyAg4=idV62HMQ4A+5SqorlttXYR7(_k+f?Qhj2H{)1DSGFX zdq-{xtX2?vtY%p40Y-*iCm_cUIvsE!66ZL)|JI7IP3*kl+`!*1V^|4>vDT|Y702*m zPbH}xs=P(`hV)4K)VJlR`5zr%;vL$Rhb|gsjH74(%9})?$z~2acgF80Fa>Hh@b9Ft zNQgjFouipOTnNHyv48>czZ}bOl9p}ib$sY}1{l~nX^Iun>%YJo7!m+)44%J3il6X_ z1Tts=#bg>RuzKsvR$MY#4)o1DJMQ_5^v0R-Hge)5QHCj%o6;|HSjZ4?ckBaGmMWpEY(TJxRZW zTB8n^tFPLlk^b-$8yYn|(LJ}FbJB#g7M=PDGnOJ7qRd#o^;uNIIYNf3a3--8Baof+ zkQ$QEPVBWrYY(1+q%T9=L?;0wW}GlpuvU1VVVd{|mo$81Vce&eLR91SB#NMLBAu7P z(*VHp8=?Qib5yb)p8w)`Vp56(TGc~I7<;OQK4TbFvqM>J0rds3d%5LO}e@M%zkUvkD;)x;f}0aD)@HFIYIZavAdPX)7@Rz#$nG< z3@+V26q)Ig<~3e93oXt{ZEvUWD9`J%^*XP7oAN;q`Zpzw8kQUNSJhWaZyOCdi319j z0>&8B(VPd-NlTOSl#3;q*wwAw9km>jSa`Bb|0?gLO}_qEPw!yI{t)sz6RCT>Z_&gLnc{unJ9OOe#l^%-wCIshNkxM-Zjz_-|#H>d~TWnT8 z@2(SWL7k4ucj+)i*7f)Z?;6pqE>g=F96tfFdsswn7NF5+qm$DHsld*=zD4+r^}@upxG!UiYi zA9m5MTqg3&Kut`OQlK@TANK?MPK^*dPOw!}`y2)6c#RhB5l^(q655PiIbl1xT|0w65({5~hR zrAWw}*(qiG1dDqdK%Vb&%wA>|lF>8La?%9GI`JtdoWT)IqI6BQdIpy^wGe_9t%ZnR&7f*_t}r!ZCltB@r#KOIIOtv_ z8fa#~QU2>&1_n|>#T-}IW?942B3?3z@A3)3KpEf*Un}W%(yF8;QPV7IxLUG;Kq_cD zt`%0tpnMFW{P7JsYIK_h`%_Iae4bzlghNBZ=ypZw7won1U$8P1p_Tugi+t!g4o(gi z)cV7(rJfFg+&E`Z{;z{PT$aueTT5D)jHtbzKw8?37Q&-7N(79t*MmA0ydNtSw>8Uq zWtLpWY{L0sG)0!7f5Xubj4@Uf=GXorZaUNoJEgQv1@GF15{u@T@&-^tyno9v6Umqg z9Pm7m1f(ikWPqQ!-9z<^6gNvtf#S?2=0Vg=vJ(AUE}yEr=>t;786dB2BBB=xCMqcz ziUDmc?m=`Ew2k`>m9aNLgcm?z*>J>wt!I+lu|P2>PF9bw((3mNahVu-b1yc^o&=s7eoq| z9w;p=N@SOo-Fjfh;pNWQRRSestnyYnC|r0&Lsa#Ky#bXF(F;`fDCOTsdCDahEs8!$ z9T$n$SpKOOWw$IctC1pSw<@$?t_G4*kb?HO(8_`Lyiy^6%qsvgZvn`B-wmugJYe0C zD_{a9g#N+Jr~kjis{&I0jaNZl{WtL{lzHOYvQb_%bB076Z2gqr^u4|;^8`R@e=^2+HiI8P*EGl=L$k9Y#xO=+Wcmt#E#{@XD1bMWp>UvX)r zBDcK!;eUZM@T~j==b7}@br*J)!`5TI9H{jYJ(FfJgkSr!X`vi-(@_I1YN)SC))Xc4 z{~a(Vrl&Ee77ODyDq0rXQI<%vQ_qOkgy%&A!Kbw?Ihj)UWU6o3X>zvn;FK%j$5*h{ zLB`_$w@Z?MH32?v`V6YbSp0wUNdivt9Ce#r!Cjav;nRtm8Q%;=Ws3r^*5e`=J^i=W zhqwHQ{mEQlTiy5V#rc=zKktjiShLdh(YQlYwbb-}kFWE)cPGS`O?~i0MI2nEc?ltDZSze$xQYEmiRcqdziI#UTGln=d!4O?_C98f zBW%Fk86HQ8L%CPZgDzbnVz~)~cSjnmHsFE>+Y@Lp)V}cUIcQk(rsZ`@as425R+6CG zhNUr`G{{U5w+j8)!JTyQ>jXc9vvNuHU}EF>cwlfK$hyq}ug{oUth9K_4j=2S;)KqB zQ)wV3gM zeCNp`8)C}B%@kW4;9nU{dIUIR1scsXzvA*#EQ!8q137Jq_Zdft=@b~?>YWsOTY$)B zsr)CWEqrq0yT_efE97&P5`->GGFX%kjp$|xwy@wDJc+#kwlKD$b;0H`yy5UkaNhU= z%L2Yt`{k?#`tsLK&$$Lc^L0`wjNGyNVRDVLG^g<<+k!$f%|F+qB&~c^J#jif78{_b zIb!@C4(W6T;)I^jLR=>LOtm;T;cndNLicVo0^@Y#Y~ytTbaw~D{N*~uT0S<=rymn2 z+oz|M*_aeD;TT~W(<5osO&Cs>ToFP!&Uulx%*^U35pb0a& zzkv5FnlB$qkW_wkOdZN{zbPg(MBcDP6SC)Y5_Q|U(0kIt=S)x{d`N!C1jJQ(TU;Kr z2jg@EvcrXwo^QG5A@frKwVh4@sBO3FBcDNs`*G$0 zf#x2C^&9E$oL-gaCUX?2WABgm8A!y5c@(zOzx0yZ%oPAX9SY#5Tk(G+u$<1*LuW>> zk_|0xR8#KzS+8ITUcDGJAqoWGlB@sqf|C*4?fqAV!ggNizphonJBG0B(CN2s5EkZ`Osrf}DuEWvhLX@C9-QBdm^_-}DVPRlB z<+xYtp@g6CyL`sb@r$x=I%W>I9yXhw4Si>8!bQ6@Ig_PuhK*SpPMP}Gbj-0Q*`hL4 zpKZ#=Pu!Z4erip`%=~aXDZFe&@HmPgPizsG4xrR-T0y;x>E+Wrse_@E_Lb+Gl1$LN z2UFg1ZoNzx;@~*B1w2%?@c62gK7*gLXkEt;Ad43gTYtE-=VY08IzM5e6?#R#VQs6F zD;uSa5Vfg!yWi_{wc~}~`ncDd!ecE;pEbjnOZlRaaZ=wKG0f{m4|taFhRTyrR-`-y zig78PB;lk86z^X5?6*|Tc#Jr&dk%?{EanP%PzI39(WP-6uWzs_)|1l)V3kKl}Dj`C#6&n*|u?thta)bX!K?WNW z5JU|mX;c*b0OXwvhs6W$>tIb>#?2XYmXe$B^p&jCL&IaNugavbn zlY9Veqi9pM+5YKFPUe+7(4mE7(@z3lR9f{c^8GA*(_wJRD`*$ zKU~>)4mD5tc0XSuD_ZcDq>R%I2)oln8{|#oQ!-fU2G1zxG)(Pk^$3Zk!*fY=DuxAJ zprj9eI^`+N-v1!dq5;tB)NKt>LFJ;w?>LZ=W#$n;Mv-|$ZIV~XNZIj~<3}r{DU9NZ z239ez!nrkdYZc*hg+w2q43_yX#kK+{wxKdWu`d9MjqsOZ3;jc}58)qMn1D08{?nl@ zB%@jS55FFvK3(uC11++wxip;7Hm38uYe&^&c*S@MPwY4JS>BI?UHM0U^80;Y{EJ{9jVX-eNydK^vWr|W@ zP|D3%_+BE=*G5IZ#>tUZ2Kw66$~JiG-K4NdcCrya4)Ft_@d6FbCoTs~R8Mw+KxvSS z!~`Yf;nho1z0jl=WGS2l$yp*Wu8+EQe~gA^gOl|rwo~S1%TsT$3sg;A*18ZaqN-gD zL!9XJwov)it~CQsTkXLlS}a%$G{OLhT2}f~Kxu0mi49JUF4)4j+-fbj_`d@A0^q3q zp};_Xe;zg;M_>0^H(1U9h`+$8WC4RrIBJ4Y9b?^mb})H@0SXYc|G+Pz|0rvhN0BG8 zynn|3YF~s4k_VdCql;8c8?=%(cPEo-3okPy`IGmM_z{-)ju`C6K7sBp8-1}oGaFEG15r~Lhip_&Zt0VEK<{G%?x#tZ$gfd3({MOY zbe7heg1EaV->?f|BsvvqVa6(!OR~?(BNoVhDCIZxMg4E-CIrFazl59LO?~qJmuz!= ztBJKj_w?1^GE6SYveop}0&Y*hMhX0hN-i*L_HUv2k1aq0Wpeg{q%~XjY6kOTc-dfE z&Lz39DV9G8<|~`Z!#g$D-eaa#k)8jRFvj{UmfyO46w}3v%oduhYFH2R#2aj!QLo(L z1{iswL>DPahaXHR8sF?gT%6GY$;lh0q*Ev?$$=1Hyr)^WiCbjbza<7rhwe?SsSy2L0UKUjDRQK$#3_B0G+jd2r0T`E99Ne@Ytc#z78@L@vR)SrM- zsGMOs3Sv_G-DG{7b8;$v$f6HM9CGTgVJ5c07#YiqNIw8h;U88TvbyZ9*4i>CzB9uh zR|_id_A1@n$*`t$D4w-IXe?)S2xl2-vaJ<@Y^6@I2uyn`1@sIt(8@Kr#Wy7##X{PqerR784iDqJD&d+j*=xK{`z%bOt_)aAAvxZQAtO2jht01 z^Oy#>|C27!1+q&lIq_;%#^^wH>5$?->=IKtP>vc~ti0d~M~TiN9gx49?O5L^I=G9| z2-`gL8U-%aNkD(n0o4>3fJw@#oQx5qdQ<_e&}$&P6gIB@A9zWU!#M)pCT`xT{opPN z2rnJu0O6%z^E2~qW3&TY9yds3m9t5G!+PNA-f2QO1Ih@LTsKH1IGwE~)zTR+Wa6%7 zBrf4}yGA9yL64M|rypn@k<)>}RC>31w0jAX?5XA3127VnR8Mp-aj2CQSSaO;z&r)Q zB45CdFI}*U(u5u8P=^4w%|G=Os7=7V6-Ivnf5q$~8u(jyxy(P0!yPd`H2|>oo^9jT z{3`#YTlG()wL@O~EdJq|rD}YR_{v)WTtE@mXVV!?&&Ot++Ix<|5rfxeOD0?bXj&Mo z*qAn)TJBaQL2H~ie(D!4z%bN-QMb#B{-EfyAR!SQ7Mug)^`}M8kV(&5N%*-XfRxON{idH5Mo)y{M+iB zi?bbVuvA-m8avaJI4V3Ka+Wq!`iRkiED5A%XG2wMj~b$vJl%5aCie`(bhBjNr$mV< zYG;`l_#f(c*;0)K1BZD}j;D2BO zV_C!epDHT6iqHD}^|;0N!KOKTsP&O*XK?N$SqWM;y(q&MW{0(BP9V zcJzygvV=gut8qUo^TA1?4590D(f3goZllMrHfSk>Y|)L&+SML^BWW*OS^iHo4gQnw z|Nl&&XXW7LVP%pxx3_e)Vj<>cVdmic@9FdxelW&rBh4r2KFzub3^)@B3{ezD6P(>G z<~l9)!p2_aPQ)!NgC;PTDSgP8V3a)>{*gFCN-C&;!b6j+A&oBM

|X5KCHNQ(SjvjuLpiO_eK> zOqXLq<{cR49V$CrEtOolcMgYgKMea>gf{>u>oq(rxtlOIqm@6N^t_iH&Iq<3SHGAS zuGdzV8cnt%^*}HQLF+JnJce8?{%x(q6l$cWc+hji`Q6{=ah;}kzalH-ecyOz>M}3n zp3_@^!W{>)ae9pl1Imr*r|Ez8^$?q0?9|&ML!qP8%l^OyfmpR0WM}oy|01>ADkgp_ z4Uj-svBW00q7;-?Z;m!bsR}?OA^C z%I~C@r_kBQV)x4Y_Z|yz+K;Z^xlnT78Sa~I%-0SADFKqZ76ZFN-te?#d4aIsiNBxw z6~0ec%JTZ#g&VJHeM(eCATZRG|NomW(p`+Kuq0|P)FV6*FgTW0ll}A(2xnu)!8(hX zlQL4L*u=QG9nh#R@MdR8zT|5dme}j?&KWJ*1iDu)9eaE&r8EhgQ?1`^7)4z^W<@(G zfloLE487atO{Bxa*)tC{?xX!)IixlH*l2&z}0I$3ru=RsAzrWqg!6nJQOKV+m`h?5%3}*q;g* zu=(R?BJ1mn3bN>A@h%8=#EdVyIs;i!`^)|=k_KJizdnt>qQTuO+#6uYp=BUQ5eFmi z8zBY5i~LCAVNmO5hDdVPAne?W&hQ1T!m2TGO)6&#>thxK1!#O04}e+w)t4tMhI`MpPEx#2}gl zdq3bU%X1sBG4r;$_+l70f^&%+{S%P}@X9bD^>@j_N>QxtT`}QCUE|mF-yzQ7qnXT6 zT%r<5g!u1vA#B;r50)HBQ1{m$^8vP8+s|?GBaiJ*+(+u=-T2~QA6@5W;zj@+yeFI_ z1fl}V@qnjufgna2jC;s2N?AP*aN`RTv01RaC#m9we2eF%Ga~v-Xc-N$JzFA*Nc@JNB%Y7 z+4%>N1$SU>LTor<;h@yAp8^$MDI4A16sM`4qnB`C?k$W|6&-WVqN$`%5cPKSJfE{5~&TU{*0T z61I6mG?-{wiY*UbSgYujFrhgbN>f_8hAgUl2OKx~TJ6rd{Ds{|? zEY(j4%cm#j5nqmb11GcCq-`@oC9kCZb+!&=kRP^TJ)kV5Y?&ghge-_prOsv62FOXi)daNotxr}GYFUw;99JQQ{8qlvvuOvHdnibbD9&O*&o6U<^kb8p(v-Re!D)Oe~s zT}5oa!#qZ3R%GI2$g1drKS&177Z+EF$n8wVQY8g>;JEUW& zF{7w%`qDP;#={Dl?ZQu3xB^2PZ15S(vJN0XIrU{Bm7b93BWv=QqZ|2Qp`<58P($@t zIEyWDoKKZbbnv;y{7B-4Be}X(-^Sb{Kwc|G%N}3C8CBwGxBLWW<|7x7W}Dkn_DL+5 z+TPmQe0>b9wW5M|Ix_@#3VKn;vQUkYEsw+8Y!YT@HtFkqFn}8P;a8| z9tP*nG>Bq~&SA`*w$xAGxC{K*QI5Uf7D#hQonVH}_CWk{w8}+bU@Q%_q(`NXU$(Z|@vf}e- z;8{YyCsK9qKEPwrTMHROHqB65FRJ$Pt*%Aml^OJsp(XZDU1~`J4hT>H8YBjS-Pl;c zIK)o<@c8x9^b{}#%?UDP#dp@UwJC?Zv@3AU*!;{*ZNKuOJfN}pZ{Mt;u)=452qWPg zyCFrz?0>QaKc`5|d!-WZKboPF*++r6C_7LNA)?PDz3~>h;y=XQKTu|E;l#t6LaLaz zn2Ezl4uM*;H*h{64oPOW4HbZzszl`%Gm%P&um5_dweGzfE*;b9SC>hp+E_fAi}8*3 ztWX|iG|kqMy)#r|Ba4YPB$MCoCw0e+&o1IR80CYgI=gV3@G%o4G*=+}ByTs9!4gFK zbqBzvY)_JnJBS@iAjgqAQK+@-EC)x}mm&%u4YDjg$AGxlpiOra_d3uoXBWOUUb5xI z{LqgTE3QydWn%!FrPYr>i9*cKnKx}VyPb|PX-nD2R3=rYz%66|LsP+1not$UZcpz* zY(j{-!eG3Q0)xkSu@yrC`wf@dJAfRX%Mgco&}_=BXZ>^EbJLi|18mI*azeXXyZexr zrJ**jH9OO=xoxL6`k9SaBbAE}P)OUHC1_C9PrxvFdVCa4PemU)({~Q3r#iTiI|6p- zG(xH_mzSRd*<7nmdXRK-K*~ngswkHfrkaq-#aPYXxGJD&TO>_XFPC&Ir9jwW#XoPI z+64J*EgDjT(w(IpQvRTtF^)S^wEAa)(_Q&ScvrA!q^x#fs~f*n2zOAgnk5EUK)o=6 zEIFshZ6Am7wg`Ds(JD+)>deO7Lwu9K^FAK)jWp~S&E+|w3>~xJLD4GZIOrPNb$O0^ z>p{3yE466E$6BIE&RA)hopNlu)O3*=3P%674LNmH#$McO>;y)SpW_N~n1z~Y=v_Q$xe|Z#lA|;g616W9s%%Ff8BC zq_y8nJ}=M^)vk9%$pUwcqeBa4YbV>xSF}b$HmgOT7iLYbUy6qxe%e^K2lsi|sq zo4Ng`~xS{P?@9O4cj@qC`k6|ph`#wneJ_P$d82hs1nW<1GrC^Rc z19?)61?8EqDbqYqCpTb@s=@Cw!Clz<@MV~5$V)+dZNz#)&#TS_@9~|GTeWi z7a654|64O_S_|44?g<(nie9u9wgjB#dI9>Uh|e9DI4_511Rnq6d^uUEV$S?1ju7|T z{7L*=Vqr#326;4As6f~Q#UNQ26~}g+j?2IBL?y?lqQzBqLiUUNougCw zwI7{aP4f3L_1e^y^%O~Q|v+;&cAM2Z7t4%-#GJn{lK~nkHzwSPR5IK71 z6-TW=%=^mriCY%Me>JLi6YX$mAE@>e6I#w#7b_8-pAQ!v?Lk8OoF)QGdZEq;$wrR7 zM9{c4)@=xJe_oK6k(jeJw7tRFpHaN7c&}I=%EBD5QtO}em`e}ZM8}v8FdN?F+A&_D z$epoF6%R9$eG?OEl^?v@L*yNRy<^O)mB>V!jCy%vyy8vOD^YtKKwXH<;gP9eEMKmT zq*g|oR~SRwAVbKnQK`5dY$vvq>)|^j=5L52nN3<-CluZ$GzPby+kaA0OuJ!4^{Gst z_EiTl2fe}`^~1cXV;c8F!(aR6#mVJ=OnU?~;Ltr)FL>Qo)0OWLgdcPPu(laNY#HzsS?tK$TFo8hKS85jOQ zto2vT-BFPd3~Oj`FO%#Da(a}aeu#xQWA+shzZwKTfAKTFhzl|HR3ac&z z3yTbn!Q3<_JcZJPaaYug#DbI;Ss@G(I{wv+F&ihn^dH<9>KR>w@EB8X*7y!_t%)t# z*tzT%B9Ex0WDM;q${opslCk1rY&_E3%1>XzRR{V00ZwW5_fP+jJ~7}{rY@YX4tDzt> zmR|!d$*PGW>y7}s-grARKE14SmeR;~1&SR-dou)&pNbP)gsT-8l{S-RNXU1fJd?Bm ze|ZSS?pS#`jij_RdwQzqr5pYD-3I;`DVa>*wtN~{THLfBd)>Z@;j;LSCW;k9A+8b7 z2Vi!M-95;cFnqMF64}~|2sP*R?DYNW`ozTCrlp5RBp4=eZEMLnC7K2n5-JQONbf5Z zB<8j`_~OzY+3STebhw#9l79K6rFkRVqj@nB0)wQOONhT&iej`@it%g^viBCf_^`_+ zM0#Z~2#8cpnNhsir=n`wAMwlbbdHte z|5F1)L`R48H}>r(c2}}deKNZ}MY5jEw&s3@iHGL;CC1aD zvyW`AJ!2!@r@KLU_VZf)px}pBgio7m+QftskO)(7w*${i#vCnHjh*8Oj zyz#yQ&4O_TOFt8*;p7g22i~>(D?}O+DjG{DoSHuQ#QvhC?uBM3g+`*qEkZ3(w}a=* zP2>O*!g)pLz`*<8;ytnfU2Ni#&+eZ)ri0*1gXoM)A1v(nZ+<7O`31^9%ZQV(#t{yK zH}hpkv_^3nLRH0RNKB=%_QjC*Gc&>L#AWRQOImb)f%f_OSED0mLV9{ss#9{x3?B_$ zegov9c{WhCDtF8%Z>l3j)TlE$bM{l$))?NVONxnu# zns(x}rXN>Zqhg8b%cSkWy0`julbmsBbp`Y9$IY+vX+CJ) z32GI?6#RPmxwFl-_SMDToJ-_Gx|u~XQ;~c{^7$rJ9jQf0H4rJXS zFL;B6VN%FOA|E*W6JboG-M_hmJ+YmT_M^i(kPpH(P->+%|F&T}p_qWz6VxNrI6#0X&EMSXHV6|Vl#4zM-4__O+1FHmn#k7vSX%4c%B%4Mo& zx-wJ~{W#PzSQBG_p+{&F&M{&!WNkWD?{bya!z2DBxMktmT@@Iw>%P>6btdvzyd zG{E<+ZSufoxs^s?R7zLreicAO|KVDvOqb>NK<)uvRp>KpC|(Ya{g|+zyo*#VYf7PJQcv@L7WfTV2>(X=w?7C6ovd2=8u3*E$r@kM;S1gl;A+_V{uBIxS;J8!uSArZzFx32eEItd* z+mT5>g6|4%bw)DFi?6D8s~P9sez1PWuwQBqr;b4DGvKGZFWzCZBS#e(VN}vgzx#gh zgv$2@br%L9S#enh3?U^1bJP>o0eufR@Gx0f{vY0qGQ2rx{FxueO_Kp}VNfu#&U>>j zp2FZJeV0xwSIEIqGn4eGB{NZ1Ge{mIGJVd7n$5KZE z8QiTp*kvz)y^hbnY$gjFo~l=U_ih+h`JuN}LNHtdWNFuf^Mw2&tph!Kgr3OHszfo5 zu04^&zg;PcC!xmL*o>=oL}-cpyj;T``I4+S8f>Dzd2)`7_Py+fwetgE1Eh8zj5>?` z5;Ln6<`U+RIFL>`$Rfua>i0qTZ(E7GKo`bcS`U?OuWg>A{fqo;i!^N(j$&-F+flC@ z0z!>?BX8h4A!>K0{Ry`ZX8LDpXg4N%|#Xq3k8?@zv;$vHIGCl#nYD) zERBC%53UYBCH(&~A){yLE;vt6`kAWAXy!RNZ%3U*59Jhm1cn3Lc3!7PH!?cD+C=Z) zXL@4Mz(o%LF@jPW{af>z^#c6W{A9NB*~#%JHyH`{ulf#GL64YBFJNC#=XCgtg1wg9 z6WKIo_Fi5sSDt{vKqZChaaV|!3&A;$MU@oX2OdzV_=rD0)cHUQ5I_})rtm@ZtY^cW z1Ip>LoHV(b;MVxL>ysIF;a0W57MUKUpuLAvIKy351u)p!VD-Gt&_Td@;&Qx8+JYx) zZ;(=SqRLQ=@33}H@5Cq}uXD>+w^uFCCR z_PYT%?TU>%xmg>lqAi<>w1GyRFK7!=kUd<^jjHBTxg0>>ULDRo@;mZ}koY&G_tJ?> zbXgaH^K4`*3scG}VS}#P)3V;>ANJgZk#~C}z6BRbOG~9AsvXSfmNPe>^G9Q189lWH zXU{)hmM~;*>c|xlHEyqI@3WE01`Gv!tg(?T>d-(E4OEe~xm#@Oq}RU=uJrne!%E2K z&dz3*bA3p2l~bD`C0V0K>{H9I|5!^NW^{TUPVFv{hlHxOAj`hn6^b_o%h~m*=|Ol6 zUIC(Zk0IuxmukWFm&sv$98aiF8;Gi=? zrhNFWNXSsIwuX2>J;$}Dq^8FBW#E11w4P7u?braDQ5FvupFe3oU6*%2>3P$a|8?jD z;QNAjzg+YHZ#lf}UAmRo(JFXN;vfqv=!#PX$r#OL^*#w!NHtKt{Gg-D=CG_A4LR`7 zHv!-_-+LklHEWsZyFb^!syE9OJc6_n$d4#1(|6zYKf|?&*R&w`d zdNa=HpWe}R{@8^or?*I`Cvt}FY0)526 zv+kU-DwOsZmOsQ)f;&$CRIBl1?e5|ORL2CIMe4m65q>VS$(_Ku|HQZJtAG0` z1GENzHo9T{UNF1GypeHDdMyb*oqp(gByUXe!2SGvo;h~zn}a4H0iyU^Kjo2BvpOeS zL1y)y!M!(xmgB#EXzJ3BW>3_E*#rs(>Tx+5Nr_-d2OISv*KXB_shI#hMoPlk?Cc!T zTxM(L(r&esDM=WRhF5lW7aP2Wjtkp z1LSV~75iHSxCBdUyu~Zm^lJU2g@j)m8;0y=8gwErhkS2+e!lo&^!n;tOnzIu{G|YZDq>_wma4g!Or+%Zidsmy^>k0?6-8lbQZv7d?FnkXD`d zZTf(g{6Wu(-qdT>w+FhHdC~W*OwFoxzZiW^KRTJ=p{?arVh*%PcXJF?s562j>_Ki{GY4qgqw z=V|AvdO!%vsETAR=5&PMQ)4WsBvETklSPSkT)>~P^K4~yinWYHzPrC%0|gURo};zd z15gnJf8T?%9)5f5JL=>pXzAO^PtlPUe|^Yj5g7D{WDPUC!1o3bo@t9u|9eo?9=Ydt zEHb9;>|e2dK82Uu>JC(m*N*jfPLk9#Ix5FvZV)Uup+&`I^ZJu3Ok`?b9{!fgS7dM_ zf%Y9Fw0-yWzPh6Dv9KBBsWsmX+wV?*O!w(Q3igS0n193W@AqqtA5B_# zftP2(WSSQLRcBAUQPBqf)oL$Hq>@dE9{<%Ke0!%}$WlTxBRFW>D^ zz3a&LwamdwhU@9~?}whHqLS~DQ#X#!%LL8}N{(_F1#8vBjK!k=|L$oIWBvE{@`!>) zchYdb1JQe6hMD$&>>U%w@XHK(j&MVX!5)t^Cqw8Uli*Q?H@YF4q7(p}54dz{wU3x#2*dh2E#I?Ao`Um}eL$0~uQ{&`>e~Q->H^JHrEAXjOKmU*Gz>7@p zI!6rS_IaHb$L)2nyg$jRLKVX3@~}2X?fw$V+tk&-nNaKeaXYW80e^+Q%VaTvQ)z?0 zpDNo4@nUi<{3>x;S8pMtY2FE0?~;zJ!#DL_6l@lzP+2Vfe8@YZEw(E)DVC#=O1~te zcNpx}%CFMG*>dJYTo)o3!Q~`dr)6Pmhp_7+Y;UBX8$MEI*Hm2PP4)2B=J{*KTdzO( zA#rI?^`OVTJhR4@$L2CXF{zX-J#*P8mz1u0shBloaS=Ivuiss2x6EAgrxwW)l=T?0!m^$|ANlHxwIesQ2IGn%tL1BOrC1;N^Pi?EnZ zJ!sS1Qb#E(P9q}q^eg|sV49zy){g7m3rQY=s623yOP1 zB;7Xn;_z1o(VS^hh-JIs_=OY|_cO+j>pkl6JoFFdL%JtVf_s(z`*4or<5tMT%vWOy zyvLGy0peUxFG07}m@AA5Ec36#XY4Hj16!;?Z9Hr9tv2dLm9?cIZK@Fj9laRhQV#=@ z*3n8akACkq==S8ONSb4Ldp`e9)2eFx!xNeWOR*6r9z3M%16$2p?AxL5zU`GzDGdXk zYrkn3Y0;x|Um(deIWlI(%7(M>dr?)KF_no&op$_Zn1(Fw$Yg}6dx>TR$VQ?HSNIn*QKSQ_61dc2UhGA++AFI3 z$lgYkN0fR8(O#xkfDMM~QbvRxZBDCiTG~%&Aa); z6nuvjV=bP`rpGUP4X{|e!}eH&*_f#lZem_y%?G`s^VJm7oLF&7VqracmmD6jVC(m2!u(bSc8o_}L{nFL=W z^C(Aer$JJG4M-O;*XTV?NelQkk^(d>X=Q10&a}gmN9hT8y1Lxg&qJox;|zs{X>ct9 zX!#<56*M)62m2ZwB+oKAl6&#ZH#OYYXkqk|(XWe~`C|xI4!qqTJ~W$DHEP6 z`i0A}#es)P%lB%N%N+Ax^NI%@em5U_xX%-8b8Qa8^-`CQE7VG=qA zCc^jlsIWA6S?}eyey>g_Q3twlo_BQ=LlZw;4J<2i+H5tGY!!N~6j7L<-QLV4RmZ(l z%){=Kc&xhf#auJQ@Ygz4?JN>~m?NgxgOTQZ@_kql9(~Z-x^`vVl`_P^Kfhm_MEA{S zlcQEv+N;#<`)H-*n(NF-J%ewZYyq!o6Je!Q%MSTC=3s>-*oJ6i>3xH5&H7^HpoX$I zdtGmFFEezZ(@Dr1<^0B9Y@u`h@tg}ao%U~al6^!Zr3u6L&e{%hcU$wwt9xZ@PHA;l z`Qw?_F;esUK=Q3NDW_mLLe$W?$*nOfeq@T(vm~i5zrI1Dyw$BTDY^r+MlwA7vgY7` zNHt~JEUjpMnI?v8aAjdWt(`A@%}~LPoceG&HzBNMNa2z$vu-hksV+HYW|_u_iH5Ez z0)KU6XrT-?n!I)RI~TRh$eG5#W0jRL?&0cx_W^Lmc_wrtu78 ze(iMlp#{ceE%l|)v>@hFGiDG*&0uZupW57rc4;6cI1$0tVk+AGtDe;?n6+<)ZJgRu zS>9<3;_uFZa*yE;q?(ZD%%g3*wgyeu;MlAZm60Oc5pzuN@*h52*?@M{@Cod86LuBEohc}R*q78 zdZ@{`jWZZ#$Tv_FmMS4Gh~B3#e^?z9;-Iaj8M%m=uFR33>g*rjNjo{IboiUgfT$3fHylQXUbwrCM^h@fU$lRFJV<>`eq?34Mt63d0s+*@P>qbq29yu*o%A#bI4g=YcnlkjJ#hna?sjek7-UDsEDCrF zzQK0REVD&b79I^D<)11RaD>97BO7=JYw$xmQIK))kR*GF z{^}(3D)g?$H74fE;}*ti*HySY1pXS2Zd?f`F#?fU0#VWkS+!x!&QLC@aS`7`L(b09 zw1f+!$E<|W3hp~j*pLCyzaiAfzZDrhOfW96SAFkkPw3%?Gb(U+-<$ttl_?{-8hT;M z3b-5@{Wi5{e5V6-{dakG?pn6v+VKVnc2?VE;8%$97`s)|JvR8jv*-Ru0rL>;>(KvI ztSRir$qDw&*biS22T}Aphm0c62}v5#eXgrEs0P9nPNbE}>H%tOml43^I@=srL*#l5 z8vTd(RR(Lz)W9`T_!%mXC9JMTV_qf|(|vXdY|CV}3y*zuM}hjfU}IHe1p@FX(hAQ$ z99WcbD5uFeHvTH6M&Sirlkd1C_cfc8Ez{6ZuA`HvtE-DC#R`#-?o?LO)byZ^S*+uW z_D-Upz^~NEmcnF|ldaI$;Q)nZ5Iq|s$=W+wk844mId7X^UYVSQpON_fZr4}h+&O+j zYxnlql4Z|MMW=;aq8OUHhOosd-73$n?oAsypVd^{RGuYoQNcGgm(9yzzX4W^l!ORe zCiL_CD}1=t1@PoyJ|X{9H*9aQTD979**WpxwA#XeUgq#%`2##kw;nHtc{3+2C0!iS z!F+UZ*y-$QAJjd@-Fkj8o3pgyHI^-?W#6jz00iCqBnOn%_8W$t%b&}^c4;+~9v95j z44&KX*%$xrUBSQp+ZLI+!Yh6DQ`a)fVHB{lnq)3^<>NPRtC3_4aFkMdOFXqId10m}*0wGWJ z5OB@Bf`8#Fey+v#e1y1CwGT>e)>&T3K?)NJK~jBKO2dtjJoMdx;GP0M$e&roWT<8? zAQ$aAhX~{YB+0|QV?~h9TS^HQcfPur3HIVh9(=cPIsZb7h}6fF_JZ%ZbEMZ!O=-PS zCIP1*@Lo9*@X8yAs?t}%I^Taj(xQlw#4yzR+B*>yqm|-M{~Zs?zvPoi!jl9|1bFvI z4#&`chf5w6AV4gW;+>7kXAR1M7Ga6oGvi1S5*Lo4dA5AwWTBPBACKBD&Oo|5_Kkfb z-uY<{yyr0*3Af{Pj+0Oppdx&84j4E>(ou;0Mj|ASjdOCG4%^+i@xuMi5VJml4=aSO zic^Z%4SoTmuE{TgpB9VV4==}5+Ey^5^opOXzDO?nM~6&BJd9FG%t<}_M!1NkZ>+&70U^H-*b>gV@|u88OjM{ zA9e6BtP**Jv_@)^ov>x3Uvuy?ObSJb%uu{@n3)VsC0M|Pc_92mf?ni;Abfen;z0^O zm>V8A2=yRK7)BUJytX+xSwxz6R>Uei(g6-bmjVV=Rru+;Ok58MIyz_jqRNNUoGFhy}C&}Bxp->Yc#TqZ(;AYo#= z(#(P`-22jlQYa%NF;Y>)!)VRPZt020nJAWIjN-sKDC1AOERP@u8N&Ebkcffr46;gh z55MmlypI|GD%X+r&y($Nxtt$H_5{$a=kvLX{u$_e#x{YmEm+xf8-H!!FF z#zlNG#l#q*(}SnmO?DIjHnoG|*ZSwqjudIf9?BQ5M{WX<0c&^$$*5(cNA2b7i{W4I z_x`nG&nH*$&0)8JdN}HLgnus99%Sk%Ol6=~B8AZ$J=X zN$Dv?%z^my)Z;#6T~GG(P`ib_U~8b>48d;At$#O?P%zQd%1z=6rawzh22hPUjJ-X6 zsT57ggZ0mkWfsRqSQG-2LM$^VAG6# z)p9#q?MBl-bHQq`)KI9YPJJd?tIvam%HO4Z&c2lG&je*(I4@PO)Sg2_ORvvWpXZLI z9RvXR_q0*l^J^1QnBUP~+l-%|25(T^Yo!G5b_Q=$fRo&d%>en6`IYZz|LL6*51pYA zR=(P|gZSwgqMc!XOL$T(h3P(>Q&34K{#Q$xgjE_D^7NF}BqVy95JlUm-7#|Rk*3~ox!;X5q76}1pj*ji2){z!d3T4V9CyT9K!xti zpw{Hp>90|z8x(%)!iQtO1CE8kQ zA}dswyTEixV-LB~p9<{&?Eq^NYy@W$(yHAQg3yn$=dxFJ6XGcUqRP#fg{%nEgQW;( z84`dw4f9Q@kNHKekMc#YkMWi2sPLk+2e|18!Rt3-4bx`gj7S`!8Y&$u9kLv>96B!Y zDI$_Vl0}j!ES4%}nb-c6rB0$DvviY#401?j-f>soAh%X{q4q?VOAVD2G+sJRa>#aA zcc*t4cGvE#{wm5-;#-d2YS(Pncv*MZblGw_R0Vk4=JdTro!nY;-v8d?8h$>+leX?z z1=~(F_hV}+9T-ylW~;;09c44aR2O6W_r2jbyaT&(Z^otHNc{aQ>W&|5!}*$oPs$V* zKyo}5sh)>pM(CIP74Z>RQ_@2jdCK=d(2&$Ew?olWbiMFA#`;F`8P^Hx6HZ{pv!&pX zxN_nT$gRq=Q(ox_BpCkLkU&^0HFo~MEug6B$;*H4^YT}4S8(gm?^IX0R+!IH zSF!Aw9g_wnJe#@gLJL0dD z956OW)yh?3PUTE)nJn@9L7IJZYpl`;wQ{j6O2tCOdKudS#(Evwk_>KxEXDgFoPGE+ zOua#mUm%Xz;zV)u3CSsPisejx(q}+&+o@cgwixEuZ*|4QdFfx|eu}sh(FJTpQbkfH z@~14PEbF8Ki~@?esX1{ud5uMR=tV-Qw8gT#dayDiZ-MG$OS3%l;A;v-NdgU_c%(k& zL|p2KqeGiY{|KFt?Atcwu7*C(C)bHi||thHmP|?rP@LdgR^!e zClddSZIaz3-mzb?yvF&4`G|g1`v&7t?Zi1aV!+zsw9AI5ao5QHAz~~lix`jAGE_0# zt4KDYt##%YhdtEV6hCx3bgR+SsjfOI80S5-V=VD4&N}ih$x@qkN=Ξ^rDkXzCpM z9J`Ajzx608@hjOFUC`!`aE}uIZju(%ezr*)1(Q zUu=D)TJl(Y{7^gVIP3UWIJ0nr+bOcwXuX@MAgUy~Us&2Y1Nq`58Yyl=KthY?GL>k#_m~IU8m~U8ajMO#~H2Dqn zWNW2p4LgL$zK;crP#UBakwtzGVE^km0DEaEe#xV{5iyKFs=Lb>metMav%L8SU5RwZ zQ;Fo9v;_4EdL||nV~))V|4&Yn;vaV<>K(>}hcoEC0MvaK-@lT`GabmeZ2F)R#uO1( zt_fm5s5$c1L<3lNRvgv?+hinb3YI=wByVe`L=xX9>3Ftr2h?7{&2>Lfh}phPo22y-Cx`S7^i5m|3Fjd#0xJEJ`QxZxaw9x#^H_TgM=^#UB` zIUZJ`nEo(8v8I5>(1Y3gVz1u78TSc+zJI0*fk%y)L*u-`7ye7);4yLsbNFHT!*r7b z3(WKZw4_b%3Qit`9t0l+#Qulj56v`MAqpih!yk&jGro%(Su0cvqXAOVj(dtf+l`R8dQrG*wzhKnLIz{I+DS@h5UCI{Ik7wr@u)!z^Op@(Du}h z+@7rW*bGV-wW!Y2v(=90AY299y4*h9f?Nk&$y^IvO$omXV2$Ir?F>B zCraltr%Y!|=e0OtBnxpi$OsjEzizN25W3*~;6D+9;0NHz;0xhR;W7T=iY>;m%d@cK zSYTV=9pPc(rQm4dE@SH=;34S2^TGQd*!?fUz5*()rrR<=2nhrTPH+uQ;~F4ALvVL@ zcWJDV;O-6y(h%I;5}d}}y&<^MG&s$Q$**4ZJ{AzL9T zA+;fBAu=JQA;glu(oDFBMkHG&>@JCAqCDQ;5y?acMVs|GZ&_|>nj|{~R*%jbW?9?v zG!X6*5)h^mrV?wspCg(h=6&Bt~}qUC2esL1dZaY-G#9(O?!ZDYzZX zGlezfG{rEbHHADyJEb;-uJq1DJl_)kC{O1yl6F(i*q~aKggGS~x@qZDrb#RR?!d5; z8}C|~Ws}4yph;YpwE}xC;-FV1Xm8J>uYpM)B`e}=wu`gA z4cVvYZ1bNZ0>j&M^=T`U=OCHe<>&H1k?A`n_%|PIVLF2(0A!Bhpcc2CiixMU{3aP2 z%34^dT=G_ZC@Fp@e~8bl4O?k*h{h~~LodC2SOXtPp-gp_zI;g1EV4#yp|tLo{!^3l zSN>96MOFrlWMcDQStj@+B@0&9X-GTzJHk7UJD+!qcCdDocG!0qFJ8K2H~;!Lvutb6 zKE@7U18`TeRq|AFIJP1gHbIl1 zWzaxq0<;7g!dT2-qQqV5zTRkDpSp;`XCEgZOZp>5xxX0CI$FDkr&wjiyj~)^l=bDY z&X0;$t4lAU8qu37+%EZdL%c%nn z7|U=B=VlGFt?e2bG4y0E}SoVK5{ESE_U#CuZ9j1H8OY!n@T@AxUSB( zm9)J9x&hIFQ|IQ}BZE3=ja&{AtNU$kK;nyr?W2LEOb_}K&DFs+PT=lE$7pMU$I9q} z%VC~gz2FgeA|%aF=k8@UrmaW3g|RZ<~;D>=NBV(L&LZ#lr3)!BXmy#*)ra z=Hb#|>k-Of=u!V6-I2xN?vcS#<$R?epHzz2NgOFp=+3D?1Zg{oFUbRG5NS6lHK_>+ zUJQ}cbiAvq6BoZZpSj?UAiiJ}Sr0dK)OeiXh?J}Eva!G3<5EG3Ic{@#UcTc=ScR!3H+3dahk1_54y zMm`Tdn7~q&R2E&9Mb>V%fnX(HWhe-D}HNAt9q-pUZ(DnuD4#OZoe*_o`vqNo|4zF#Pj77Zy!QMG?%cs*0Di+7Hy$iWpu4}HFfvbU&0bm`q2K5rzIiUO#(nlrRZWIkzlH+2k;{>Z(Hd|M>F0IE)g24gJ%9ZStVJe3WyRBF zY1+X0$WNBve^~9kOx9V{4ci@J`wQU!kS+<&IR_?cs_5NQ!(5nvH+ z(QJ`yQEt(0k!VqBQDo7%8@F4$`)#*wH)}Uesa&h%g|kIbE`fIB7Zm#HYgud3To^e0ZoH`gBC%fpb5|ds65PaFmIU3H@+G>uB@)W zu7s}hu9B|BuG=nf*KF5l*JIa@u8FSjuD!12uHG(aSH0i>X}ZVuD&_B(BZ>Pt_rOk- zgy_zLivG1|_PCA$k!P+wXY%Sqqk<^U0mmkvZ3K>xn?cQ{W2&t$VfQaU22W)7diRe7 zIUmuf{iOBjpr+hfGGx@{+d|{sxjtX42c%31e$w6z_$APwtXosqIdUhA4PbGElh8hW z0Vk~e;?BO$$)X*LcX52k()G9DY5r2t)x5z79S|*15&=f9e)f*zzLfW(17`Z=UelJ> zk+aZd{&^vgs)a0OD^SZ zldvxNIr*|sRcFVr&~LQ_re#%ofx=~Dd-joy)ty!FN;CR$D_5#_tat2wGpu=Jy2}pQ zpp4_;FZfB~7;~AtxF>t-F?eXX)A{M^$a1F>!O!5<9=$yEob#kb&twfNvXk}f=~0_D z$?UdFz<1Ww{yR(I!wPj}-X*OG^6-P6Zr3VL@sIL!5p*=7TiA4F6B5cXrg@M8_@r{n zSM3k&U)SRG6V=DpzEsLoPI(ma7JBSS?g{M)-Bw=)Tq3M6_|n@IwH7E8PPulvO7cu4 zo(rA77=0-S{*|RhMuiDIJXhGh<1e~b0lrNI#3uJU3mFoq{klpj-6lGghg-p|DjM&j z?wMg?aDE``oJJ1dDUg`ClcsVvWPo^Eq4^B8@=ud_?{~sx0$io|CIY-#h-PS2>wa%L_^mS8jygju{nfI0p;9`;7eVl6^fGz!8beW&%upwjflKPf za6Ckh{a{20eq04Yy`bF*-!Z%Qyl_T?rfPadrgqw&>3n#dL2I1OsHzRt+IcMv(SWUA;=qU5D5tAbtwy|=3ZK}NI*68 zv_ZSrD_DJ|@;3O&`V$MjUw%rlP;hh=@9mG%4zEV9##5}rNXBn=)|%NAwi?vd;y0Sn zC2qgvxhp;d3so6-DbH657Yfso1ny)15ez$_>WFPZa^l_e>*49?c05KB*Ap=|Ct8!b ze|N@rCxUAzh-PQ;Lmq$Mv=G{g1*2}DtWn}GP7F%Os@wMPUs1}5oOPbiw%4xtcMNeJ z^-uw?I>RodSGJi|cA^ThmcPC^V;x1_sP*xH_NpnxAfl$%sp zW?1{oqS+FBkiX(+&1(y-m+a;PJ6`Xl+N1LI`;-9rk4*F+WN790d%Pro#GrDPFGD2d zh-rpD@jG5hd#UB%Cd@MmsxlU_X>M_K;Z}U`yqF z|Im%9Oi>O{w|u|n=AIT@lx3JyWWuc~$5^K>Pe@s`wWmmFD%trr!iLR=P}rBSo) zW?S2OgoP+~60?4#XOQxx8_K5l$XgC~Citq$R~gy+?V<{G*Neh0HxuCoGYsh+3gv35 zs5!zSi$5%X`xkEB{pX}uNohP|^v#z&Ur?1eV~+Z8^R}gJ0h``0MlG)TSqx=g4zw+X zHNB<&o z&-?SeaYEfx?XkKU@e(PY`8FTLN9y!S*r9t@%gVH&CN8#i+!$YbSTs`0lAXzpoxshd zngv{q;Do)2+w(KbHY<&Yu48l);RZvD2XRrbYQ(nK%JjTZ@q%UAhlyn&zz%GpV1o2a ze1D^r^pR1=?zUN zZlIVWpjDZat$0?{4Gk4BFMwPAo<&EgOFhK)WnH65=7MID%E^SId2@lv zf@(4#_Cl=mivuiTEIMl8@Ecr?4RGD;RM;4WaO4e%aKGnx7S}BGm|ed+^`>bL9aeg8 zR-J^<{(dz}Q8igLmJ`Qj;`5DV5z#4Kr}&q@U3hKj(9ctABtxBOk#EjpZC*sXR6XLF z^_R9=P3)HdN8 zUOi^$c0Mhn1G2(6EgV=tGs&pf(Y)Kqo}%%1oUhYE0lj@mskq7ZQd(P8Z&Nb9+vEJP z3v88(cOcqPs%41FAiD{cYotPtmtt}5|2m}|jIAz>*c!-+>G5&-$49P=OI{;q+*C3_B@@o+^&saSng{VZ+(CaC4pzZa5!R7vFK8k;yBnEbRe_ zILMc;IL{-YPvtIMmY(-lh1gNYVu3&W_Id3zM`D@gV4fg2pHys+h8;mOw`EVrOC=d| z|N5NHJX-7#W7{UaQo;}GJTlH8>fU%em9q0Kyg99&^L3Eck?1h4+oC2X^Gdh^?Arvd z`H}2p*Ym01Z;k)e{D&#N`9AX{x5V7KjdIT#VWQx$Wz*I>vr!%)rd+9~(SYdYac+VK zVFJ!8`6zvs9UB&}>C1$4{tG1!;X~H0drd=&(ZH&=*Vf~CuY~l1@X_K82zQiRC{Kxw zMH=_;3t|_9-<++P6&}`6D@AEKP(3t$^(~KM@0Wej1z~PS z4cyVd(pNn)h^1Feg{YRU!bIk%KNO_fP)SbVd`RIE3K}y=7I_80U9BV-C5TvRq^!`7 zolh&Uw*I=DPd`{w&7SjS*oOv=vy~g?@XZI~oPVJ8`LNmMK1X;y7RGhQE*ruN1NzW+ zISP%e!pea+bw)cJm9d0mOf3ChA%ciH-KTIwD7w<>J1jRbPM)1~#4_UGi@5MaJ2GzD+wy&qc}%{17}VkW^Iy=lSzn`>O)}PE4$zA78%Qd+Q!Y z0RE1W;H#*B^a&apN?wzSZ<>LQk{9M-${9b*SnDW^x1F}PuG3BEau|oFB+-`b5QrCk z&`uBb*2=gHc%@C$gTa6N>HKxCmb)2@J^P|(&Tb-oTDa6 zCUmf^7)}-0wM>9xmt1S*8W)r5ycb@f5B{HSUxGeh{<-iM{tJSbO@ATm!k;hT_RX}y zcRxg19LwZSr7yKDHgu*NuXQxp%1LE zaQWW*N$C!lDAzb&Hw#vnzm(Pi(G`l~BG_P6;Xi{SK7!d_Fu*#+%lBj7CwPV?ynHow z?Z5CW*;U)gEVtc7y*d%j57<_T8~c8*w9Wh3KA#+{(>cI@XlWdQMM!ux$RagdJE^MV-Z{8Fl0hI5fyvS zm4u-4zAE`2`0VnYEA`(^)LWJD+`vcN%cAch$PWyE6h4Dc7nR3T0vmAqM9g+ohDM8$ zvK1HvbCunN3lDw1F2Iv&E*Snp0qxSj@cEyh0cxm&u>!@nY3|jwuTIe^`wtPRbo{sB zei8Z?Zc)EiKEry&i({_+A|;XNTPsKTd^Mu-Nz3Gr zN3KP%-BNbkD~H8%S)Cj!2&Wwo%raI7O>g)(m12S5iSPek;e`~fqXweKe}RxIb`2)0 zimw+K?*^ED6=Lf$c4J2w(DpfCGs^}BOINYIX`%ZJqxqBb539RG zU8#QsV;dT}+PEUJtJ=5J`nE|_1c|@M+(eQo}MsLPCcN!Rp z)1f?&l{Gq|Eo=W)pIUW|J*)qFQAX4IjZNjNYiq;*3jkI}wB_vu^{I8&3A6f>i!$2Y z(l!n(hvmWT^;M1d*R#J@wdZxvylplzQ`fUyAqhL{%F3I=n%vOynm2t2v&_tZ_2c~FqPnuT%{b;!b$ms z$dkZg=(c=FxLZ9^EzqaQsxZ!JLARPnaQ4gRC3!Dk%St$WZMf*7`JS~SVQq|jM`Wv$ z=Vbc^?cS^-@?_%<-ambArQe^s3)*y097MTi`)Nm!@!DWJd^Rut59@72fN|58aP~Y= zU21#WsUBu_h2>u7UQ4IurmxEsVC6x?YSl9QgC6S5RO6s|#vB~M9vkDvd4TYbj-PZc z1$3DZp9OXIf|OiH*lvOY7!tT2nYXdvA=N0(V+5M?_SItKM> zR+=5$)vVBEI7!8XlNMi;6p-+ejGzjlrl!iL zGNDS9Vl=s&mh!EqZ6Mv7op*?z?aPtSCh(4#WJ$Ucnq;Zojkk|}K(MlV=Jjx^7Ex|V z-fs_cm9a&cEU!+Do9%o2R>ykHQCP2ff>)qpTuHS;bjLZlIB)aiz}P`iTk7gD@Y$H) z*_ih^@~WsdLB3n!@gwhGIlDH(9)?h?3fz8ujl{eEe8~iURDXZ1<#(d(ccP_#qN9Ju zQi;i2iOEtKlrkrkGS{CnN0%~Jlrm=oIS7NgO`qQ`pWpsIznwf6z&}S#gI@7e&yxtg z&=2i8;Ou64M_KtPq%H8v0Mo#0Ao7){{^y`Ljd3=T#_vi4fPuGgWG%{03c+oH?Qi#i zeUz2or3aY8LfR1Nw(**tJ%ig20o!;tl$8|Ep#z^ChtG%5fym3JsQZ~pXcQ%@B=zG zc)o87bgOP_(bivKt~^fBAZe3Fs^l@B4y5tCs%z`80AAI!jn=ez>FE2iRMxUoQb9^{ zp=!23^s2V6%#{Hta}*GpDkyi)Ib(fWh_-(BVH0}e{b>EYq^6%)%Gwu5C5q=2LgnMS zTg-dz)&u_jLxoX7(`&8m)e&)bfVQ_v89FHRWb5Q2|DN-aR^&s$z`H96>Ub7saTP4Q zub##ghpbH7FVjNc{#D=lc86HiSqAdSZuO z3!yQx8E2-z>^~(hFH6ESgdJ(P@!RwacR1GC7z}7PM@tMO1{Z0(nT@DVJ)n;;tXow1 z%JfXuOCemz!{DpWLSBNBg!n##1Dy-l|RL9UTxO^V#sJGVb4lG#>nj@lQO z&BY??mX4dd!Ga`+B#RVI;M%gu3<#gwE+|~5B0&wc7(=s5VDjAZ&1lX9JFJ6xDXmm6 zvMHpR#zUsafuQ7p&)dBrInJi?>?qE=yR+M@qk0*wA3X{sF2}}uo}`C6M5jaFT~Ui8 zy;0g*6Fhi5fhbz{?Oi#A9D3N?0vC2~LWfR|9b4qPR--bq>YwK5uOCEHWNuQccbb_7 z-E->Y%VmkDeosGncS=jEG%jqfT_rYOI@HD0^ZnKW&WVrRTqK)`u)LU`-T4*&gx7YhZxD6nZY24)3 zmIm8J@_a)+fTASsfkFOT2CgU^g}J+{?4!{qb$)RJzemj3Bv7vN!0Jph_$_rI11A(t zG46C~%ZlAiyF0MaVxvg6l{*L$omdaOH}U(D6nTcbr}z16?PWYZjznQo!e&P)15um0EcRUZ;HFmu zVktdOoAfesNiVJwTJN_;?~VB9b_7&;7a%nFl(vB2y+8t-CS`&SN*UDn*zT-H2bttiWw z%a|)c$5O}r$CNM}mZ^!T0@ADixEG>_ruppxNt(wA&2D+-)%ono~=Hznc zVFwd6m5U`!=p>XuPD2*CBz;KDX-2nR5m-|AwRlRkLqM-y8M&n1I)AZ*Q&rFnY+Wf( z98;p`rYt?9<));k#yg{Tr6@E5Qw6xC?3dpb8_yV^E7DqjCn|VV>N5RKtt6zx$ht{D zBU;hSxMQ=peqjS-@aaxMM-9cqh7aM)pus0s&95_M%nZ&KouIQiXO{8?60d z72yQwMC{}{EFMp66cu0B{N-?oCsOyET6AOQQV*D1 zgLA%5`Gt#&lW${QkDZ0y6h10~(nOX;=Eyfv;nWWo_ZJUn_er21B14@6o%5YN4VL^&4cu#+oS1|*VC)cq0WiU!On%s z>!O>+8j%&ciF=_&0gZRP7&D#|>UUmU0h zY_hv2%dRnOhH3n?CvYg@`~FVB;Me1nM)lL>*gWW#=sLF}=Ap>J@M+JW>dBShI+w@E zvdL5BP$W8|7Tq(ub>x8*gx@OnWatMU@$kx-i$8&RdEtnQ9r7Px-Lra1FJm9R)yJx> z-n|@MmS~RbY4fDgr`YND?)Q#t-SXXfc&=;1b4B04UgYX-zM@qf9v3Dix*h4B7sR$Z zlco})jkDHJMtv~kHBoeY>AISDWrpO)gKi<#rr>BVLsBD%W1R`+Q?Z*9l73Xr4L%P@ zdP*jHEA3m%^M{fqceap*cR#+Eb9P{>SiAQ6TL}S^=yF49B^2`%WklcNzI?KO&480~ z&#Hf$fjc*2Q9lYVADf2~`9RI8S)WZKKwDukhLdch2{S_RW!L zJz!Nz)u*vz@F>p9Gd)5dxbIVucmt}AzfefjB!j__c2ap zPmygjKWR{V8rI-|A;64lz_QEToNLHZJV%g;I`X53yd(zj_``cvpgo}5q&2TIs$+1~ zRkxoOQ)n%HEMGoarJK|uzBa6N6loMmm;WHkZQ12w*{5Pf-JU7upuv4?-3cb!NbRua z?%aAhwPJ6N<*kU-Amrjei>U9b6eC*MJqz+)LL>u8id>V-};pC9mSVzB#DJ{xnc5J55>aHaMliWop~5 z2WxJiJCyMToLp60m|p~~emtR^=(>xCl?}jhVAo*?9hWF!G7rENYa3 zvK5v4`-VgY2)02Gks$&o20YW>Lha!(%ha$T z-+OoA$hBV<7yLe~orz;x7jQ)VZh~`(dsaVQgW=TELZ9~rqZ+5l_hcOrYY+_xzjH+v zl|#G=wA?wPO-??Qb6Xa8C!)$Dvr1`!6YGVG*J~v|YFMi2@4=S6C*7Li)+?Ac;fcce zYWKya17R^ihZ1VX+2~-_3u^k+k^+I4Kg=y`AG}^iWJRHvVQmR%3Au^;_7N2WK8|t- z9l^`O2|S(fufDbgJd@&h7Y@Thys5QV%k@z-Wwcu{s(oq&s(I=JBo^MAOBj(_N-!7& zo0A&pS(3gVZ1F`?AXwj{7_NjO{hq?}^kQT1QnDqcR8`S>^`j-4n<7^@k^5zXWLFBh zt&*WjJHEb*s9T0cR|bLwnd67HB;JVnbJpv=DxObEWR_?F4NT+iMQ+n3?Us1awZflP z$p>UC3yFJ2f4JE*6I&}NF^c#F%4>*bMZeBcs^dtk7eCbdHs4Bad}7?Q`hew)`RPzE zaNhfSc<};-SBY@fD0fj)6~~FtgILIl!!*juVVd|j%2hF@z1bBzNBW;2+p89@Z0PvK z0>W(Cq6|^)TR@~_H}y4KpE%aoB4VPyYIW6Y^(9YE+pv*)p@*uAJ0~!nFH>GP4^Kxl z$B3;pwavvq$bjHe4ps9r=@CjJ@siId=E?*h%bdphe`CwcufOQra1MbNWyV*S6^- zdw`gfYYNVWyX|5s`<%YW=^@{-8ID1E^gVp*Io^YIPnmFWgIP_`b!e$+=zRp=s{JlF zC^J9okd=N-+z=qtn`1s!6>W>NG~BR$&*hTyyY|q7t8s+ix^><@2Wy4w;pi-JTzd<* zj?5n55vQ}Cv-|wW%byr`x-8dMi(D`skCxVf!y^xZR+;5O+}LtQjTTr_>9Y6A%(3rr z{xOfY@?y|F3LnZymQTYQx*SpwD6=|=%!Vna%f17C=E${@Pg9q#e7QQTRO(*pJ~tyV z=(GWmn#L>g5w|;IYzI{1V7bY^Zx^vkuW&{JU#7mywlHtmn=&8pPbY0ciwu8x=D&Vgsl>`^9#@l za0{>q2nlcsK=z=QZju7Kf&>Bt{Hc7Y0w&o`qn<@no{XL!=5cM`SO?k3GZn3`-DJsR z2_50`KV%sfJ-wk@n|KY4GGF79ilG`tIW%Bp03F8C-OJUGJraCp`^}YG(-CuW!`hJB z0Rwuj&CRx*P(LYAPUb1gVyoo|h%vf6B@v8t;jm6RZzkVdOI%!ii!95zwf3GgTb0Q1 zr0w*bfUSRvY`Ra5%-L3G3cCo`xK$))fl&X95;^3J!oO z(9sN_U~H}8YWJTMES9UxF@vbT*>EL5&?5=`^F`Me46fn?Es9E?b$f^wKhasgd+@f| zKXyhr-k^H%O848RkKblcw=8}NApI~T>@2DEOC$Qo%9h-%y;s7seurRgUBMFmI#N|M?5U0o>Hd7e9!0bkXN`;$(osI3^*-5GJ{nO(8>+?K<`nht0sV6y|6fiZb{;Mc&i`D3o>^_aHnFsg@lX$hTg)pn zd^My$?i_1x2odkKV+pQf(5=jc=Yu4480(4RO54k?4{z20oYaAXZSOHTYHXLh>Jn2! zKSr4*gknYUiagxxJ$N{D!Y@w~bKBs1MGDXIBYY`Tqz!)CZSZ(8G6%YYTx71b`@$Zf zM@2Al{Z*f^&tC`c&CtF(w-zAaZqneccq8%P)OoSm2?639R zmk z>En4j7FzitOq$ZFF$ zfB1WL`L_IaXI25iAyRj-*lP8*5$JdGA+Qa8^-Qbmef+x{ApG$@=RtaI8N8V5+NgM! zxWP01XsR7ryiez=vhvVTe(Wcr>d~27(z*tiSs`ECKgRTRduC`XxI0>jO|eEaUZCyR zckA5ST2i~qJmXP&G7mp7fjWR4iAz9JGcIh=S0u77LMSf9yN1X6{Ar!wkM#W2F4d2^!}*C<34JIti3Lj#T+&F@kXDdiK|P-dA7q{wUw2xV$3iLTNeY zl@UU*E8hKnbii-f?}f2gm=nZ0?K19mMdE5AgtDSL_L+R2|4*wI#_i`_iU$V+Dao{X zQthv-OEf(!c2~}`w>%Y7TSPtjYwBDhy2_zC9-{YqQv?rN2081MyG4M${?r@5T3_d? zNbvDlrviG*Y*G^nstce_LT6)%X{bm%v`^Q_@ojY_*&su4N6<^&=ViBtozdBW%PtTrf>(8FNe|6}r&z@p` zyIikG#{c#{PgdQtLQZ20f#s~!k8{rDACLd7R{2MLht7O<;D;o0-?H|c#4+#RB%VVZ z_)X2Z`2X!?z9M-Z=%Xn-uENC za&Ia}n}oV+Dhjv3SG+!+F6BPm5@4baJyL9LCE>9!*tV$LcRLd&hIIyPcVgWA`22>g zEX&&*`f)X--iNFIy3Ofkq{SKZblH1)bIfoV3pkk*0eK0t6a%=8!a4Jnzg_G<5Y0Q< zNMaoV$Y)mupLD$8Brrzug=m~;HA{H4S2<;PEzMld9F)2uJw@{6oe}A6V|;k3LM57D z>;NSiWHP7Sn$ljZk3G7pjwM8APr~Mcz%E+^{2)QxFcW+WcDu_o---~NcEivHbuX=G zl=l8o2YTJ_>_r}*J$RgS0#WS>sA9S*4gBtL$=jkq52xL?mq*uR!sxLlB5fb*1L&e! zBFcq4uH3wOFgM0D5Z1*GCt@ui&4>a$3L&qp7vzX{me{aP8S$fP7A~6?>YNzZQZ9D!$d}+2gNLr$I~Ls>VSFP_rG8+>JoY49=6e$p z@T&1(OVL+$b^Uo=kHX)nvdoMH}8kN8Q{6ZLf4uJwXH zhuZR6Z4Nyg^)G#F4!_>&D;$__2I`xo(2^TM^WR}ahTF$vt`&yt+Oiuxn`O5yF<&I#ZfVfV+lq)M*7SN}|>L0{F;2(gUi_>dNe6kI8dhdWUh&M6%vi_&hb4zPB z7r$7}j&D$oqvGcXSHM!;)2o-@-J)^-jyeWukp7criaUVI*xKQNo;y#m6hSwQ!faGW zvJ_zytstX8(2AR?q^(r)XUNH+jx_Dr3kjx-<+4EA7gcPKp|b0!FNkIMWg3ecGznqF zV9DQZ*H!v^DAJTp{(TA)lfd_V0P8@#xjc?uYU((e2sz(^Y zgB)SVX6_$37r!)<0_dy?RtvtocTzfhMH;e1)Aq5qW-P ziZx{A`@uvZ-yQ+#GcD$FeH5AUsG~=M*#1cP^gGOMf={VS>kUS_!>J>^dSmpIP+Uwp z${u!x1dPqi`B;INOwhMPQ$^&VVNX-8IOmw6#Fv{@^opN!-+Hr$f+M>(sBY*%1uO<- zU&d)0gmUja1wGKKk_gn$HefW`wy}64R1dmI%njHP#*}k$F(y^7lq$b7nl_8tzO<8r zO2&O7OQ5XM4%S7I##1Jq+)=Lx5LXC)z4$o9{au!_p7JPG;==^VMzCcKjFMCGdGB<_ z>AOQqP!o@kcZ@of2nx=ZF-mijCUV0w7@yC%3n2*{-q&_R2*k_u00{QjU6u?I>$9#5 z?_pf*&?#;2)MN#tykAfz>jUZ{uigDTZY*6J%2ac{(QwoWe`;uM{gXpg5hDAri1>rD za3AS~P7W11oydzTX)7K~GlsL@QCh&pmaXZcgjsY_J~FDT7;(SOh$F z)rind)V9Q25jf@DYQwY`zrUz(+Ma663PcQ1s#@J^t^G!|sZA7NNJu%^ivCECN{=y6 zADPFJ!btx{L#XS}TV7O}B$Mc?NESEl`vq*JeXWkb_iH(9%~q0nKZX;e=P{eRI%cHU8PFuuKXPS7 zD9fI`8|C=gF8#cLO5qH7fR#R9yCg4Zq+bj&NDn3PupsSa=gy1Uq<|yt@U894j&MYv znT0I72z=!q?AH3?q&WjF;G=h^#u)h?W!)ZAWB6`!J`_SEPLdc(PrpfkdC`l`1kGXbW06feQ!cDT{_u(GeGWK+AHUH@K zG$MfRFlS#7$;UGSb;w)Zv{F30zx}aGtjgH0wQA`m#y*3Mqk2R;t`dkho zu~@@1Zj-~!kux&Wvx_^%qAz5M$$ufxte0@qD>%$%AI}HWYT1rc&eBswh5x9h5(-x9yy*!+%&ezznQK^$x@a#&+43C&OE zxiXvm=yEH;KLXL}EaqjJ1ej(7$zCAOYc{#*aF*{wc6NVma77vC6gkeakxbE85pqnF zi(Vox-yqmaEGv`d4}335nPMLbKOPkb>8|!m}NxIpuaepmP5M{L#PV>WP1wET5 z(kuSxJNNof?#t*l#YOd@tGF@*33sh6#gOaVpU>Z3*HX26(dp|?eq3-^<(JGR$!ivW zSezh7ok&S3`6_sB!thRDT5@7l!vS{>YQ&p$$6=LNHY=VNIt#ALoVB4kQlXBxUh$Hn z_qVkBO6;2K#NqH2H9loz6`i^nb%y-LcMw@prJ;`Xcf&E{{T++yz8~X5YLQdx zubr*NO*v8dW#FRzI|Nv!hGgUxiD@0CL+R3>X13puP~>_Y61m)C z-N{Y+8<-3t9+k6|M z@|{m1YLj_WJN5IK`BwAWA?qNY_tW#3PUp;>XhV_-$AOHGm!~DX>qMb@oTXmffADRe zxlgX}o#bXR4^Ga^Lq2z)4+Wt$e&z>)%hi6*I0PA+oru>lc#lOLvQTH%G{){TbvcqJ zrP|;ILToc;+97rs6YU3fk**GO6Mni)m_rcG<6#(rddFK%CZE)c;n!mxRn@s8||twv|U^q3=Uw?ejL0T#TihY6ckj|^uebk%{w zwC3fX&Mp(JDWpkqm~#BQk@Jekag{zkBni|Yc^8XaUdkj7SK#6A?Hd`6Qt8~=H%_=@FIX{e+oOAvK&N&v!S#P|zKxsKGt-%Y*J#1;NBV}sI8 zRva-B&XXKjP@4A(xCV<|hl6?=LO>z}523SY`WfRFbEl6wlJb!VvuJf`W&$?sR26#< z{q7nahl5CUE7#lGcxnj#+%cP}=_;T7=Mta;&g!3^-`B`SEjnH+iAcD|-seuT1~V^9 z1ya6&H)!H|Y8V2(eaPZ|_kL;m6N$Ki=*qE=Ge@-7r+DsAF!W`du?vQrhx(^|xk%i1 zm?M6QO|Zd14%X4@3ALR~%ZjXfrC;Zcvm)ZADo>|XhbY0VxjxK^_==VgYC1pFs*l+- zv0k-QSKYtP@y3rH>F6L$U4ZON3;EmP??8SV@)+raI!w$l0>upsdb$bvmr3at>>3Df z$e|y12T^5BW#G>-`+B^;lh9n0ND<897YlOk)|QOblx_@gfa5xk92CD5#~)I&%Dgrh?bl`{kJdZW$R%#>;I4ot!~+z*Q29EGmzZm@;nQ7PK@+NRq!+@iIk)Qyea0>d0HUe9O;n zqZS{iGZ)bvh^~cH$iB2$48a~Zh>ZGYaG)<)(-%f-SXREd2yh}VCE1q%I|9Rb<@m#2 zG31YD=&&Yh1#>s<>Y8IrQ9;2uW+F7J+|P>%KXu_xiPdn^M{{nPT%7d50kETrLJc{# zL*{vWl&IuSS{LbI>o39<>@I0|d(ZqN2L3&F;4GT%lmb_M`{uXi+|0QuX+ZFo1iO8! z4*zgod4Aw4(){VP=1VhfuH1`MATye3rdPsBnCos*kcocXo3G03%X8M!{in@4;Z!r9 zMCI5LV$ATua_E135dhD`XH)D+_g{ZCRlsegypvr1BG52L3CyE+i^HXEpk5j!mhQ(D zy=Lir-U4hd1x6)&-+RhpRg+4?skp&FlzWNG%;Y_^#$Sm0B5@w=wTJv5_qrh?vSC3I z;u8J9SiEs_H0(E8pKN?lZ+ZOgS`37VM;7gs-j5sSShupxES+J?0NP(~IWs5LHy>1v zC4Z5sispZX6273LLwEbqRA<6RBmH|^YCFqIwx5?9qvK@LSJl4mNS+Ze)wF?PEAUAv zeMdQ-a?0xL2dA&R6nINVAavYg>oGBM+)*ky(S7lW&X$i<6}Wqzc+{4^^8*Jos$^c* zr7VoQlbk6~VceaqroXR*TU_PIYNeIkn~RgmKY~&Jj_zdc`vwLR;D{dQ(8OMDPbhV; zEaLhxYecrcaT<&6=vgbzM0Z3(lBDB3R>)hL|B$sgY~@^>dSlu78r?$|XeCAY!`Sbn zIm^PWE%zb^Sfr_{nAKy@6CzmIHk{w0XmqMeRVT1HHaOm<-e|=rzX+i0CegxxIm|(}7nGDNsSE77jUX+9%>fc6xTeQ!}XUDEG=yM~@t@!y~(kVi?tm~{L zmr}jf{4w#k@pd2JU{J%D!rKYFJ3rnygF_=hcl&#;8_A1=2gctiA2}-$n(itd@#zj7 zMEpGIR%W)k^{A@z{k>1qeV(b`)~}3k@?I5FFL(Q2#IP-YTk&pbHno z-QC?iSa5fDcXti0!QCB#y9bxx9s&e+J80104%7Mnku`VSJ8K^1X`Z@I?OnU-bamJM z_E*)rFT+NEJWqadXySl{QSV=HRPQGxHTJoNFY5LnV4D_n4)S+oL|xCXj52Dvel&dU z*7I3*iAQg+a@X@|{^JL+Vl4dr=dJv(@46fNfg&~Td8|TPDi^d9V-wy!GaKjJIfHTr zkHSJHw_y!?_$oEZJ>&GKys>@r&I_P{j|~6~6cmTN92pe4d>E`gC<{13m`px-nJDM< zf04@zf<4TWm1uJ++(RC7hy1n(^90jnx?x5%*-+SARLXc9llkqH9Ct@=iwn}P9~#mC z1bkC@OrN63r^T}VZ#w_6K;unEG_Fvw?6XWqSNBRki7j=xp1uLAyJaime_b7fVXO1 z<5nzv_*+hb8?{!UxI3JD4V6&abwE&gK3XwbGVx4Q6MFX7C(Rz)S@d+pTYs8o2#00I zwdzzG4J*W>KgohQ)h0Q-S#AoMU+6SNTF=%_2jY$AB@Ie5No24Ixcu-mMY-Iu4jNf_ zA{fZ@kS06}QLg0qv~6M!@fSGj6${mi6_b^YAYK&zG$Q7_sAr#9h*ZcmYf?{{QfI&Ja}=(XQFE1w`$cFD>u5-ZxVD|mPULknEBg8i04PxD%ivW z8|fi8Os%RfMG;Gto0$~4%K_PE`{Gs6)9o$XmSdE9iZ4Fx3JZZz#fxD_hI+Y8sW{=T zzR)|&X&aGG6&4MH>YPJwRXajVxFWf-&{Pkm-(d($JHb%$48S79{gs$v9e?2FgG@$f z^dA<&&DVJ5%s^7UZ?4gQ(`XZ#zbj^2IrjTpUUXJZFCuhQE7?d^IYIW18hY$z$s~Ls zH0hOSpWv9t9xr!h+cv-I;=`TuH2jvSuYm@(+$D9G#h*ZhxzlE`m_nP#k*qioc6#ON zPR~e#qS4VbJ;4!Rfmt8OI`?T7lb$BpM*q`(ah-{BXvI&S{EfHaP$;W4uYfY&CWsEZd(G(&fxYKmmjt15E%MgVkmHNm44y+dHF*OC>h|MFB&-Ptz`fcHSFQ?!k&XIDBzcGgMlG3m6tQJydguds=DQGb8u zD+60oU?AHtrd|FYfyD!#jEyt-3JMQL=7+0}Iylw|*$ppvX^7(qSqy62dUdCuiT_g;MP&BG|g)wMIR{+>&><45d2 zbioQlBfAzs?Yz>McB*f530S4QU@a^LY6%<-bqJy zrOxAQ3fZoziYEw~4dbH&{O~vmb3nRjhCFrTA4@U`v00vP@tFd+4!c>nj$KpgQnv~N zb#+=$s7~hSLq3vKkrIS-#rzFti#F4YDso;%v-UqxvI}XZe5f_c_!=tX*St>jO724; zDrH>(8O5xWy?WcjvfWylQFf&v^=~_|e^PyfBkVYfZ!5^OfQKO3~%kq+LQ!t0JeZ1OWJ1l*Lkd+A0Q3UR6TLT=O1P zs=3Hb7pen^hUhd*;K3@XTb3}Zk-|D3yUS7G1)e?6bA~;et;dkf?ph1wy^l#glXR?A zXP;9-k*gE(|Q1AfiehOHAn(Nfjf0 zBG9R<)DA7 zFcJw}TPC?S8DJ_FDLW#-_{DBl;gXSDN5NRABdJSo74EhYRZrN=y~OSu$ZC&u->4&> z=Rixa{qs)v<_BNBAkw7E=~`rGB2^1DBT5eZ5%ct%kz3lpTfQTgBVyHh z!969ELv>Fvk{y3qcR>qS7J3bLP9{4`in&k^sWi93{D!F>t)VX6o5FUFpmLX_r&mkP z`OKrltINxGfG?(n6{=(XXx-F#wtacAZ>Jl^^>`XXN0UOM;OSsyD7nmJX4nh*A;jr@ zjUf2u+7og+A6dcHzu9&c%^XO@!&r?=1`I<#(4!iY|lxXYaT<~wQis_SQ8 zhkE;C=9Q-059E01zyc|AVbJMQ6aGIDXSJ=a9|M=Gm-owEeo6u}=V&cWVBH(gdW zsf|ZB&XWl{xmCOfE5j4;U2}uaxz^S6`nu@V8=D=1dczm*EZ04OZ``@>9RA=hW6GzB z<40Bda*P=(Z>#dYglk+{gkK~7l*{GPOY3+08hJ@Pv(e+)tk?pBJ=vGirPEhD( zUE#E@;r>k!>hDN&I=_;~-l*gZPlv3L$2RpYOMBru`#EM;`RXfp(gDx(p{!kI-IAlu z_rBy&#YFnuC;z$y?48C9oGUJNMzzsJxnJ!;81XM`eXDmPYL)lFk%gmSN;H*8mx z;=WPM+;B@+QdR8RZW0+6Fvwr5zhd%M0^tuEk_PSkwiDIGZ1 z3$=KDtdm|Ca+;6_pLn~9(t`$?k2p{346`__7Z!HHjU02F2r!6kQy)Cv8`OAtEE~2t z&99U%CtB~eBZ8SS4-|47`1wZ6_r1?c0CfYrm6WGmIS=u0Z{p8AhuZoQWL{wbnXRPD z474OD|CC80GH}b2P>#7JHkhI#mZ#uvf3aIbq+s4aI(r&HnLd=ACt=_+EH z9qomSgW=Cw#3BvMnuPffSo;v@nLi3tde;KFnzP!1nv3j~5k4=ae>O{$m$&FHI;^+i z7AxV8tm_o_Axa(+XvpcXjqU2oJM8m+4U{Y+*@rBjY1qJ6PE=M`V)ZcoH7ZDy-6h^B zNU^+B&UT;hnMEihE{CX~6lr1U1S5!t6Kx~IDI~`sx7pt(NV5Ij|82On9zPN#Jzp~| zZ-l2TZTXWj|C01pBt>0~u)QH)N0nE2;HLV9GN{j+fV^Nf@j*91NU&C$JCHTnXnHBE zBRo&Pmuqa_+<8QR$LLt57wQd`Y*+G^=l+O;A9ST1eO@|wmC1B#PeJeI$r&);_=@3?qNf8n1$UTLGT>=bWxWvN#Y?uu+wCzMaS{70sE0zj%q~dQ@Kii`g4t( zo47B1S#L1s&+(HUjJ(^Sj=SOZ3gDZ`(HxH}=W`Y-awZ_pMsF0g;vDVej}wfkVY{aW zo%Bc5Fmw^rH?c_kx|EzLZ|Z~+R9?pzljUO>Kqt)DfjJeQ=8LWy_l;iRV>7EsVCCN^ z**V#Jqqu+W^)dq44yE+3uY%qhH7KvRuAHjrAt`&SkKJZegFU_nqIZ!xeOq6%b#71W z;2j~tVW1k#NEKo?tBt9Lx(X&crFA(K+)cyG;INUtT8W5Htrj{c7ODn8pwfh)%p=@6- zC2~y5V%h4l*jQ!Yq;)51f21*8ZtaZz*)p~3Hb*5lTunAtFoRsNc6pF#&XjW@t!35x z7ebY_o#vn6^lH0ocB_47ORh$gWFx3x9{#_dxdp73_={dSVeIi_rrfP-HF+_R;hF)P%=ui zmEwwVsP2wKEQoP-Fc8J(8et|x=^ZOEo*tSacYY24jsB@kt=qIm@Mv-s`eT96Le1+j zi39WHQ+h%l_Du$np^aowOIUw~`9=p@69&661*77WtX4|$L64w}oLFL~247&Q<>oKn zPH1RIS7xscdbTEHH+_nAg>%`qbJ>iOXQ z8p*!PA$YOV-0U`sApanRU2gILYr98;<5j8S91*=%to60&myn90k>V7)Tbm&tUOo}>P;1xkf zvtZ~QzEic(tz?XYN}eIk@Ro^Ls(pOQR_l>4^OokO)mT!dvk2!K92=x>>_gSMjB`~n z?Ep~oU@y;A73ipwda+!to&GJOw4rH#xg1zFgpj!@+F!O>XgOUo%WXPuo$FSpb!6(} z?orHs?dT&&8Ot%k&f)2`3>nM$i{;4e_tUSI9=d<<9s(#(1N$W!(XX0;xU(~X#zP~A z+}~obV}uIcSGMm+F%5z&i5y1We_qEBv>=)BjY4ufAy@BnngOz=U46DNl9xxOPnVGT zRS~G}oKQfkgaLjnPnGN=Bu_!nL?8WE5J&AqhA$d2(BtHi>M>+ku%7^;K*tZ;4pfnE zo15P;HZzuSBGJ#Z7!Q^yU@QS?z_SU5)F|;;FQ?gwiXyiQ-5Ff8JADbcQ>i5Mg;^RJ z+I3<|(#!`w&nAp1GfGO{4=3KjL7lVu=n2B=c!|0&)kaMP!==VDN{3JBlbk>C}^dSPE=*Ard>sjR+?5yk>vq5xYj_IHR36PlWhwxuD6{QOOA3tko*^c7$9~t zXH#JgQ@3M%J*bDzlY?T)tduaE&)1~DU)P8}@#ziby*~v4uVUT!%G{S$t*;*vu{LzN5b+|3DCT3a1 zm=1Ht2IgY9W6s97ZrQEx*f3I_n;m-j)J~qrv`!(58Bw{0Ls7ZxE%Z*;0iMtjY8=x& z-rveSIhGfe5yEd7!5rY44Tlh#O?aRO9hTV!Yoi>(g|Dsl;DcJ$$RdU6 zak=8ZX1g4XwI8jv;azMT2yGk=@bf2;z;#4Cu5#5r!iO4=1$ur(7nZb8f8F=>|FLI@ zbEgc;z&FL~Gn&o~B6zmO)p^5=X8A4L-G5xb-c}XVRoM#`tK=?JZ_Ahx%mv?qSPPX? z$;}ntFH;EI&|iI{dV^z>+?DcOOWIHyxxJvYpzC(BRYidYpgpe6q$MkOX=gg(nfJ4? z#TdP482o4ZPQCIMi&a_Ox8i*sFL)3&*%s}heOxhFycV@URFhd~xv#AOpY9No| zsLP8L#gZbfFNKo+U6FS|@(x{Q&W2D`-+?Gf1FYA<#i};$e`e3ZZrP0!JmS6BWoyV_gsu^W{4Q(AY{tc#`?e7Z7W3|Lm*0u3k3~ax#A(~<$ieE-tyfwx zX|uuFsZ(V0$A=`isWI!vB3lvNwV$9h(iHLp_9Agy<9UYa4S6P@qFIs^u3w3{+vu}9 z{*7HqbfUdpG?fYSbmJ)mZ8lZ)RGo5u>wk=(&f==5vb$c#owfu7w|17C@=TP59KADT zM~#N%B~P>2#-WrvL|B+g3XE@CScev^{s7$l7rdAoN|OP_(Y~&zgM<2X6)>68 zNP#^^jcP8S)OPg|rJ5vVq!rj<4soB)Sn#N>Uef z^TTknuuvbbqFqJ(ulU?h&TXuU2b=1F7JF>oT*LK5)>B*!sxZ-FBLi^OcW%GBMKDlO z49Ir(ZE+PW)Ca3*o*@49O*Vpwz8YG9Q6F4s4o)x->{Fx1AV z$M*9~_Aku?|E&fbS?P|Kz=K|uHcY1s|AqjDaM+B-ABtN{*0>NQG#bu@8W&S;_gpeu zmP!O;YUYFd-pzSE7`N3;9O<|8Lg}mRr*aQX>Y<$2`9IHIeCx^$adFqv;KAfB*$;4y z#Olip=~dR!;B#NPT^U;J5#%&&K#w`_TTFxMEvskrms7=9V2JC8a9d1r;B2t?5YoE9 zZZTT%oh&*ouz9zyFL3=G8iE$>n3Q0Nw)$)kjo-TOA}&JU`UULe;oGpmJDj#7ZsMLB z%o=kLnVjU;wV+-ux=H&!8mq-g3kuex;Gw>lMs}bP=)?O>u01YS{05c|W@@aOA_N2d z5whm54zk}`epimbXA-t96Xc8&%!3rA^>d#pNS9y=-eOryrMn~RzpsRwhReiNSti6~ zL^p^fXYjJ?l_NRYW`~4#3?fwF>*?&KmtPOv=$VG+XPD{~&AZ6#Lz>7(67v${AXi94 z65|tVNwf_j_%vUIVe2`f4I&&-4Q@8SlPVi4xKiYj8cS#{g0Bu?e2skNE`BROy>i|T zI2sdBCvGRYA?qnBlVjP@le-wF@3b+X299){6isFOO@cy3qm2AVJ|^UrC7CuFpV61q z+@+PKsLSOSHj-7{Egj^iJlq1napySsCTNm5z-wXv6J7kvMnGwEq?Cd>9}j7=3zt6s|9Pb~?ry~z{RjmO5clTqtMC^5DS zwav%-9L~=|)v_LY9My8xO&aNEqt;(oi3Q4~qMiJ;6u)!<(SU6<5DlQuX~_XfYiTI5 zg*1!tGnFx05Z;)oCq3c!7CUC(O&dL6)MyUM+*KK(_VSi$azpnPQg-;9XvnbQ|B$9>`olW*pcCi!g`C-ixG7OTjR0&J&?)DmaD?t)p4GZm z0CcMATm)HuH5`kEcSy6&JW@*;FkW0`#fOz*Q*}w`P0S~+tdzHaih*l6EXdbcUM2^j zwMUXTAuXdTtC722BJdOy?ZCiD0^okJjgm}jgYk37+G%1$+S;_6yrUJiWJS}Ff6E3S zk{*FQ_V&1=ZYILY8jZgj`5xGSN7r@*Jo-q7H0?|aJlKC)whXnv-tQFAnrL>&8ZWN} z?LHx#;5-~3;J3>}*^da4a5yGaLrCCOG5Ay?6RvA$8UQiLCWu5(<0ePW0F0}cAmu*Q zE&0pfMpnp#Q6f#22)!ZOCp)nLD7il&vemNK3XL>|Y_l~#6Zq$}bukofFD!inb5N-V zhAVAxYe%>({p`!UvMJVeLZY|I6`UOu1|%8)0Jz0Yexd3u$K5S_ut$;(VPjeqjP_88 zCE|`oZj&|w!Rbu_6(4N?$3SAH!jSb8aU!|3V5KuWl_ApX3IeZ$yA z0O6V_CN4*f4%YVSn1CNB1K@l_s$`*=zvdLVDgTxVToYF)m@j6xkL%s7gl?a-ti~zoq%zF7;u$mTVmw;b21fzez}Y4DS=kkQty275&sWQ0PmUzEE#+S zmJIkT74iT-aP5!d25ceuk01E2@Z3=5da#P;fa*vVADHGx01ts2?V6~RVyh3)5n-(m zq%i)^4>-v41mq_U0C*$ME`?R(-<@Hx@twSW7ki%6{ZmpPBva<`=YagU|I-ry8j*k} zz>g59BgcKH#2ujA*v)!MiuL<-q6#AUo<{Isvlw=QoTj!%@{rTgAzdvS@5c!|gA7CO z^f(}r_=__2P}2eg;2y4_nHx#xrUn-|H&hFZ6h9PaxtO(4$KZ}M|Ig`v(LDV{a?roQ z1a8ZN{|qM910C-FY%pW}koLaVk1~xrWK>)Yt>uUvgFZLgs>5vx{{9}~;A#lv46{;4 zI(@}i^FBHM_;`6b`igsH9LN&B%v-dFHeCnD93jLv3%X|Hq*wzMmI>?E!+5|if~5I` z{aEmEXZDR0IVz*biJwI*YMy}CEXS!%8+Vn3#o*(MT0v3qNk*M7FeT{X{Mm2y~Tc@7(* zVGEKQel3T*r8WdL;&%o(P0EvHm3pY7N;O0(47y6b7X=W)Ne zTMrPvrm^$asnV$kzW1bMW=WINQCkY_W=&Yt*KC zrcvL2`b+~QkHNrbv6zaNH*xZhYFG|x-I5xCGAtEl>L zZK5Z}53t-)xA^-6K|+zWOp3Mad2sA)0dkkwKy-pVYoID$)Jkby&5z~^=>C^Ly+X{H zJltbuwizV|T}PDJo06UmB#{QNq=_+$&Wv zNmxbbH+eZ1OZg(r6oC>WP0zUk+I@>};&&I8W2-*@^cN~^g`2V0)94rEE}KFp1Z3$> ziK^S_`F;7R;4J~g|FA{LA(pugG~|ex@=50x)NDq#DsWS3tYJ8r2&z!_Mo|v3tYKEg zgUQg9;WjRsJOrP6Xo%2Te}9X^0j-%GPxY_8XDuUIR5aeMJ0lXwz6dmAB0E;8n&R`; z4Pfe=+Cf7t0S-gs8`=t7?RjE!uZpYKq5Kb-8wq2Yrh_Eg23>8J=U2<5c7eLS=fJQB&5ARpJdp?68&U7T*;B!bzk43pA#VA zhdjTPM0Fz%a}9dFnA;I8c-UYe`U~AG@X$1s9d~SHFjnfX)Mr|+#G==ux2==T?-eG6 zO5k<|96q@^ILHrPsRn?1BCg-5OvQel^8MaU)xFcJ$ruv3Zr(PMl$PB?qL}?vt&81! zA?zno+FW|JMr!ph6U8p}67BS9i_y1SR(cNKhq+Hf9YACOXi5C+oGWkf(e}$6-a$7O zm&~4BPaB^4Of&`mQMThYG)<7ah17|;SN|O4TBo{^murNM3q=3_n z{uejE?{*30$g;_H*tJ}I3P6IFh_-ZR%&18Gl&tu*GGh-h3a$3E6t6WUz@~Kqlw}*< zQiKrm(##ETQEMt(BY_fdiymsg1~>8%NLoZq6@h$9a_LA_oa*wG_^7X4LNT&KU^Zx{(K~YjIgN;eLDdw9Fk8&U6*ku6z zCaFHuN~>D;!DK4y3m%J%6t zYekD7;N27|Q5iF^3K8~1XR#D)JwTYPh5Y<4$TTzVeTXMJV1ScgI2BKz*!J`f}CQ zt5voc&2gp=HMSVme!ZB>VTN9|Lu%ki*9(w2kL<)kL?w~BS^>nBXiI-e@gE4_?5lb) zYn~})sH-o3RrUfT({oo=FBqa}o=~+dYle&FftOYK_HYaR@vpdRMj(q+L*x-+C0ZL$ z`E&KlUpvgPU)6osoE#?&Q4ZC8EIDtLXyt&+>nfbH8Nmg5Dh}f8n2n*IC1r@Kb}mrW#pIKIi2061}M#zf60L0s_G4p z(!9m#kCpk9eneF6_Aj6a&KlBS4PDCkInJwa$8JMLfP>tl6#=6;RJ^NpI^g>I=LVz3 zsgqTkICEmvu*!yR!1xh+ID;~^m3VHKGN-Lo%_TzXZ3~1r^OIIuwE&nyxE_gnZ1PXY zUzwExK2D!7S8q%9{Foy3e3Qr)<|de{5rgdkmHFu89EgpKN_rn|Kt)5ngCsLTk5A!T`5a@gHufCuKZNS|RM*~2kDnQ5}J)$BHu!Fyt_dEBn(h>4s znu|flpBNZe@;587kpAptbAt!lLy4n|`SVg$kaRaEb_n@5fjt~} z*Laih-7JnsPHeI+33dGIQeN)1s;Yn8LmWs#srFGULv6Rz7S}=LZ-vXhjc~vu^I18+ zvmx;W*ri5}|ArJKo>er9Ln!uhf@inYbM(?HeLqtozistU?MDU(r3swH<;c`%t)<;B z* zgaI~Z2>N;|>F5QR@bAj=&4sBVM4n~JxiEL_64-`5k;1`$9{%3>@iXZ8hGx&mmdF`++9Wf?KVtAk675kEa8W~<=Zw~T zrX^fBFLvN#V5}81I;h2mh<@p0Ll?FcJY0Ug4}JAp@0C*i!Gn2A)U2(`vNidBa?~j4 zq{yFG4@WZYbclr<7Ro5Mp91Ym#2O@WPcR8hyR9x#Kq(lxKNRO>v01Uf6%&?iDtR!O zm7

&f?IF2|=!b2e^(-(I3_SxWv$q~1cij2JqDEa`qds5A$>NbA)fUyIr4YhKkP^GCp3W4>XN6PE)Vy8;Mji@AKyF>}J&J&A`D8jxeBK4e zt-j1WfuhWS{I2i|GjaOYFU&B|ye%5mrt8UHHrVNs5b1cD6O+Z6nzCO+ST!1JGc2>(CG^uYd~Ob;CYP4Do3OZ)KuL9PcNodoCqo@e5J zo$KKf+y7IthkqCP|3$I~4mR%pA=yL2VO#Q{7vwwYkvz^3(r@QjEDuNs$Z5+|rW8d8 zKP#N5Bk?g?{`l|RJ?EJJvOSbBs4Yx(sg$K=N3)){4@dfYqdzrj+&$kU&Rq8T+}zy^ z%>=za-y9u%HvV`!-zIs#ex5`XejPhy4SL=^KNaqIy5D^HJaZ}ZBj{~J`2G3Ed&PEd zz)gEQsqo9$E^goR!O+LsZ7SN~`iihZNsxv?6P59J58?XJIn4?Y(Jf=Id^KQ71xd2ic=-me2VU#4(}hT4S#pJgBZp5IsCf86E* z1}680=4;5`9A!VQNl}g88-OB@;m4cB6QoJUdrOZtJ&V77rBZ>f%no3i%nFn2V_M3e z+lQ?;9P>$gjr8BTFSq?)mb_5=p8x)}KFmJg&I_<|X_pKd-4@1ndb2HcrBw1MKi$|g zpPV{PBrb>^-TPxbxW++SfKSO~U68GB!z0Aec|)Y|=7UmxB>+3`pC8)EKQpjVaAZO< z?anrH#H-VFL&UVjNu04OfIRsnC!*+7X`b!NJ14R@t`cf^QLd6Z+m}fnlsw^?uZTyy zE{cqMn;b`(BLfA-IIuy1xA-NgkB)q=!sbN<4@j$V}u#$49(} zo?g>!zjDv#t?kWcgqxcR?cJ+L+Q-xL`I@V%fY;2vk-ja#&iAXn6~(?*_U3L6N_BkK zy@q?mPY{PJgXNpT0+k5_{xF^&75M|3eb;e)K?t57M@c)x6$0uGUVlG%Pkjp+-2CXY z-r@4Pzz2T$SveK$J|bPb&j`*J9D#X#9OY-vxCeKCxX;`k@%H~yJ-i{>x%k-N0Ir$K zLlBA`pQ8BMTY=wbK{@$3P>ti;A=&x6vS8@HI$<|N9p&j)7uh$HX8)89Uz@Uk4&?Lp zF_r(bHO(4p`w;ZM6z61&bX!k1L<2e}*|Yz>UK&foLl?rm4H2+ju}2ZqPHfJnd#;(h z*z5A`7iyB-&hKTdwJo1X=C&R+_o3cdooqLUY99Np`@*R6am0z zGXHQ4^^!Ede9T$csqdo>bf{KmAmI9#T!X!e9^LRS@u&wUW?)kjSx%{TD&H=cK^LpAUsl&(h!ih2BK%eU(D_5D+S+0GRkv3OV* zOZ(H~E<}~BUNRh(Gz-%@;Qn)X#RWSjdD}aLjV#UY7qA08V$NH2=bf}Hz$s1x2_l8$f#F- zHVrr+J#Fk&F|1u#cFlflk9o2B)wTKNcKV|39Nv_vtw^DaB3yThzCO8El({E{b3M0n zXOtgfw50O1r1a)!biCxGpV14MV0dhoa^C1JP{YSDF$sZ*?vnZFWy&%|JsBX-udHsx z+w07432uatqiN7KkSx_Uzz4iNxvc9zG8Hg<5(%*~BQSH(xOn#Rn1Y8;e5AW-kCUs2 zo$2h1I#?HdgxGj>wvs#ME%f2}^4yPOPFz+|K(WCqS&niF*W{&<`Lk5cp3tf?{%55)vL8^JyUchnsN>+L0tr9$ ze`7a@66?BPoH?g@h!_tLSLB+{2vaOJG}9ilf(qKkKvkv*VTx}ZS{92HJI>L9cV0YQ zpv$XcK9V3W)2#%NjhjD6kbQgjhbG^hf|jTDjRrl<-JF{)k_IeRxSgd#tJd2h)bL#) zSCl7)ox9IUL^nEX*YgcVJrj+y#2%pio^*RS9scMS3htB_K3cjwXOzq@ zwgkPX?1tZQ*mS3(9b1pPo`QqL7M1`wR(G>a46a-JYlP5KJ=yQ??W#6H-fKj*2Z{e%ISuD!+|j~S_s zOzBy>d~x*>C3cVV)T8r=Dd-C%$G!p1Bx4=) z>wa1~^v?+@QaSh+hSYJ5mDMa}W-CYp53-OP?m3#t+!2E0F)bV$+Bs20-|3>W@Y+Hm zI;eba@J5jZ`$I(fIf&o{q41Xuk^(FD(Qq_1#hH+d!Q#y)1R}0FLK|JycIipr>7nSH zRK=dF)Wp0EG~qraJ4h4nZ*OmA3k)`B9EDEE-!`u8{$87_z;!OzsW;tJm7G&F)6a{ z-yMKN5(yjE-twyOzk80PU}+z3wuov~7xQqdZm}xm2(B1=E+8k&I-p(nqa z%=Kxc{~B6hxq+X7a!S^Cyg#Kz7LT5py1AA(bxz+n*;J8wcV zB5MX_Fw$f3H!Uv&>(uw>?`2G3Jn;YzrX> ziM8|$Fd3{S3A4W3vkC|dr}#`uUo|ztwr}o^1KEo>(~F^$G(<6tG|?x)bfFc!4J}zi zv9;9je>72Gt8HlSXEK%5$;8uRJ^dI~J&Dm7t>>M;qf59n&_~e3J_J%@$lTFM33{MW%MXNOaZcFw$!W9v`DWC3%;T}!gV;!z z^=0O9`DP4tyAJlWU@4UAAvv>-rv9}3N@kG?V>`Uj0pq0`cWiUR!3JXG@+eMc+R>Se z;H+k>V)qI)d39TmIq}1~O!v9k6$z79%g9b**b7T_?2fR{L!)-l|LtkM~ifDhe)X+rUa}UTKMWJMHEUH*-yxt5IR941yYD|I~h_4 zqbi0?Ue-JE!ZNEz@)$>Knkn$9NWn%iXZ57w?;nA~3G$l>GSuZz>HG<>xer}nIJ6h`rDhm(A z3R$(W6aUrS#D-DK@c>Wu^q^8@Lj6ef~*c#6l|@ z_Mnx^5jOPpS8bUtHo#4`k|uPqo`%#Rg&|As=kuSQ#jGm?#ZJzj&qX>Ky}ceU`rS>k zVkIj-{N?}LV>dU+#*`YUb;V(xq?O5k_jsC~*wrYLlOw3msqk+A#r#pnr{>aNVwi%+ ziq5-G_{bSOduJ@+zk%TyYyz+NcO=q@T9~XAJrTg6xC6fE$38`{F{yW2LtVLzuS7|1 ze>Ze*6I#oq*jhURS)->apxo`-!xdm_Qw8mBH@;A;i3?$Jpg&|={)K#}M-(?FLl4)? zRWpdUtLJq&0;lxcU7WGGk_fE+x@UJoRSceOohKp!P3nI!hq(gJ-*_yM=h!xocldik zkx@8iVIo!A1}>rHb2;TC2#KIEv`#E1Xzq%`(tTx_VEILxIx~5?Y>|cPeJ+^3Ch>su zT?1M~K{^q7pq;Op(L)Ud{k;pBaT&flnQ<0^dR!>|n*PQa$#Xoxk1+A(*>>@vBbr<& zO`Xeq=EDfG+n?4>e>{=v37K<>fUM)FENX-x8)GOZ+0~zs;$mO|taR-HB1Sat@ZB`_ zosmzP&!8nHh1b9uMt`Qi^b-B#V`-vD}P+Ee1;&_*EF}tfS)*ppb8xJ z&bQKwj%H2!uA)aLj5Q0@U~K5hzWb_j??xqz)tK_8l9r;93(mNTN}WmdTx25KL>gnD z(TnT)LYQ?Uo}8Q68r0qpl1Cb&rZ(3e&UXOWx6)O+%a<1t0_asRsdbszxdhU=soF*j zG3~vo92?JPZ3bDss(3>ZnXU%ki0>l1@HC=TW$K15_%KPFVD>^;Zo9J#?4+5RZ+yGEIQ3xOc56CfI?uJa!K_%$V&Hr@ zy`I*nRBaSB8KEEHWpKv#6bm)mGx*jSC%v?fT0SDYr-6!?a_L;c;f`nq24ZlcpH^KR zOj?K89O~pV#!IY)Csl|Y;|U3^4%9K(>!fIGjK7v1)D%$9D`AhIF4x~j)jmSPY~*?> z3AYE?S0Q$=D1qNpjyg`DF!5IKC{rV^cWTXW_f8XxQrc5Q_1`9CdFEl5eMO%4O>4$L z?rtlNEISxdw;h^BGdx1xOXi}NAoJa~>_Kc)A2v57gih8ft{OJAj;iN~)YU@@i4wUj zt)_rk`5iwfVV5R}rhTR6nlDG35#^L5>Hm!%_)iw-UypTpTGvfqRI_B_K{A7yM4EXO zDUsy!ilC^5=1BOJ9G*c=U*g|}pfz`dXn3#T%?F<*+vw8Vj$xxGD0=Gm!EI{m^d6`s zU1$X;YwRi{EQx*z7p)1)ztapl5j(XMSZW61QPF*+qgZ_1S&#Be=C~;%!^Ud*2xS@y zuhferzrhcHpX59WuGNLCKi|kK14qDhUgaX^aga=o&tMcp90$Oj^CJ6E4v-t$z2VLf zil7R!Kg-y=BA7Inf4E74+K)d&P)8my5wQycP7^;S?oJaanS1@cp~=q=R=>mU+a%!iLF1}>ImvdLH@hd zvv`s=conT5O^nm`s7_!iYPh!_EFKe-!D!w42$dnYpP`V@!__oPqr|jp2#x=wzEntJ zH!Y!1B7SPM$36uU=)8=gjK(@Mp|c!NB9RTVpat2hMjU@_3CDS6di9TGxwVV>KE}=06jFjtAO@>zD~;@Q z>F!trU;5WO##77}>q_%Uwc=ZpuqPmf2gH&WQ0JvcK7cHWvyFH}=9}lq&5ZnSJiT!l zzqunY{wJ2`megXZxn9m$rSTMsUIxXJ7R>JxEMnr7 z00Y8gD(Ezeg?2);-#_+4E1OkXQtPe#7^m4ZTtP-(hn%s!QUI*}u+KvwH5CeXr)?yt zMj^F?qDBpI5!C$+zNQ6Fg}gB--P(VGqW-Yg<5y@h77kU{NI;E3c#(O{T1@l_Vk4T~ z__)VfyoJfE-)Yu7nJh!L-6C{}f?Xj+jaiHmC!xW32*N;kt-xNs@YMN|H+Y`f~I}5!8bat+ysZVx!D34tj-o zJSiNAxpd3YscZ1pSEG4!uW6o~yoI4Q2(gcpnP3w;)3LX>1~a_y?Q`Ff7}CQC;Qlx6 z-YP1trU@H`Ai;yXySrP05AN>n?j#T(xI-YgySsaE2oQ8|cMI;2fAhZIZ)<()oSSoX za*^3gRoCv>y}P^WDQPWpv>mJZY_r?~x7X^5!Kmg)viJF09SoT2D^5GjF6Q+l5y5*{ zdACQ_XhK0scZ^!(dWMuFk>c#@cv?-*pGbW zie7xt9NdrO=|TH}%$v=!1`!H{81IwH1Y|`L@#wI<4Y%c1}MrC z;8wTBjKfr-gIL9J=!w8GdDFuLp<%st>TVF4@Zvkv^o7_c(by7}Wv(_C!)1A5 zACQOkg@E9Y+OUeN4|nikOg7df5yQ&s5rICh-I6cdmt$1~^eZdhAP#DOJ z3h!>so^n!+z7m6S(w&(}Hd1+jPq7XU-4q>9T44yiXD$$ZT#dX^+~r#k2ROCC%S`Tl~2@&ya62w!w%_5NBVC%fu`ezE!$kWIW@Z(vaQ~cpK;3=Ty>i&99%}#1;L{8CMf&@(4 zg*qkp`nY9mJhM^`3t$kDM4P>s#ae1g2bgMbQ-(pDU2bTaS9aPZ8QS58*mP#4-z|V) z#Qf0` zQ)lSF?zhnl_mBgAcYrQKjx2s<2#aUL#u^`QwKB_%E>AVdFXomhG&XILDB+c7>33Sw zSJWfUoi~$3;)L}FdtLdV9(}5fbE};{;7tI9;8Y|k;}A+@KzNk+c08Oj)*Zk@*ARDz z?cML`j=}_~nWv*2Jx-tU67j-n*3!_)gP|+$(@8Fy)YGK?{Nw# z6G1&P9!?`v;V8^n2`3xmIO;1JpOgc?MXq#+CJf13pfJlwx1ar*FXc5ytYqk)v!W7c z8Fr`N>1(81?3G}qM|MuJIQS`Qwy}jgJ-mv%fTUN49MfdiXStDJ@8l2CDm|u3pDhK{ zc;;HdllLRkOxO1}q!EXFTM8SAPG9AA14Lqf@>4t!UW0TFB2T>#oA576T#r2!?_|#$ zvj>N=w^aT%$C7mUK6M%Rvxu~}gyLDCJPxVnc)y-IM>k*Fzraj$?f5MaI#}%_J6L>N z^+7rQ+QF(3#!?#Zi2FDd=Qzy?yB|*YjfL~~&kiMZsL8TF*+oMn!d?2AR`VbKw!ktz zo?ishxva{dsm2Z-Xn+#-4)+8^83v@+@{%5_=4D{4)ENpxgXxNZhpbAQw)_1%nXni%oh$$2KkztG8&vQ*Vki)~{+s27L6Yte<*@j%>{k?Rb zmK3-JA`-GZO1uw^dXv8Ejm_1hO~mQ83OfVFPTi@=8Avh^Q(GJ!6k9`Kd|3CEf}aoo zm)Y#t^rlK_z*u6;;25#dCdFIvLg5H8GLs~3dq{R>$1tK zCQ`K`olmIrMc9=(C=d)?K0tISjWr*j3H(sqyHSqkG88HrutTNCn8pqo9c7}2_bD;GJdgHQxQoP8*sXw^^nXr5MziYXs`X%2K z0l1`K8x?l#5Bz9ak5S6pBRFkOWd09PwX{GA8MzbvCsw2a*YizZV## zT*AIYw@2yNGe9hods=XC`-RNk5_jWS%@icK8noVk^od_NAM| zL<<-gMp}9uDN|)G-zWp=g#)x$nKX+?;qg^bl*RRmygS^c(nTt5R0#xbdASM)g8qjZH1F-3XIA;%+flZ&1|DR3Y&73UlM;LYTjIJ|!yj9>` ze-$sLGy0T43?*7X5+fQNRjxR+MxA(~EIJiAqx6rkoxIC|=w-u!3~@>x7DM?KU%DMi z^1=ejE=2cH`fm$uj4T2fL4o3wV7l_+suTi%4JRqYib-MmRpo9=Gu9O1yvg|bnA30Q{S3IibuEw=! zoPqoB_4i-HXaRI8d{6t&A7sad#Lb-rM6T5=->B04Z;L9qzIOPaygkK~8h$f}IM{lH zkx5b;px|Ls=;MVeeD>>^)3c(ckJTk_6TweC5_Ax(qmNDr1C{}x^Z#t>TqJ4XGCLu1 zJR=mUnZxou8oOu&U>ql@72j?p`sSOH`~sKn@|T^pX`_|EBrJog?5~b!NKhh&_n~hF z=3sdqFbCD+fjOv~Tj-*irU|;#q35YA(D$5IX{7_UadoDobd_RJVKvoOI*CFul$ofj zyxgzyrXGKjF7g0eCdeFWA`%#_%^uML0}Eu8{aV0Fb&norJx^M>eV=4PQoPJ-WJd%J z<}yQRP9(Wqri+MMuDWOiX&64A@A)bN2PfY-u6=zvzrTGc|N6338evDJDH+YXlltsn z+mn8N|9r;-l=o>R6_Y$M@3;}XjkteCS)tW~{;JiOR!yu4xo_?LmzR8EW@edkfw^`6I3M88%*~;Yk!oFp$~+N;?GOX?1Pi-+ zcO2Lo)!NE3v@#ak;+;c(`|OEp!7?^*!kwDgtM?x8lMvUDZB>+e>ajc&`Q2PkJJt3H zU{`Tb>Vp%%%uUV~hS(}}9a(Ovd<)fJ;X3e4V4@__5JQso%q_c?-5wB~#NKb6`s zNP$&;1rARqiU%NjQhcUzBlcYV!+VvYfNu#-z?o;+Ns6-_M?A*ak^#D09i)@8_a_Lc z<)z~=Lb6C1>MSjx?=iRo!)1KL_(gOD{$k-MGfw8V?%bgsTMtgsk}SOop+_{Sg?$W#mDGw~9?3)_r>6Zy86Z@OpuIzSDhtE%g&&QSgzHEJq}DvIsy4;x2lUF^Rw6N)5JqGLGFQqN&r0C$q~;a`&R5IobI} zKTQl*OEr}>fSr1mn*iiSS|!LrUD)k><=}*_5caLmZ>P{zsLn zbND{(dHRz8Ll+>b01&lsiltvw#m+(YGsD!k)C?ET@Vg1V7R^q8?J(-b#3=tslwytF zug$=~Uv%?hjLh=)X^b;HkNx57l4eMrmS#kXXknRpniBIuWD}J0$<*^tGFd>6!;1oL zf-$Uq4eOo@FdRE=$t;Y7s}~5NiXu;UA#$<*5u=);<@&vYpXnuxl!fPm7;H(Fg>Ba+ z#;l_f4Olf2mt^`(rGsvFBNEbFMFK_TRCBn6lxn7JrfmQNVBFZqc_vr=P&3`hi#SeX z=VB}!93E$=LL7B#EWpoCY#7@FU$-5S`;UXde(1<}v>e8i4@V7XqEdmr~R}2%bHB4EJL(Yt+#W1t)P> z$?`Je4+?V4j7H1>F=xY>mZ#I5ckX8(V(qyo1)%B)I{A{ewB(4{AARSMoJ+|pvepTL z5sGs3Der{SIMk^L8FqTgXi8N+ipe;={iucpT&&zH%5*X|K<*A@7(~@p{>+_P*RXiq z8F1m=1<1wnSNIOd?H1%th}wF;MSsTUtGF8>{zG@g^|5OLi_WOrXVM$Ulm~tx;#9$O zy~1$3ds(k*jai`PuPWYZRvAU*n4IgJq>^hZs(|Tl8hO+8$&_?LrIgBt$`PZUJPu#6 zIAmg{JHC)?-WJ9w`!pmZ3^LEsMM9b!*EyUxpu!SHx5;eu>;UMV|79}IrMKX>8$?@y@5IrEg^3%%mb$a)T?+5$K9wKI>pAGXz>E)s zc@!athzk^n-aPuj+vs%)7B+pon_1c;0e=wkz9WZfi2YpW?$O+oFkc3t6}}9o>FO%3GazqfGEw}Or8d;z0-xJb<}=$` z=r9B#z$m^w|IRt7#n(4y+JL%97dl(1xDy!U-q3v?X}v24F>JlCWlKP#>0+mTT?pguGg%R)m^w6rdh4sOQYj0@6!JTz5>-RsWrQ#z ze@mo3tw)c3|FK_v>-GjJ=?Oj60X-mu|E|!#GU5|Akd_|P@+7Rt%>*5t{zpm0yQIap zPP(hbqZ7TknpP@oIaC9jju8vge?I(K^UXz}IKR)qf@ z^sQU?|LR3X6hRFDxo_izog`oAwFoVfLnFK2%0lX31qSNwKgc4A{6GMJMNJT#aAHrv zhL|SqC8B!n_@qT7&oy{%(IQqb(Yj2`RKN6BLqz~|>SzN32%>^d09h?Yi7=1p-L%p^ z+%6Co5KjD|!{6+aDCA-PFax$Oa~10TOsFhu}-MCVj-Wdsa| zzu8;5&Ogl++uuexN{#s!prf|30&f3Lb!hgX5|ASxPKO7A@S;oOEV8zVP-|;81Q2)L zc#Skb&r}fiFZV``R#W%|Kmz`p^L%V?4cXCrA+cd7DW<%P#P!A_tqLwp$Y6BB z0IwnB$eT`$8HZ#x^KQDPl`=d_JP-azyNVadDNFn_Ujhx9)<~APj5IB2K+=gcU~veA z*HA8g2QkyHpSHZr{qja186Qi=aWF*ZQv^(of(gLnzz+gUj*kKvVSzO9fU~g*n9qQ) zf1Hh++k)Z$aW)Eu|Hs)#x%JR0^!~}dzfP+-yT19`v&H`u74ai z;ScIM9?_2Q)`|kOrS&!0%;2FQ}OB&z(;HRD8XnGNaL}>WF zV(GvPIQWE64H#~p`;>R_#WrC&8^LAMtNGC6`(~eHg|_M%8)6d}Ko5Yw9S~x_=VmxD$h0YpDWLO=24MG^~1o~;rUqS zQjVa>!{^YmACP`q>B6vK<8mxMTKRi~3HThY1bolUDoh%EX$Jn8Jc7VH50KK6cgO^_ zVx>C7>(Yoi?AEHc&H>}N;!b|2Q8$A|0~P6VEH_%2YOBtX3g4O}p|Pv+hBoy%9gpYp zXF}W&|M(G`ny9OYD*vzaC143rFvbvy7T<r)qq(x*qlcyUxWkXtjP-QA z30&n(Gy10v)74%7gH^CcFgp5EFcLVuef9+egF1iV7fhG}@ssCNq%#%0nORN5IfD{^ zn_S7zpB@UAv+Sp4e(=|3LsW*V`CZKNt)WY=sv(BuP0Z#g_lX#tstyH@Muq-rw&In| z#EX@h7o1DMuCJYu2kEZ3F*N5;l2+Z8Zi`YC0@iK8_d*4kAqv}R_{A;LM)#HPz3; zA9|U|^RfXG87nVW*E_^lXR7z-5*j}}k-orWZu!jA#c-Mf04T*ETufF9_AxglS<>UJ z;$8NdhxA_u@CMT%; z%MLC-JsJ`EDtTH^m4Y~pk!@ahG~g4{RdYq0YcQ*mB+}-sg;I=4fH&BA+(PX+Bm>q7 z;&&Q##CeH9K5$wiJ|Jf4S+N>Q?GN#hqs@4JUm09|!d5yM!B4(IJJ+bdDj@}|5>hs` z?%GZ_yvQ&@;#I0YFnrm#c!k875kh$<*!M7`{sj!LX<`B)qiRo@_Bg?5ZzQ}Qa2OK~~&aLC;K1~o12zClf?!<1-)pj|+VD{%RbQ^|p; zS6O;D?ip5^vW348K#OF^-6C0}=oPup$&(CAu6dP`9KzHb0DNf|z?br%S|T{)oYb%d z0Szuf!O0y(kXT#Y?I3saVF3+?luV`7{WZ5Kpe2F=V4804clnlqp_h5703ZSxS8pXQ zK)aH8-<#qCsAy6)N(emxfGPFY9Nrn=_88+Ee{=q*IZ)vRM|XM-P<@lJ_5@I*T%yM~DRQST-5D=`iB;tp z;iH;JQNm+IRmP(uowEjLaBC-2(ns?2(rS)xTRGMrvl~fk183Wf%!)NDs?#=JVD>=( zyEtw4+Q?Bf09PzrD<}i3)2N}=A+Pj2`@k7=_yzIp1pX{Ty|6NMsg1nOked^)xu^~+X0PhUEflT=$fzWJefNti78bN6( z*esMZh1_aCCH=^s4$xnnJ8h;-}!>^>h zhCYS7BwbS90Sump$v^7YTfZ!elq`gSezA7~@gk4XB^;fAkIT{l)S|Sg^=SURdYPQ+U#*+wt8#V z-#sM^Thq!&OQ&ETCB`lTn)l<;hs8AzvP6~YJkAT-GC^tXFn~J|-+pljdXMz49v1Z; z>EA_^n6(2E%xLvzJHGlyS>T+xkr+w$cY}Zl z^*!QytT4334EWtlTfG!X##^Q1Sn>??Js%A|JZ}c)>hI5cDg2d3*3Xx!{6mL-`au`9 z@C~)%>Y0C{!TEgOo?Inz;2`_i^>4={-1@p+7V1E=7Yp~q%lZ1+({XUJWsYIjU9t5t zF1uBCFRPtyO5?&G4p`RDPv>)GVQoYFpXLT~H@44w_R6kqBJ+`tO_7$c-Og?sRvd|D zHe9Q4zp#9~*6a3rXQ+z$+2k~VB$LEpoTSH+%&TRsci)@fOq$!>O^b~Wyi9*|Eg85&R!-jU z2Cv^5=-Kro^nN~E%OvXPwQg`nv5#E*Xq?V|Uhof61?eGCnL$hy;s#nZC|G3ietO@` zRmgn)xTn`ohKl1w-sTf3^@l)?jI@@zm1u}*U`#F9Z}Iuemx%fg`5JEQBjL&wHd_)3 zAD_dY#1Pu(!3g6V$s&tN%}fH1%OBY98NHVmn~OM60$NTJdm5dhue}U%i-!5lJpv$ zSciD`OPMCeaTNmCEg20!oVof$a(H)ABbgYd6vK82*8Z9X82i%U7J9pXwF0`zVDcy` zG^R5PpliL+OPe_q45qV;GFl268wvhcyAQUqT$OTPHiC!1XSOQH;2hR_`4gaqI8i^K2lytY)E|9t+T3cqX51rEJc zQQPz>q;l3s)4a#FmdM+N1|4 zcPsUpyri$HAdoB*DM)hSgQ5=!;=GJGGSJ7?lnwm3ULt%U?{z0Gg04j}f}Uw;KBai+*M`smQR8kYhlXgGF=#rO0C`8ZPm#x@`n1stc zMfJw1UQq zfNW!pmPEjn?{mar{+tKZq4QY!cWjJM)mBPOxt=mP9XUc{RcYz>B|uz_CrC#w!)+k% zvNCLaeKbj)|3l>Xm`(ROxNnp?Gi^5^A%ba^F1vDI-rRkDo3lVhhQ_H@LEGheV74S` zT121m&1-L-Atv~rg;z}Q--Q?D;=eAuo<75mGs@+kv*bO6Rtw}_o)5V>pSVWQMLC0fxyvY2QQK0Fy2i<%EH zfMEp%H5dU83$|VvsP@Q2xg)nLHIO@%cks*IPmNex)h#6#Z8|yRrt9b(CBQoIae;>N zUp7g3#^zx@*GvNSp7|X@s5cCYvH%FBkT~rz0SyO_Mz&p5WR3jbXQ7X+u;$x;tJ*?F zR!P|hTYsQ$J)%{TQDO01W;xp018q#8Cf*t zb}h7XV_Y0!5+Yap3h5@JJ2TL`?@kkM2$ra*j&uly?$0? zxL#fUfMh1|nIrjT?}e~UB=PTGfD`F7c|G4^FIIs))DwukP;&l;Y~JbR11ID3n| zDBaOy+dm`csczvKmL=Oi%S&uH-m=R?fc#{opZoli5_3f#utI+B3G?uJ;{1b6j{nZw z^>gFs-b!KeE5yh^fMxyZ0d-B+O2QKeiS(ZM-RD%Eo{4R;8pR-Vf9tgkgU*0IbDWMp zaw*U=+CYbocHewB+}s0IA$8Op=c5;7-+$qpd;d;&`o?}|^Aj?%au(;L6#xVRj%~_L zDwy@{PDEA(siV$5A$$BorG>q;!6{bU`6h8v1mn^q5LyG-=1yu6Gvf8kAxKpU&VX=} zuwWpr9(4C?-cpYgGwKu}*gQ=3t(+qRVWEuB@`>*mzz7)lxhH^-^X29#nqNAj}G*O5Ic; zG?KQ=ur$n1u>y~Onq;LFHfh5dGr;54CB)@|_RIKe2#mt)on&NL65TT<*rLv8)Z!+Q zCM_q5qOJ(Gd9Q+R9b$_o;y76n9+UK}ek0mTw6_LVc)KNNK8s;CedMnyQ9{)p^n(!U z#f|uHbr<;lcjo{9s=ELb6ksJ)Vfp`c-32aEHg2|mex~IA2PGId*hsnld1%7GKNb~7 zH)A(*QdSmKHy3wPHzi{ia|bt9QZ}~#hY}3`JoEqe5)5qYY@GjR35EfE{c6JIcwd~H zzpN~fXUOyU)K8y{;m)PFC&&kvYCNt`_eGkj%^|0gG`l3{yKVn&)U`*PoQ*w_+72#J z#xNq5Sl%^$PQvW2~G_Z=T+$_=xGor^UUvyom`9?m!)ylamJ_f{rp-rs(F zy*T_{oh?jv`+OL=@v^=`*MhIW;-`n2c5dj2zjVb39mnnOUX0`Ttq(?^!AwVYI^*^E zdSu;Eq4_Uw=lxx=;_G!D3XYxFhrvxwl-HdVFOSs`mal6S2y!Oxi(F@j`29cJp0=(w zX4`uh+fJ+=b@6#_3o6olWa=b%@0nFJa|gMzXt>t(#U0!>v;RlI@Ox~-xOatbfl&LB z)T686({Kxt@*IV}>gvmcrf2tYdHZ_w-0GjbqqDoNwkKcB)fYd;!>+H_zxCul)nxXS z8{Em^tW_;phFodA{32W%8nu-4JS)$(KIX#>^+6dd&H6Sn=gQi6Ln!Af^nOMSsOT{3 z%G!KG8045^gR)nf1qJ3D)0E%kFy^c9D>CfLpwEU!G`Zn0mZ)ZUC>+hx;!Ui#+_or%;BKt>t2TMLEZ3cU!FOJJnuqnSY zTaq%s5@AbAqaI7I+$S@A#NzAg8l3X0D($Z6WPUDB%AQwOOwaC~Pg72=B*1|p=ip;q z@Y=KDe9l-J`ot%Pqm(94`)6OZrrhi_{|MbLUJ98^#}q9C)jrTo_v*1d*xg5H3tM2p zK;7pusW0w#&XI;U!&&m#)*Bft1f~1jW@!{@c!y+nahw(KA90_H z%J(6f@7*VV-4JeIcb}zJWkJ1h15eHWtpV_0oPajKJs=%`X29U|FbO}&J+2=r8v1$g z3q9FPy>vgHuw-ZB&t7S|`(4a1weQ?CIu@U6+!j9w-ZR5rr$T8Gpc>r`R1r+LLVWnM ztX9LqjD1{B{j^|t;s8ErYe$qc`_KeFJFZ)O7J7UfpJe%?THbE?)z|y)k(;aM->I*D zuC~XbQiP_Yqrl1H!@Is-XbOrfeTM6u+7qgtgT%EPs#^Wj*ef!mA9ym}cU8|cZtg+M zJS%h_!?)a?EUx*kw4BZCgU>d+ZeRP5*9p6HyoI}4^r>m(z@gwsY^T3Ae0PSOco)af z4ugHG_Fu1FPNh!A6`PqGHdoV^FZNc;f#Zc+9`=&Un=LbfZ}oiBTAjpkKkhKPZdR}& zk=Xrcwbttnwr-j1V?;Dv3^hg)dp>`ik3QdbA0}~FMb*K4y`NbfV?Fx-cF6d!Twu(+ zWAcIxpW@|5{PP`K2(qWAN8iYeK+8+AY3w>96roj!w-$+x`cO^iMz?zCDT6f3PIvUr zyTb;-*0bpn$NXKaQ1J2VYULG=BX-kz=OdHp(i+@;+HSB3z6e6PK+`H~CfI8;kRT>| zteIi#7Wau7JhG?Qy-wR~+d1*ldGB~L(Sf30$Rqe#)`AFTES-ROChPV zY#fKz%39vbgV_dO{@xL+-%}so!?ff^`f;kROzc;!I;Be+@e=DVIW6EVMQ@5|XXrOm zXhH5g;Z5)%&rA+I-|}@^Ecgj4R;I4i)J?dObzY2B6TK{sV_lzhJ#&8Q$~HwbEt^?J zp8+Eg#L!iGzntQC6E=?>M6Y}3V^lmL_;{{+;FB&-Iw*6FX@qiTcY0|3ndE3cE5B|s zUf+@duiwLf8;x}j>E{i*pF&j09;%w4kjf{Vk`*@)ou1BC(!00XYG#PWsB2;komT4< znXskalmwxqySr^~O zWJ^c+GY|87UBvdu>G3~`ecAIvd2wK9$MOQCzc}GD!h^WSk8D{#P+-SkyVr%*IGK60 z&akSmz25QS-tT_aa|=k)Wf*4K&q$q$f`SXc}nFDaD#b|&ppNpH^lk;_8C z0Ko};l3=5Y&$bGNzva4J}V>gswhjN@Dzna};%>k(m9I~xAq<>m5j z5#!!VLOp9#(~KXRzw>bY1ob}lYQcV4Plo0YL>u3Te^|!Foyh5)?9wix)k7vRcIkS( zxVe*sv)1SO>+*L@?A}P5f4xIn*td1zW65T?)#-M@V*O)J?K_`y)w`cqNt3$@kN7-LzL%Th{`n*n| zzOMNt_?F@{kr6gs^@Qm{QD8WGTP}KV84H4aaW1G-qhx|ie~MZXAL8ai=*fSuTlFh3 zRe}v^6UVX(FF}g^<-r$XKKycOpl>}C4@aN}5#@|W0miKc^(1_mYkFVC#{a!!UcBN5 z++VcIH3X48~7UfRIpthiR^v{vM?v=EsBx#p@=O*A0A$)9# z_>Cjz#O&+5G{PPG=>j=aMI=+1^wWaGho1K&83D=R;S+Ww?3;M=qzXW~Q89|6|5YGY z*tZFSjj&5tULBxT3XCmkxB{$R26fkLU)o)MIJdrHIQLlpVT5?P!>|Ma;IX$4i66~< zU^w9Pl)a`h6lDp}M_1yTRlo6WH`>EtW9hk;*HYI(X;9mRG?Lgol$6;G=w(v!Zllxm z*3#?hF1h^u;yY4Ck6o}S$j4Bx3{;!2A6gqvEPFTm<7DB9T2meH6R795JzEV;*w9li zJgmf66e*j6dZsPvJQIr&!sfZZcTRF)VQbE*$#E_#KUoL`;A=|;=SJ=RP*EGzK68;6 z_-&}B=Jo?V;CBrF!_A4cDWAjbsMZ;sP+`U{8Cdn`iQonkaSSJ?EynlT=v-o5V=Dtpf=Z_a);8eO=az|nUS+iCO3sRIpx)bxooRrzQc0H0*$$Qntkj)k zEU1E|EXXS(L$|-MuM&~lOE<$3N*a915h<52)o~R%0|LvXv`Ne zB4`ij!f8LJyA@yyQQa6=sq%jw%gWwwpCpzw0vgwZNA7_y%`3Ei#wP?}4oB zhb^cS;$08vhx6IHM2L5@IB=wWafqZqJqG{ZFE4#ETn4f(SL1lhXX6+2)2Us`7EI?M z{U+jAp~A()>Y?p8TkeoXHXH66Ad3yJi^9^f2&lMVj^RxSoqp*pXdW1CtdMJ@s#t^P z{9w$;(e5SAkndU4pJw7$OpRlUvwEr25tz$%7&^0?cwB(C z4~biS$aGJ@)GZ=fhR=4dg->XR&4hyxzDHy_FRLJVIO}+-RL&?_-k0Twp>`&g;dagn z=jM$TC&-{qkk5e4Lq@3w{E4(n8?4gY&bSH4iF^VJ{Sx@qKW{n(Vwnws`?9f%HIEK! ztYfq-{a%85f6nfVjFpba*v>+8eGDn}+nqJDO*e61pDI#Swy7h+UDHU2np|W0c+zSi z;CJ`v(bn4iBqAr~!Nk!4Cg22PoaznjH>V(mr^Y+LMxV}&8UEm0yU8Z;^ZmP8d2Af? z=Z}J{#?s`m;u&){yyw>!<5RF9VX^MGnFZ{vpCfwmmHK?fS7y#nYX=Ei&ogty_^gp+go zl7?hWfj6*Eo?xkB$wHI*dl7k6B2%BL)ls{2)gS*>lB50;Hp8ho<#(CSd?P{A2J5RO z4ds-cd?UaDX5ATLLxDG!ROjwZ-FSNm{NLcw_YSYoBWa)8kc~Oul)xdEUSoNTnxn8O zd2(0Jo=1*eZP`6SO2LW8U%{!O7A@*g53jFa!$7Xq7H(kmx1rLCd(3+cx9az&t7%S_ zq^a{O%Ut$J9Ym>q0aiizU#0XlqY^A#DD-oo8Fmp0Pv}?Kfzn=#dbx>05~aiyi42Jm z445b188#6Lx8Th`UsDkO9pw_sgvjO>!(TD z1O{`eP=HJDDUE86#5q*RrSo*w85CM&ev+5dhlg7U&{HSidrNNS#OO4|z#W$NHfPAIDY=Vu9nWsW`*Hlia=;^dgHm&RMJ3}IJIRTa)AL~!{S zx=RCbKj;{9I6Wr(rSY~42RI6cS*UXK7T0lf)FGw85#izH9JJJl_2?gfJGZ1}Cja{Y2mSI$Ra=9W!bHoz*!#iU2eyUuX4XGEwHV1F*Wq1@ z%vR}DOq{%to2=S*-%4I&O$_;zGlLAT2xRn2g;RNhg!W5noPtbzQnKU307lF&5E`;B zE?rdD#3@+jFfQ$KXF$2E#?Vxp$}~5dfS?T3?ex%5sh>#+PAj!1mjWh=#Pr~leiL`0@tsLlX|SPAmo;o1 zoP!|FkfQd5MPpn8!J0&bB8o}0Zm$@og9f5>Gn!tG9frPBS@Z^^1i^WaEq6yKCbZE~ z+{9f+Xoo4c{4C!dkn4&B!m-(SMd(dw#E(U-=a z{J-?_y?Td{z}2dmA-YeGdtcm@a116Qgs1D!{D;bEw+iwjt~Lu8&|=#<__L#`M%mmZ z|Mo<%N;dqK5SUcXfH=Y2P7FIMnf3y?P4VT7*>2O_m(hxOc70$u&q3tSu=`lC4^MGX zqD^_uMM`t2FgLR7rFmDaZ$PUksTqu)bt8>q8}<9ei&*PGWuPd~t<1^*`Ote#&~{R} zV^ccY9dZaxXuMp`f)Hl1DSLqTnHYwsZ69hrMnjy4qQOz)@E3?bf{5#w zUtOWvLjTW|kI#G~SA?M89|atriiJ)?DlUo((r<~1w^=2Xnrz^wik2+*uH5rJ)vDKt z6fAF@uco~+yz~@UQL0I|Hnfwnr`n%UY)}=w1IW$9&c2n}$9ymQ?GmwqvoiKQ!vkA1 z0Yhg*S|OrbU+zjtCl=(QBABZaq~VhAeGfq`e;g}&r@;H&4XsZ?LI$Q{dk)lcQ6>VJ z_fmm-R!OE2S*r{?`+AZ5VjQ7;1l_T9ae!c1pA;qEW_k!t;B;hD`c^umUI^bp{|E#A zfHxh%X4Lm+C-!hj=d58#UKle9LcK+}_X?a5rU_B!Tfch`YI$KkR_9ZT->9v2b^ZAf z8W~h7%(6mb1mtCPpSe^q$>8B*!qByebdZ_{9)Ts2fI#93)AltJ-}`WI0b`3Xg16?H zgih=`Bc_+~Vi~wCARaUCu_J^O2rp7{i}fZN^$)^Nj9xD3gQ!Z=`K>Ae9lw(2IvS^m z1_axlhM&1HWFxcmO0156xJOywwL0#EmE56us^%&$<8aV{5cAHFK_E-5k(y$PwiOdy zJ_)^ojK7-7>X6MwjyvzPri5iNEM|E@G_TYqkV|}j7aCb8rY!*|UuC4M`j*uG{L|eh z2LVB&a>iRiWXuPz@h#?fBQM5`l3+q4_Sw4`0x)dL8CP?w4 zR#3$p#@1@$7(vGeDJ?$Qf`k4@0yfRMlU8nOD%@wvg6vSjsPI6dt{l^k$Z44YxGFBe z2}sJrp{r72k*R|21YHFAp!uNRkT0r6Si;%Mm;{{A(O;u0ORL1`=Uy^4(v70j<(CvA zWF>H;35ENhb(kZkerkG(Qy|?&-qPDab_xL&VrQ*yyd;25Z?OjPK9;9P#2A?zJmN1) z+Gn_=Ll~lXk=*pNOz^{rsNaI!cC6c70N1|E*WtD3%xBqK7uSaDt22RSLEl}&I-Vx@ zufth(Gl%E0x9e+qL_RNd`HT0q&+&J6)t4j)ZKymMZg?x-ByUcco+7s`cHD*XKSymd zycm7`BV~baXz%ctYO_44NlpI6ejGXS_IUYIe(@b^yUnwvZtuSWjQB#4FH?)Zj?^hvnHQVfDSVg+UXfzIHi9IO$&74(_^9?l+-4p&bu^fmVR=+&(GXqYFS!U zK+vF*bFEpF-VQ9rErKj(dUWDk5_cQH3b9Tor?zx0Zj#MnmHU=ulCo!1|9uxmvHcj* zF5Tm?bH^Id?@IhM(QiZ@;r!BmiTqtcK2y+$&r&c-k1Em(p(S4z+&S~0ZKt-#*6O~O zE*A@kaj9RLZfU~~!`_J)Fik?jxOr~@Yo*NU+cwo=e>{l$f}KS>bzH4; zbgkN#0X=N5!w5*XKoFOO%=t!QtRiZeEkA)XV z+_6Cs_#fQ8Q+Q@U7cLlgobHZ|j-7ODn;qM>jgD>GwmY_Mr(@fm-T&dtnP<*i%+*|d z-+rog?Y(PN)q2-ktJaEc_ClpPNYPy~hgGhUUlZ%T`ADQ>|07>{uHzNIlmRS03`0T< zxTs|ms%|1?`5`7-a!Oh2NhQK2TBl!^-UH#m<`fm{lK|4OK2vD|SAasJ^z z0cJ?5sg`;~#2`4I+rFHmYlg&KPV(db?Z>4fZx)ETvR@v(UU z!lC{;Ocda8?1Ktwgd>WOqp(R@+P`OK4W{j+sMGmt)BFOB)d$U%RQwa{cAlBl#9$Fr zDPSYdC0N#DC@~cRDKtQi$sgS{W~g_>qJU;!&>mTu=@XwUPzFDcjXkL8u*K=q-C$R z)!Rn`7UAONBo0JX&|QB4$1`ULx{`%-`c91y8uTti0kz$BL zS>-1fmN6Pbj__1Rm;s7|{hoM@u-4Hp(r{fLE$*zeE`^!+(1-!h90D@TBj|kk&k#RG zYF=rzlDUy5P@+@z((urQS}fTXD1{oi3l@|Nnwj}1v-^%uwYD+r2=v~vR#WNR_M zjgn(L2ma8Y=uu=C#|paDPf0@b_f(jw!DLAKMQjA**McQV8nbL~S`DO2cG{Sze&p4}W~PSu z89YkXjMdYt!gt8t&^*@Q@p$^)w^500Q?)s>FByqDA?iRTb9vQq%_)1?BR`>rUht}e zc73(IUuo0(hWNQ7opFvd=J98>z3uRJ_?&8PoJDFFtf}{Y%scxx)i@ZUj^h}cSu&TG zk!Gm> z(?Y5_JkS^y`P~%^t-7)yVYADw@&u12_pyFBZBwWFuKNR{3=+-Wu2Lu;UR#W*@LA>S z#<#RCz~p;I|GH84rv*)Qc!2pkZs8SU9;d`(HDTKH`>97ns}JZ*R7a25??6pWs+p2N z^r|`B!uO?$Io#ZL>_y4>54e^C2RrGOm~aacY{lzdap|K^W(SU?PXq_JJD*HrRtFb0 znv#E|n1R;mQ2opkIyQg=Vq2&aAriWYb4QOh@O&Jp8q%W=I7!nY?8!8}uS&RC0 zke`vZ4m|_b5SI@bR_^$%XlQ}~pGJ;LuK}cT&-C{JY#wAf6_0w3o1ZEF9kDPRiYx^q zO#{Wqa9uHmM`DPCU;P=ZLBy~0JbD_=uw14dgtpy+ho-W7T%`!LFbo#NB5bsl4FCbY&)53IIuds?7O=amRKx~z!(-qcIRThf$ z*&$d(@^r=VBieXrcm+5kWaKepxna*n`v{X9fjAEd=2Bg^VI^e2XntmfT1%*baTPd# zBVc4M#i2@^U%jLW7*}bC`>BJf(xyvj>H0jbGN3Ro*ex;XxuBVg7pHlhTAfBVFE|~a z@LcA)T6zyC_%B8yb49{{f{&VyD=%mU6nxZXT)wotA@}*@QQJ*Zbmb0C@KVH#U=tE1 zcL4MMMqJWJzp)w24^C_AwB`lfb<{HwP8ovu77uhXH9FeZ~5g{o`Ba^5K z@c0=LzNPGNvp89fHU&262IaCEg{*R4j{b; z7RQ+LYs^TU(f`KC;2Wv4Dy|7Me@s0 zv{IC6D8zE2lxS%DAy`BsJ%p|je0#paaE9MY??P8CYrl-f3O^!nuEx3EVmLZ$O5d^B zp)*JNEHPWP;ij-UEB$2jI_+BEmOETUwQv!Zr|ovV_OD8|l|%C) zp7Gz#VEA$AM1;?!;40R!F7?lbBIZxJY&HuYxJ3!v0VW(-Bs=Vr*SMEI-b4l{R~-r{ z`6(e7kkOTcUcj*sL&9JNSHqr> zw+AeV`5USb(uTJeJW-l1U(*k$5>T|CCXqt>}*dF^0dEs&!MR?-976 zv~-NzcB*|B{RgRX00Y*n%c23R$&_fZX5&xnMW|n*y{w{hW7}%pLX8ra@H>7*f=6B$ z)%+*G_GXprz})-X5pNDR3Q$yR$Prlr1)-t7|my59cFWL~`X%$_+b6!cd`dx%{co zKVpETBF#E4Ndca~ZoLodc0r+4=yyoCqy+H2PN@Ikd-W>;zV`^=dxv&}<&{g-@{2W< z833HG{2!c8x`_2BD4uUSAqz&S&{O0R4#TXatV~~j1wO1SEY^UFI5GCE#P3@fB`Wo+ zrV_&)h9WAk(odI^VVD*vp>9!-7`dRu>4GVT=@PX`)b`8JP?Wod`N61C_=WDkLdNe& ze3e3xB~QsAlc$g6CSlM4b`hC?T|`A-7jbg2j%wZj*hK_yIU|>d0(KFlqO*j0Ahhd) zWGXgz48L2b`Lm(BfoJHogUa9lc>fC!=?HMZ?%74Kl~eT}c4CzKZgD**HA=zFde-sy zph|+k9LpjF(!3;ur!&dbdc>$CWcIr#qCrp3<$1?ksacnvy>Cst_?I&rVM9U*2?4~?SdS56Y(G>8$g zB7O$VTBtx4twPZ&In8tfzHw*4II8j!!>)jN#Wk)lgCV%ioUzcNi2%r|YH(z=nERUH z_n3(45k9C%I{!c+HLCrba78(9Y6(AeIoy371^)`KFT%ro&qg&dEEWYgtmVuJ%>mSk zqHf7Bf`gs;Y>Kkafi*Eg7KJ#@_splywGGgeLQbd8oh@Q&a7>xQ-7kSHF~2Mdy|_Ua zr0y8d!%q&L?^J2)CRt-5-~)65T1l7HSAq=m5jK7jVk=#DR5Skys16Z@>ZB7GaMXa? zZE#0<@RFf6Z>x`)wE`f2bE4LHZ=no@IUvZBZ>ki>O@OfmoR}uuP`(a00SKcxDs&{%zXv5~*Ok}IX4++y9o zgh%Eh1U?n4j8K-Ii52oUEr?sqSBJfcHv)d!RD1)rqf+3Z7ivt+BS^_V#?ed@^;p zM+_EuyTHA$s(kP)e|=cjtX{A*uhbE0`}5WM{OJ>vi3CCa|HeI=@t=$GfAtFfAMV+V z|9^4M{y$~H`~TJ>`~O{1JjVYgkL-Wl{J;0eW@TVz{GUCt+cPz$_L~xmE)kx1Jy{Vv zb-)`X=hY$!_~It}&Df40oMma_I?2~ii|J(&hbUM{KfTHAu5%`wc4nPh4cgA6uSs-( zGuC}`r$9`v>kXYv&-d$N6JC$^@M!!k&-bO~Ew1EIxl<<<^unjBCCaZfO<+t_iQp;K^k5|XiOS6y1?fF`#$IByd|7p>`~uUai98Dke!Sv2XLya0c!EfE7tHPX0K zS}Qlemzq8P4mu-coQ$}-NWU7`ovh)9D{OtJX1qKM?aVjxq7~=9*Rmm;M-P~p`cTUV z0#&epDs#&~l|i5iQxj076sRIyHng+Bd_L80#>j!-|FFOC_O|)Cjs3aQhR(|M z$y+yPLor6AP3>bA1{ii92}555$z=`+VX{fb_7d|3_K@ySwn6@^?y z(aLG7<~qSF&VSi;o_3XH(MH;Suv(?Y%#u<4d(&r)S+MQP^s7yqvDG7p`=`|s(1m>e zYBp|wAH6qg&81s^0e;14CRqCa)%L1KsD0dWo|rx3KYM4@0`K^2viP5RjN##9t;)=Y zdhlOepqrL~mW$qNF+6~l8+g$S{Jh z>`-$d%XavDcBW;mPx!D}cKW-m(LHvI7anQ1b|jA$y^eL6--dbZQanWJxXJc@KGRlu zxbJ_ed?ef5>cH`gDLwZ5{d~MT-FiPcKEA(vybb~WHGh80@7qBQyJ;oASF%036Y@g>_Q5D>o;#&I6pp4hFs{bs(Fr2@^`nbHeVj)G>r4^jDKAx<*Arf)R|pL)`ndER96 zA1CT`m=C?3$cfL{L_IfEzAkh^AB7uqVfS%Ae)NT(`aj}#zKa^YHrlf-ox5OZBQ|~6 z`JAA6=jlb7?IdG*rnI||Eqt}c^t;>cv8j_&9R z3|_~;^W#+v(xei-d>dLcbnJT65zG&t?X+N;sCbq%^S--%AoL*Yi> z2eC`x#;n7}{fccOo7!b=da1_C=5?w4cAn$qu1AgfrcLv}@$OpYWJgB#{+xo+A!u&PPST(G5o(}e4v(89K|FwZ|g?y}z z=#OjGMlKPV%MrWF4i+wvmmTg>dE=AzK#`=0D)84dd){EO;t{LQyVFq(b5YWajrU`2 zc0|FJ9}AZwovyNF{m1S|2CffbQL;|1Itf|sCzIc)eKHUHK4(AI?9_yOJIA)U*I}HV zG#cdIxIH_2F0Y=QCAQHH>vJ4@Wxqb*^6<-0yy$WARF>l8s33F&Yu~f?>}0=6#`ZA4 z9MX==s09!YAs^noPUB{CXrg&s4j~Amd6Z`f36pMgj51xY;-rhZ zD$F>kJ>J|pU5ht`QVf1fA3?DoxmMA;!C$0I_3nSWNXVmn&n(XODZWh_r63sI_U7^) zbuswX=LiNZPs$J7lkvCYlpUcTBbzipj<8|rfL0p%8;^7ds50DYiY)SKjI09_h(-n{ z0gDxO~ZZeS9+cPz5%ggnX5nt?8 zh125Y@9FN`FU2Xj8gHLZc%hyKF}kB5bOu}|@@Y8!d=PhTfjhAcxsAX{3WvFe z+iQ~#vxU#Mg}qPqkC(%0H{!K`%bk+%y z$JBnAx)oC0h>^{nQR{2IuH5NWh;Pq>ZJ6S;{xzhMPDjs6PKY7($OU{LlbeuT&POFH z5nGIMkp(>U^xiGxiq~k>v6#3UIE<}g0YPMPwG7N&j{0QRfH}=ntCnGRZYYtE*Qi^XHVKN{Sd}PpQ z@xm>K0`XKAhSvSYIP^?R2w&dia&qk|X1-F<5+$2eb=7~~y}1zx*yw0}sTXlsy=i{e zIW^;2f}MR07VDCSoMBALp^;6;B7?6FfRfWqva4c%Ba>dj5`)t|WhGvv52G1sE|}4G zm4`5M`|7Gm-}{YP`R;x(&DM65Xs?^ni8cvWba4m@pyFnvWh|* zx9*$Z`Ge{$l13ru@09gUVy@t5$NaT!s2i_=bZ$LjA*%5QU$%&8Bxq z8HQj0IfnSEO9A>bI8+)OG%oOnUCI*6R8NMgi69+HJwzHA%a>}B`^WL&jxrhM!x=pv zV}&{&<0CUcZlW;9jz{aT|BcJ*Tl^9y+VfQMCM2Kzc636nz^^GCZaxL!jVWy!aidJUa-+A_H4vm4dk(+ zom5(8U%y&A-1U4$rhjqD#TauGBGiVb;e&1M72D?0yCWCMU8l-AOv8((SVsv{z&rl4=#uZN}=mZMa$Z46J(VXvL>4@

W^V|1_0x9z4zWr}sP)b^bP`c+Kb&=E}0$`80 zzJHM1hLHar`2jYehzj;V@7xc9zzV~>1^LMwgm(?ZW`0RbyA&Yv4Hx2pLsan(1Zuf1%6Q1W@xXDcF}IN zi_T^Aj)CNT!^jK2%gIJsRbuHQ-5c(YzeZ*F(<%#1YxIB3hf4Zd0|S|}eV$E?=>AZ@ zxbMJInU4MRR1Vgw__4=?{o|f_U?)LXBtYdwM~uw?IUTHqo&(-ykbnkBvkE-O6ft;T z`;=obAP5o9GxW|gRhf!$la z70Gqnl-=>qJZPuxkqGu*3u$X9J+$q}2>@g4+IwQzbO{I64Cdp^@FrK;C;?&*}bJ#eMpd+OkgHG-^jN6 z3Gi~1#vq<#oqVBi_OQE@x^7OKtj5w;M@>^s)tKK zm8gU4=Z4AUfD;9S-R`g(Hu3Gpd^_j|#aj)+h}h23CB2P-(QluDA;|j$X3U6`4wXj) zHxuu+%rxDQp=`;;g2057PWm*3dWZN^WvWL&i3GxyF!KZB0yjdiyBZ~s^y9wU62?3Oka1RA!*hx#+ zSJf;QWV?|RCPp3}I%a0)stLkufG0as@T=UFYCXQQ4g-O*x*?xyrHap%H4!)?B{+E9 zGXg!aWH_h33pm*Cy6v5)V32;cpG`v;=1b!Yu3^DvYhk@UgxoGS$ z6IYU>-M=HegC{Ngx8T71?!2o}VHg* }5cB}e)EBD}xQ|614Z+rakon|DqQ#v)G; zMl*DH4Wq9iNME^9D?qxqO@#vSzq5WsMW_o@E#N0@tEK=)V0^*lA*yc>@?U=z1MlWX zuo=IR15X5&HOnlWcqlwWdfY?)j~}tS{CiVoZz+fT{r3ZZ$;bS6_L-14eob?QOcLDW zq=1h2|3VeRL#fYk{TeTbXY$wes{-6#e#LLF1q4?FjKT0Y5O@ic{8t34P|zYRWTtpR zWWKHj-vdHMVNCJ*i(%yDp<}s1WRcU77W@Wx=K>D4=Wssi2STIwTgV)iE{luzxKkhd zU`h{fN>vav6kosedZU!<2b-(l`Q*hXKa^xCCnS9y81cwdmrV_}k)Nj9=Ng>`-zfdr zUYsb?54IK6)&`3f+OT@H z9jYrRLvgsrQ_=rK`YiY?ZQ5;0LTuV2l_(Aj<>#vUZ6F9U5L#}}lY06sV>nDQ-C_5) z;Yy~40-}5HMF-BpOqOgbZmZMiJnhEdkl3CVKPRo~-?UCqio-JOZWnF=b~P&)hrD|p zD~wti;{66nd=E8D+~@{6v*1AYihc4!sig1@f4uFC_I3yk=_;K>#8)*nt1kyjUysO- z6~Ax@a9C|amCPAGGw;_FCob6Kcq2sRS16pb^>ResBi76vJOKsOKmmczGgLghs9Evi z6=-f|MneFnmAB4!L=O$j^Qb*p{J-F%oD1GR+UL-WLAa!YbQGQMDht14iE~oF8PJG^ z7JqE86ZFR?C&v^|+=tKVMN@^Jli#efLk|*%@0O5SW80p*=u1G336-9PAA{i_ODD%m zF%=M`lE;J6&m@2j2sxmVlcv=Xq>v{I;@KIbkgJ4u3ylz=s79LPIU-`VUQ02lfSKe) zATX%+Y0U*XMI2{Q?8eG``w=A$%AfeFTcTGX4};B<2s*L?brB~Eng8@QG$&B)&vJ+- zktrFEyeUkR*yG-)PMrJ~PIG2mlObsZwhVQ_s-TxEHf`;GzS|k49T(_gjA;24AE$?( zg%!(T>m_g+vB<6J4JZx!ZsykAQJ(%yi#dh4Jhzdk$;M^h?nzmHG>74)$7)CixhTgd zN3j8bTcb!7_zB0Ca%S51cLY0KI8I>#G#p#MJ}&c1a9lII#wX*?CuNu z8C<^s*%5H^kEbbqeR&Sa>|6Z0ch7Ixq#FJm|K$70a< zdo$&&lNkPL@QBqn!qW!E+2F9Ad07j8dQd$4Y;f-ZRf~_6rG9rPl&7V(e)Y~;_Fm7b z2_t-OQ2+5Cic)g7jV~BTHAi-~))>QfC_}Oa-ox79<}Hm;7u)}st?62)ZL_Oi`k}hv zL^4GZ%zs`q4s0qRboP-kQx@xrE6z~LK?0e#%zz~nDMO)$Z!?zicNC-e%a!rZuz6A= zl-daj`8O_ErSSf3o`s#T3JxJ!@4j31fm(4*6rE-D}W!5Ad<@_>)2O^x-K+uqP&8%FP%w@3W^Q=EQFn2ZRT0)@@dH1XMo#=@b84PS(hYrGN{oQ^V%`*1jYW$+IyyudPP zmWhz+*uBNs&vcBKab9Z7`&7=jTA}(*!H**rpx6w5zQx%ucaNI0#l(BMz<3)B%`rb| zWy=nUhZhVRKca5e_$SVsKXDfz*_<`BLbaXlo>=mu)y9roT8!$!QI&6Bt)vtTgz{54 zyK0SDI8@431M@P-@aKD)<8t5V4o6g+rx|JT)8w^ysHgp$_-xAK2Stk9EQS2Foy@)h zeDp=;Ye?Lr*^P?lFzHQ5o1)oQTO@d2nquOCC7yVBA#sWyeBy^fsc=$N#Mnw@1E^|F zA(~Lonlf(veid3!2%6_0BzD4-ArSEjJ=w<@jIDp|M*~nPmzJVThI^J#{5jVR#>WX5 z`6JXgK!pq>y2s)5=lCFu2;GgprbDG=&V?b27X2>Lp9^658|E;T)@uI?{xf4pW+eSh zB`%5C>Ym-Ly?r?Cq4{-JExu9;NTXzwrxve7Q$s2x-6q{C&u$rCRYf+L)~er%fbE3s zEQcqQ83f!W?^e+=oOb0tS202gRWV}9*lymYy<)amQ-9NKC|vATE<0w>D7+Y;;&Iu9 zz-UoN0d7%;i5Dsvho&|cgqy6wM(do`{L;;(t!*exItQR73&vK&4py%e1F{3=05>n= zEI_Ol|HO)^8b4!uw0D9qggBvqz3Fma>o#cqueJYL^q2PeLjV1O^K88xs_QiVmdz}d zdF8B=2)<(E!1+ygHppd5PxSELLY!p+S2vs{<*lOtwP?tM(@7QI(4Y2#$jM#3-MHd% z|NNhxuq*=L(xRa)u8H)Azr4P*WgL?;O+6`Tw!WjXp)>_{5_6y;wZ+cQunG#J{@Nl< z<|yXE3XDbKy@W5k#EZo9h^ojc1z^(Ts>taIP#Ca_2~?u>q?<(;>sndv0rjN+Lr^uO z|78JHL;hdngq(d_1B2OKbkn(B!+`RT!FxZi_j+%~If%maTK%}s&PnNJ23!mFe9 z%N_THV`qOheNtEse3<7v8nB`nXjn^%qWP~!ZIm_HC0egWZm5DSy{6X}OI*EdoBzmv z7(x;a?Bd_5U|@Tv`hqkWES%HzXJ(L1;EK#5#EH9ADWKI}#nV<)-FMXm!yxEYyD!B< z<)^WT2H3a|*K$)|^nOYCbxPe1!d*$^6%C2M^i^ao_y+%1H07xW#NGa{?65NHZE47J zqq7%}uIsAKUCE<-m!4h8JuU@OoLggM^Hq;0kH``g{3@#G^PKQ1f*MqvZCa7#W_qDY z`KUZL0*vfoN*adE3{6$IiY8jl!j_lx5?UBE&V8EFrI=PQ@>K13Uts0a9XD#JG8fLS z28t2P;bmAMoDhl;W*`mK_3r2u3|EObW!kb94zIW??lBE!-LqfQ#5E{!d>eWXy$gLC zgcp6Te@&DZ%?w2LFRvSrxAq)h0j@3IgBM#gdGpT8)^MyhsF3jzd)5sgT6^}>_^|U} zd8koX+G2aB&{jT{Z6{A0{z|DOYmuxyVz^qnAwMv?8aI%fR9v-|19qe1P@<&)vi-#o zd+-2*^$@z#dIR46tQ5}x7kaAX&u5gM>_W5~waCX|6tLfu4}OMeav1g79Rs6DvbX|+ zmIfG25+t-V^N1}>z-Tg{Y+*`Q2+D+|&7=}_Fxw<;0sl*TcD3KoU;VXmzM2sFwz}V5 z9iUEAiF`cSY2pbQ=xIO^hKQlhdx+UIi^6TEvJP@vK3BE}@Hk`aGWyKwvEJsF$QW;K zh!#?pUZ_62bzW8CjoaJ|_;uUd@(9#JkQ?@&y}hDw4WXrTw%G)|;s~i|Cmw&CNL#bo zpmH{)H>bff5sFcf(!wvt{?@I_TVtCyfvQ_266`6fT({n&#Nj!!@)pgDDJVSle)q-2 zP{p8i#t(k!=L6TfHbTI#J@&>mVeoWG3bym#Tyr|`&iitWH@8JpHYuOR9aY25MNJP#)jI`PM33itY4zKb1mM!li1gOotsWIO`5;MNl z^Qy@+8~fB{pmy-4CMZC?8=l`BvZ%CyC@vGBZtY9SKvoqxjN)Hu%3z8J><_<>K&0#2 z275$g9f^{KFi4X5no7YOg?f8ph2&5R$=vPE@zp!1*YdA0O)FZaO+#tgU4)L+pdvwI zl|?Tz`0aMyNr!3-zF_c+Xc*GW`Enaa0&fiqwl;wbIa8NJKrNkuS?loL?TKKDdFt?P zY7|@dm)UyLnkUJ3#ri{lumkFs*qHNel0d-uL8yS~H~HzrAXL#aHh~ZXVH=mS=pO}v z!fXM-gVeMTjbcIP2mcj7Wo!P_6a9)t8qU35%HtO^gZ5jleoBSupMdgngA3sfU^ty? z2vbfCz97V+63VrWIFHn9v@aMOc~Ei>MqycAweXlv|I!2DJ;z%k`FB_JZ=XHvka`SG z?V6sQ7gzpYDgoT*i0P<6nTY@HQW#@M?GMO%#Ho9LMhFS>EneAyiv#3ZK6Hhf?D!nY z^wT*)cTB^kD*BrtfF|cIZXqXt2M(Cx96tH{gHLgTfkqj9dkPVr{{U0pPDV`F0K2Ei zx5I)6wv71l!R?F$RDXwnjGMoH0S*DHpp)BSik|OOwutEp#t^U>@l>L_IRDn_ZK(W% zp}$>&rX=2h1X5kUZVdotn33H_-y1#?L_H-T1VNO{_aO%vB6);peJ;(L`oafobZYt8 z*MRrZ0ZggexN7Rl-oCK$Ty+~J(k9rrD(Ny<1Ud2_$P~5nWiWUp1z;K}0Ryl6G}NFh zr!wU`lfjoC0`q2K3!3;5!(rh#(ABI!WqE2#P-AAy%>sUPhHiEPGI+m{v`HJUUV?I( zU-<2-tu);c07RkB-~JXvY-T4j9f8ZL%0~MTko?lZudOY__fN3~({xu<2_8z}9>6(2 z!C|RFINLm6c#|S%A3N~g+%^StcV)EY6!togTyp4 z@ai?Uuo~Lw7GBzfbaafw>Bmb2K&xm=b_q-sZNI4{^y9lz9%F_0#HD!5T<^qs^9vFX z!s7%e(MYZ_g%c7OcjSImVFkziQihlKZXfmoP3oM;^smJi@=&T@MBgoCLU|q7g&lhi zQD7{}a3bSe|I7SJ#S|j_Z}Tf9mEZC|^K0rKCi=h5FEs@fnJ~TVTPo*m(n+ss~Lie&QM+jnX25 z1j$sao`P_#mUUgd8ggq_yVER#bbkE@&9q2%wn22&<|AOgRYkMx6$mdH*8d}oNP#F} z{^IzXK!XU*OQP7Te$;iO@mos?znL)+f-gsjY3hm)I9F@-8~-ebVgnk%qAt~28cQ|4 z$0>vP-hVi4nV8<08-O$MvRIk8hKmVxdTI({19hZ4`NL_yL~txdm3CDXM#J=^1!U~5 z{7bb05IxU*neBunO#LP(KrLvCq3NG8hysCI``1wX+r|{4Z5RKCj4&4ai+)3o3NTsx zuOixUzW#QCcS_gkbIY^O=(uq@ zwblOlaQuA!s`7b1AlV4sAxC5eex=7LH~bF%#7bwk=BB@EQ(j@S5tu~MoWVMV&}>b* zf6@_FJxY^N`YLnMR*H|WExmNlDthAm>H242O=9Fd1(DXZy~aoLrR^yjmAfh%Q-gP_ z{Hf4pYAL&edWt!}owC#CFpiY!aTtHm&S$*IB)1eG;mRE)m1%oeJEOjNxe`a3nD~?K3asJ3Pmx zh;C2QRxoZ6W6c5WkU81z9J8D0dforFa?35dm@s#-`G^cKOw9Tn%x%Y18a>kIkd0x$*Jp!v7xjeRR1 zXs6fLzoW7U(kAOTbks}fnM6~b+ zXfj)WB{UjT1~0L%t?9n_Z0S?}Gx z6)Ak#_!r;2J%s?@0ZNVEQv$S~v=~Zn$uz7*8<^AjX>VCu|Qrv^Apj= z?H@NPS4388F19m_u^yATY#zP` zUEXwq16qD%7v(#1IV>I5z!dFpR11y?*H;MhuhQ`FSorYp&a?2oZIthVqc72V<~f+BUbv!X{!ez)n&e3e zpJ4}fBi9v}E8!XnD3_L@Bg_m(Ka6@uu#mw7->jaI;(yD?9=r?>0uyI3Dt3Z2xb#2~ zj8!-4VOC4PvFa>4Sf4NMT8qn8LyJ*Kv=sm#78$LU4HjLadZa7(5^8L^D|qn`=hFyeI%m_F1_2)@vdd=T^8)?7$lM-=iaPYU_OJw%JanIhwb9Eja`i2+a8=Q9;9$ zG~~2#Z96a~NSn`8e&773cz&3<#kg^wz^Nsz9b$=ct!+)9H11S)LjUJ(iT-<~k_!%o z4Zij9<_|)P=flI`vFFEEsi5OER=TmkXwhx7(WFkjoIF{nuAeFQ2#V z)6C0-xw9&9n@LVVvDaW%){D>kQ(o@RwR}O{^yrazq0HThH-DR?{pV^Q?`t0(g2O|k zuC2i}5j20zXDj8~%j?u%bF^=WzsV6Dq>kuCT`kIj*hvjj{1?%J*{|BBTGp{gduSg! z<&@ih<2B8%$a3LFJ>)E`|`9=fjd;#3@0hNE6a>+~5r z0;1y^aJruyS8Ls z*dkUBAu)q<9S7_%Rt|ErhkH_tS6T#C59|#iTWz(cdoVgChIOSpR0n!6Rt~)@vZv7< zU+Lr5O__3*3&x^{sgFXW`c7^6MGQ@??1V&E)+V^wsSUnmx!+hbB8)}scII$ICE~cU z^qjZot;7;n`}2@UM5IrWNizc4q&8h4PpI$MbJi1}i?Q0+i$j;WjFG>9T>R>(NdKXP zv%y9p?wUD49<@;rp?h|aLGJgY$c!OT@{6WwxJ+=5sP@nyOaUTgRk&_y331RG;9&_t zSc;kc0{r<9>{G^0jB%N!4kw-{s%rWU?$-+e44*%L+$m{O2?nV%LGl<#LdF8LxKWd( z!M`O0>QdB}7w^>luUvY>sLzIBZ%_pi2Ik{PIm? z`n#0!9rc(2H1jHv1z@*py#ZOg!?OXq{UWAdU|{MHxrfMRBq$tr{6>gAu{}hSI!i|} z2xw$3_eVbB&8?g2x3(jH&x+b`ibWzf27r&lK;y-J54ys&5F02$nS zB+*lSv%JHO5$bG)XhVnZJv!I6fbJ6u$NA5;2vGKu)0^$c-=j}8V)gunk2orLlO{ zsZul*!v#Y7DvVmwfl`JzEhENOX%sV z@cZh8%cB;G zOh@M(`c5C7O^0I7dr(YUV02wy_*L)vr#v(X5tx?Q-nFMI!4+W$g0ziG<K;NO zCQZ#OMOoz*0!%lcou z`(`0;U3qMw*%;)@D@Oy{Bd6ECHQ7+nLt*c#lsMhdJqB%t zfE4f9uA+CKcBr$yZqDgmYhL61Qt{)43Z4i9nw`;oQlEjk_M^{&3SJ7k#vr1^b6m5$ zh8(GRS~;zbobY5(^*_sW8$6?yY9H-^mq6&l=Z2}G=MO+_bTcj$ zzhC-zd#5&xF}-%+M_}EytjbU+ueCX)S$ljm`;xJI>hOMeRj;(Y^LpMs98YM6@9KCH zs9<1?9R(f#HCM&#>mFgm0VnhE&P{eyZyb7uHWg@Fn?l_T|}{l%!NYzChxhUQp4_jOB@LYK~2h@ zOB?|QalJ$n1C-QRH_rUd*aoLqo>2imkL!e79LZ-UM8db4xCI=|tYVMCw5#U?erbi% zM(krvK+TrIo!}L=p5$D7D_g_Uiai+>;WR`@({j#;np=(F0Y6uKiHOtcn1WtmR>T;t zI=Zc!c3dLBMr?0XE9>TgeBa6y84-HFuu*uF%7c5hU?~rKGO;lw zGHw(1;E7S_Ev&LQfcVW_0$~3(B|hx`$SQ)cP-g3g37(*+m@$UJt=OJY5TZ6`{Thb0 zwVe!6lT}lURFh4u&s$QEVBeP)t#igivu}iBOQHG2kD8hh#z4$b9D)BQ<$0LIalYkG)mJ>noZ;!-Q3~+P4=kw|%NR2B*H3gho#Ln+SlYi9)(%%G))ja*6g>H!b1 zIhrVa=fS5(=?UAs?1Z9fG6&aSc=i%!qfTykL1-u30^D1`p;YgjqnUN}3WNvs?O(&J zRcXzbIK9yUEzrvszIpx!ilzu7ykg+LZH})3E{6MYyU%yI(3)7ADf`cYz}Npt;p!^F zNs?5T8Y&Ij9Nbx=>rkGNjT!FfbkPHrmqwZ=)aZHgFMA zivtnuRgljd;$3%~qHm45q{QoV=rl>ohTFkDovlx@-_1hlT>5|hb zQPvYaOToaDasA_tqm3S?6}_A;ZzPVygkF$G&d(nlLyslR@cJU6mi@Axs#!96+P)S=?9Rg-K16he%8&l0Lt_5t zp(X#Q&T@%PZICaI_%=}z5FkghW&YQ!2-g-!M=7p`@ea$!{2Fo*S#S%aqtpZGC~QDF z3QDV#do<4)`-wqwRI=^pwH1%!SWzF-9Nbde^*Gb+j_j9O(5i`lHSu76&*aqmMO{Fh zAG|E?SZT0?>&8r`rRx=mR@JgwH9h&ConX`0#@{HTS5mrZ{4;aatzL>WEuY`-8u|5| zE+FM;1XtzX6-w9m(~$c@u}7f&yDEfuMhteX&Dw4sYThfJmrmV3VcH5wKi3`4m{G8Q zew%bKD#6rPIsbdVae_34R{eOIjnfuJu{_%6-;!VQvbolRnmJo^;vQH6!kv19oAby(ll;!3^g!2NX5hHo$NjBBc@^c`{rg$bWhdLOKXzd%E zvp_qTSlv-ql5=UU{L8YMQA^9rc7I9=aq$;k?f3;R;ZY?W+zAW;eGAibh$hVs7i`L}!WAtx*HCHrYRfNnO8o7k%Nf4nGDe{yIdNa25?u z$i%JSsv3p<>)axlzOUa)T+-&ozNdw_x-fOv5r1jF&`(o0A#`pIw)oNrf1hn2Tp?<$ zpVA7%kt@s621*)nJkX7zQA}oz!eTRmbBq%^!9~rMCme`ea`?hssk{oIFd2c@w|PC* zgizsS<~Q{R3D!Pi>tjUz?{eICitDjr2suGdIcLlfkft}u;^6E2=5fX4XHxda&!Rs| zKSzrHxj82lbJ}~rw0^puE;D_bR=+tfL^;?%vyp!Ew%l1$%H`n8o3fAoIjk`v#H#kU zg8zqnF(YPX50lF~o}CUKhz^cEmvX!ihB>_1c=zT}jLVSuZy)SHiex8Eb16@QSj|`{ zSfa*ct$EIc2hw|u!r31VqwT;Kz;=BRK>aI(_6Dp zN`ygoK?#YlO$+$38MH(P5x-7=XkJb8oNWN?VHsxkI=WcVofj{WEIF-g#*q0f%u>D5 z@_~yf+<1N7Zwo9)I;;B5I-^L6?tt`+?%tB)gB58-xuV8qDKFl9W$5XWO>7>Z?iMf| z2V)==#6gn`27psQ z$rRTeM60WN+=iWV^r%aBFHiPt=pd@fgy`ZW^6B*$C0i**gl6<~a_*^*yLqJ{9YV9n zIfp*1+T=9XB@{F&o}5|L3{D^YF|KSmYQtMULeGl;alW7w5_&na%-`W<;xU+$8ipyA z{2cPCpGXmbY$=Xu0H0!M#6djF{~<-nP?gUR3Qw2+FVv?rjVBep% zd0os1^r@}+&cEThmS zAYDrRFzC@|USUY!$&lD)6-=y!ao3y;AW>CWK)zJC%Hd_mH{zaAXL(O#Y}gU-S%V&H zwP~vta`S)krI29VZ$8y=tQNY6H-pdWwOFe4Iq?aFzNLKaHjoHIHVJ z3d5dIkKf#8_^%0FGGXkpci)af8JdDHcAB4kzOq#-x8laK5xz@PvJe8Q;yM)%6;KuR zG^{x(C=(7Mv}v0cc;aEntXsGWwfLhBfT|e8a2nr+#~j44hC>dgQ@%W`Gvu~a$V8_G z?jZc-@Sn&LK}^;8p91w7yx~`~ZMmpEuX=6WriiN7qo(x3 z$9uFi7eQ*GQmI;g_UM{6qtZWqK7Dng{P=7+H{LHS)wBF>4?+z!eUF#FqICvl<=kFv z`!FG2>ML$O=Sr#dK4Hwq*-dQ_`g`>;QNP}uquqno_A+UQwsq_;7QR^vJtG*Kkwwx26o^zjA zFuylxgWX5r$lUTi%I4HGf*o!QFJyY(PRu<0+D#v}l%Bob2BJ3*Hd$!mj&2Sr6b{HM zBwW2rRm0~$NxEJvL^zspqy+0}`xaJvKnd7_S_(}a9a|V&w#tpr)51!;T%>5l;>@MK zONNz5nOXUA5ObB?&WYe1z|22`alC&nOzE|JY^?U`uF3AT509sV(Tl9VJ!n_9G=woC zNN}W3)+E#zp!LZb*f!T-dh99as%cA&qPzX8Ji7~*4(sAT!^dFU3W=v%)H3{oV(G-H zU_nDC0rQ1STf_rC^m+ugEW{z`%Bt$^eKi=CSbq)y)qJbQM02j|&c$y^DSKb4!V++@WH&8^%= zB`jTjMEd`YS_wS9lqKqUp-4ZpEa(bak*y_);pQ7(NjulZk-t2sj)xKDBUUb6(g+rF z3#PJejg&jhwO>}IV6zEQ?0hW$%G?rNjN@}^=o3Y!jK62-EEBw}tKi5VGDU;B0{Fe# zD&6vzsPOKjF)VAk0%I9+=q70j5HlH=L-OW&0#h0P1x9_*)|g^9|KEeAKT-$~tA8+( z^L(bnD~!u_Gp;dK*>y~!^~88Qp|d(t^Z{>ybiQsKfdC_Q07xR)T>(FajKO<~U|EtV zdJdIH=;q8tFJ$ZYfj&OJ*W_+G4Uxcy7|_UjpWeP2R69FD_WTT5+%VEyvn(Lz(r8z2ByBNnQu;Ds_6WsET?brg-kyCz z7B>{<_Y1kbe>zbhRIa>bafesM`vS>r?O@!5%+V?B@9&8Q&<_&^Q&!h!#0A`c*)DPK zz}-*94DYP@t!v3y#UR90F7{BpY)*aWkNW?*K6efw(+u#%-d&uQL%IoLg<+Izh#&4b{|-xg)F+M>@OE$@7p^`Pqf_It0O*~ zXZ={LF@?J{8S%J6_20l%G!jGjtJUfuiV3qW9={^^+vTy2bK8+^!1dF**J~tOgB!f- zyzlxnFqt0*Jii~gMRP<&FZ3Sd{t_lh_W9(o{GMU|xZg}2Q7+~ zl#i7A`@8er+6x8!{wFdQgMSzn4N8G>=j;uNZ9If=0jv_#3R{pH;uO5W_=k*?8vY1X z?+EmNw>({8zps|Z_*dQVcBxbr9M8SLp)Z^({@-z!u>DUSjsMAE!v6nD4wL`SN=dT) zKM|MwTigG4;u3Cl7ViHuami$^PTk&!YuP!>fzSy7R8R2CLiLs>3H*hXF`BL12bzn} z-00TkIcu@?+2+pRnZD0SE$WFc*16V>bU)=%7ME}5bZ(sz=>=Ui>-=Be2D|J5x{}S! z>nVfxr@?S81ONM*UxNk){xOb$u@n_h`p`PlMoW z`@D7k%i%$Lzx$Q&_vb^ZUo~3q8|<;0g`NldZ}TJJl}K$og5Ca4H_3f3;KA#Eq$T@I z&*5!A{YhyL51@f)w`+rU##VP4P*8Gy3XL@N{Vredb;m&Hbx8NxzE|7&-C)zG(%R$U zXhp41>&@Q-cX@@Kp6rxtUcl!zzH~s%+iI-2rNr}LA7D2*t_mOZ_kTF@_kS8Y@B0px zH%lju864yu3P&H&IUwG8+PGH^BU=nSoOdZl?MHjQn`YD-mvt&$rTvd>{8?+$D~_oCRhDE_ z|6eOhHvD&G$z~U!^;gSUPD2_#rZ%rN`_A37@2|fc2&(+qnC?w>?MEDrtNg+9-pr`C z#4##8a4Hq|hStXd8BbnlWtHo}9hLWncE%w!ylO{cIg;w)GX-WIEQKMV?r`uiC z$L!re&DZSRNX_SL^kV^dy&kwj7`?~rj`d*NBY_CuPsfUTlHa$)&4ug1tu^-rL`MRa zS{B)l}E$bnlbDcyKL;*&{5X%4oAV{@SsIS>KIHQ^f$f z(5pgh+9?(DP~DR>{+7loIm%^~UsBiuhfpA?-<+bc>%CEg!EG|IRKP8d2*`kRR?Yo$ z*u%Ku)>{0YHIxG&Ccp(+!iGJl^#P53+5h`0yLBCk5ct;o`#nTBAh0?X=m$EqFY`kC zU&Ph_#IAkPqA#5rC8U09_Os}HXIxhQ)#<`(S=Bv67$DC)76|w!?es!3j4-$d)(#4H z3lP`*xA^G4#LNH0Q*V^-Q-kO4-3`yoWqd{m1x6mYX)E^HRazV4&ko zy8WLQ?cckfpDvpOQ8up&{2nzZande09a3kZ*yY6j7difFE;2C=pEo=ANcNV!|HVSVgu7=_=PD!Das7+4&iQ5; z`*YG2|0-l-o#gHe&zWC#$&y{$uLQ>C(TnI=S;^O_ zc(>ipKZw`CV;8BGlXn++Xl?{9kBn`y={j{Q=_y^8oDJjOmtLJfl3h!i?5vj0oAa@5 zZG%RJhTr!1)|fWLPISIC0mJg*8mFptl~d|f`xuPb<*&z{ezcd@*}U6avqazP>h@{3 z*H|*U!`}4l<*2UTb8X{?c#hha;_jj9y8Y6!^%WD9NhX?g<#X8vy}=TJ@KLY2xpiOvfEVSMzb@aqJTb zmDH?Zq7=V+#-sjPbf9|ZH27v_ogUKPn$fV{i?Gd)N`RwW|0ajlnUwN0>B6njdTVUu zmakpur!&mS8YYwzI6Z^?_=rt17y?MgaRSgMVGNIMHDOKU=%GlPk!pH6=%7f+(gJZ4 znlJF9&Hmy?na#o^WI4y@&NE?PxglZ==ceHlrSkov@W32ayZAW31exap61fm-i-c3u zZ+V<=ZC)O<_=PEJ@_aG3;O~38$(JX@Q#$B!Ea@$2^_J3%@={p{p^C^06%bWOu9Va) zQ*fYv4Lwc;3q5Yd(ru93EZ7{ED55lG>}yH1lJr%2oHn?KZ;jy|RL(}7&&o`lzb0kU z*gR5TEcvx!%^qY)^qeFTxkVf5q~-SwI1dYU#_h}$^(kOZ;TalD67Bea!jm!u9G>kj z%yAo}Ua-9vbEIxsa~>=7$%RGT1^$6p9jMFKgw5{wWL>&I)Tm~zT__acm?3JYyKF#; zqyu&S!o#j9$|VGz z9x1_zf>1c=XtA76EP(tL1_E;>21<7t0@Gj=^)q`wvwJ9{R1gtv!J#0=1-cFdR00zO zWEv8@hZH>&WFyk$zpIAk>;N5gS|A;Hnlz5EHL74`ASW8>x9&=_PjC$zLfupw3AjZnrXn|`AMB3~hK;HoCrUj;$R0Oe zyGGGx{r%eBb_b{88>APGe<>e4W~Un4z2A0~bH#60p)rAWS-)>(JyTdg3x@H$M%xSadLo;2CZJ8!+}y{X6L0o0ikE9l+5114 z#S{}fZfRJVyp$|TWTw;Ai|kE_f|)g{^8GfeIM@jx?YHLJ-ybF@RGz#y9eZ5|mzzBG z{>s9;vmgldTsXTv_7lUFjWYQimis-o7M<$x^4RLVfHjz^c->bDW>$x}|6 z6^utwG%F72aqBh9nwFh-WtHal8Z&Sf(~q|)L7{}3zb;O@>cBQR%uwEtr_|n;tf12T zWq+Ty!@=2cu9ffm=L;H3cb|o-n;eArnYOEMAs<&<{rAyi!~JMC^l`L5Ehsk3zg>}0 zl?rqFrZhT&zp*K!bA{nm*5)K`xvKa}y75NEWld#IPZ_x6GX+0C3|qWj`FCyjUoO?Z zY}_pvFk`7{6No&L#E35X@!anQC-^*NmX4n>DyCYsqS1^YuuRK;ZhP4+H6Q$YbreuX zXEErZ1)_~PIXhhA9Io8o8{qG}cFAt9XjBL}?L02dxzEgk;d`hK?5WLx!AfbNVO~3O zv(vUiounX4j~|>rbrn$@NhmY#J0aEk?Z+d6RMzW~Z^9;FcQ#SnWjF68#1rrv4^(E} zbHbV4q@Qe~2$!lGwGHFkN%5Ckrrz1a5~I3W_7Q8wDkm1# zf*R8bM_^CrB$i&Q(pjYzW7pU&efpOY!>EbBPC4dwasP&>cNJoR2s-aP9{O<3#?hsA ziFq=y#PC%sd-+P+_iKCnN$yV8qIF6OIJVO*t7@~}QX%tc%bJ@WA-TL4-}ls|xH|XK z_x{Q{2|d2G1DkRJ&}p;kXzzeX&QsFU2NeTbHdHLCm3 zTZMkeyTB{%)uDT>8mQ==`pa9yx!r&J@=*%IvBDqp)*#%uDiY|z;)&3%3|#R-K4cI3 zV4bndIH8@pH#Wl-ex_DtpFH-7hWvPIf)FJJO6{X>5cY9=r`aqlAB9MUCGdP4eKN?` zoZqsM(#<1v+`~5>W{}n~fLc}j=(zO41(EK@7#Lkr%>Zf6`x-V(q|o5_+~~rK3{N6` zT$L3T7DSvq_~c*@PjQ_PqIUB2_K_cXvoKu6W1TobunFUXsg*01SIM-bn-0MZ3P@T| z4211h5hm&OSf{~r)7IVdC6( zXmM9b=K^eV4`KX1U-w8=2ZKc30?cgyN2m(2ul^Aq{nm)ea*}j0;77(8f?pt$0mODJ z69h&o(gl*wE-N~A7kXE}1|w9u`s_e7Ra)T0mo(`&*c80LaM2diNsTo`o2t|;z$@f77=@?_ChV{{! zcK#ymdpfAmI7)Xu#6HcnQ`r~g4Gm$Y+p|vWa1c`cf}SDzV;;sN5%sz;hdaF|QgLNt znwNb~&~@wDf)#_GW5x&fB8cd@l@4h7IinDV(4%8d21C!XI0N>Zwr?JP`f`+P?S8z% z4=@R(V5hfC0_Tw?&!>4(Zo=l&#^i5noW3?5+b5s%h<(XUr9k=__R2PSii+51I!gZ-bfhW0XBo zAb5(db=S{uC}kB*VJzk8$EpxMKWO&pdv-_hq6#8Aluy<(rXa#N?P}rkBysmXSZ4ps z^EEVmy{uZ1`Zv_DV^UvO@#QGy4*US^L}6EVUNxa(iE8aj4|xvinzL7I4peFj1=qFM zx7;;bS1I0fP03mHG1T+6z_W)GaHO~Xpb@(n^4T=|$DIZVcT15-PyTOVC8LJ!cz6zhxI5vmq+JUpk)iyTp{5aBUHeeaNe;ZAsbfx`=fcLUo5DZZTNnOQSbvV&a{C?I@ll&Hj|+0C zcsf21@0O79Phfl(&Pc8@wEDe{@o9fYhCA=eT!SL>wC_?P#0riuFR%?S22^baIArp= zHTTaqh{_xw4!T0~F$=e?h-pR*z7h?_zw(LUyy;no|Z zn8nWXqps6a_P%xp+g4}0>Yfq=rA3XlpOBJf?;!zfBn9Z>FZoHW;{kxJi~O?`2Knb9 zb2o!%bF4j7>KhhetLX_HR)EYbEld$#4`#u)a$!cJ0%5_n#PEVfi9nHpD}Uk>_0hJ% zNeJ5SRfG}lJ|d$~6M;SeS4>XYAoC>QU)2xOQ4mZj0i9dOJPAMS{O00iak&$~Al!QG zwK&xeN?j`rlMqM8><%QsD=(z%j7EQj71{!$c2;Cqvd7=GjNCFIRF%|$rpJl9!o+%i zg$1iFv3?RRsyTKuSx(h&q!|6nwblt^o&+fc;w!KT|9CdWFtjo zMW#l&*BP2AZay}v?MS;XyDMqzcQjW# zc0(AnT2p8Pb47DhOPgAw9b;zl4j=_q9=XI|dF!T1;`}~#!_O5wiIH$8XW$@MOKtuG zHZm;zK4WBs2PZ4g>0sOjK7d9=YfIW;Ly$QYOfN{8Q)8*Lb6#k)a9fzz%3KpnheX#L z%rq@=%a)Zmf~O-dfz1~^yawjhvSQ^@MBP=}-oxTTPF&+br*ek2b@bGXQBQ0-F zhTDr4c=e|vZ&Z(vrd3+;;9$#VRC?oxX02{q&JjfwVfaWwHaV>iUK1w`NN?Kv%G#IT z$88foB9=sO|53D00zO2K$@ZsWB9=^$d|ag8%XUDE8*y71?XAl>dVu3d-L5f^5L_8? zC}F(U-lrXBx0gXurEk)mZ}3mt?&@I(yza_O(`1pu+*r`KTqrDeD*NI3lUkx1**B9@ zetzLoGK;T8{H0qJXy3y-7nVPv`JTt*hZU_a9(Qc8@X`Tma3+0SB1Yr!$aeSI_=@Mc z0vH3!6r`(9(XK$j#@9}KyDw+3$EKoP@C|d#<4x1P&4qVi<(S_vILe`1Ia@8%J9BLk z&qY|yr`AA4Vc*+Z9xg=5h&T11di;iUA+zl`GVejIuPo>H<6Rc2uu=dD`;VjnNRO^8{-wsN#_zvd=7s8GJODtIT&atbl zrdo1lAA}g~LTG4H#zY(+B1EJ5u~3p2HwIl?H+pCcGMu0)rt!_tRHPpq$w;MDq@0I& ze_T|?a|`G%@hV=dU#D|uVsHAH*s2khY4h>OZiig+n9i)=37LPh4@Frd)wjx+18ISQ zk7;VGqM7=!8tR3}YujL&ZNhxV2-Ho^xaNaSzuM!y(>1?jRCY#~ z#V@m&dvaf@PiPOVlhePX2BHp3Gkfx+@f>&7_8O4w<^e<_(c1%a&_@#(_WLI$~IM^-B%fIn(hshStyGkI74?al~UT z;~fhoxR>|>WwVoN9=eoS*DkmhDm|lqV=nW61cLb)g1`k z@8zl$v)`AcAdjM?@g<_X@n)yE2$6PG5RiH8@(F17;5FHKWt|&2PN8uO2cN(Mj!tn6mW%4Qio#1jf!fq*zi`idL|u%E*keJUsbMRzlt0?@M&)R)k=_ zHN#a*;-@;?8sOE1zc%Qg;P-)q&+PFtM?f=xsAZ-L#ED~qSO{iH&@~6%+ORZ>3%~d9 zvk{@L%5G<0KHJ9_21`p?wyDS?T0-k`9qRlNocQi54urUFqI6jM^l)Z3ucmX);w?n3k&<->4(sX4SAGgMvQ|$To#s`_xxsbKIiBn8HDb-F zt(!RHa92GfIq{y1+wdR{RYMA@WS*Wt3Z{3Q>Nt*7X2%H=`+YR}Mx8U?6r~b)w{lYT>1=Ik=66jjL;1=EcZo)+wlJAYhz7 z1jJoW#QKZ_zaoB@ol08}CS3!4Ap6ui@gZ+7dZ**sRa9k9tXw3V$-XvkaCKjq+_}g( z^A$@#Ex3NORyA)^M}}0I2b;%d90{A0Y8)GqiWg^D=&8^qfFVlRgj;nE-HDGV!Fsv; z%i{X!$FE034rGl9#kdIJqZmV&O!v5CoM?-b1*jfaM@%w z)%PkAn$|vODJKquub6A(#N<4~txaI*hUOAC+cq<<&%N88Ns6A2YC_9h($^&pnv!26 z2vdd7$bR=H8>>)GCpW9*iQQ-IOEWV3l~xGfBqE>$bMtVj!U{NOex@2NlPjc>uHpyE z#d?{gs6F<+49ul!VNY#c~77TulZTdavso*?%E?4xAeIDlIwZ>O0M)^;8OO%+qX zJ0P4jGLPP4rmr-vM-mwH;4?XnuZXCM z*^_l|N}YTFybg+2|A=!uk^n1>s)mu4Uz$FtywEj|{Eu^njhd%&t;CLWWy;Uwou~w= z-6-aJDjJScFh0JbvKJh`wDl~c5YWFS7?lQ@-|C!jD%mufxqYzLEn-jF z7BWVw7edU0k>rBB0ay>Z~#i{()mGt=G#1o)?EY{Lx1L4();3_p+NQfvwa=0bL1%VG@9#0X*SG!Tsgy!ZB>+DgDDcptxBii}(mw?%O)P;a{FPZYk!tABF8=GEKoL-w(~c z-960ep%&_)CGV9w-miXMyx#8_Z!qHn3HlL}DX(PXe;JDGh z%7m|Ed!MN}wL_T6^`*Pq%;BY*&BgErZeV<58CUvkMRNgbMDxl(UyIK#FOFd9@>-kV zVSE31SMalhaXttu3?V{Dve;G4*xkOb6u;mc_e(Uap4n%`81hKF7&=a4dTDm1YA4I@ zgZtO>Wtz2d9R=A6Meg`0+-?ilZS^BkA_pVAnqSh;wWrlFn(giuF=Z1O;meZ`dhE&- z`Asz2$o)CPU3IQ3Bt1xd=W~g92dw(+cq7+sT%JC(;>#CVbj?tB-MQfQH`%#tH0>-E z1HIql=Te_+sweqSRyM8eC-F9Q(mKzB&b;o(pS-lVBi9dEr?G6fllzzKoDp(}j6&PB z?mNuVnY>I*cuV8%G6k;IOH&j`T=Zwe8r<|8u|T%c6?&KJAlV8A%PJ|IzV8zOVJ6Fr zn=U&&qo6EHIKQPWQXw5%wDR@jMV*TMdToi(brFGZ3R2oT)H1V_uLcq{8X=2(nrYu) z!K~wkni7?Nnx}fL7j+Ja4DEqEM#j2--B_Mamc#HI5YntbyF;vo$}h8eBf;G5Aqh_+ z!YH$!!5EGnH6TN0=~9YMf2BUP6-bqCAWfG}*ZUKML#Moq?0pmn?$BEvwllHhUev)expFngu+a#9CA9-a9E5U|ur`lc z&_mswTX=p$04bR^VzT2oSotv+Zg39LT%!y(WtXFM`|730iC1vLhPNKoJ3%EAmM*A! zlKmi>LzrK1kO`qY`MSps>WcY!O$7n&)bHMG;HyO&*5T#9GZ#cz=eGolqki@@ZYrK| zbSI40s4}zo7nlF?Z*$Yn*$FyA1llWaf&o2r2N zWb})miKz*F{0cwy($i0#CpYPwC3lE*ZMF7I8VO~WjG3zkJ25g^RWa{wH7a7rtWJWA zQAvi3QAS)?_bv*0%jqBs`0(9ht7tBy3036$0<3eUN5*KJdK;eI7$uLpdPuyDgMS6XZ2tHGJ+=d)Z(4~F3ZogR0T_(cVTppFyTBN)UDY_#1*K$f z6)U~@Mq1DBj|u{Em)S?NVFusKUZrVutqJCD@ml*c4|!qzGY@j2)zuUTHgq1av^Jy} z_K*ysnN0~A>NH4zl{fQXG{Uy|czx6WGvIlPgWusZiynKEqj7E}##@(X6@raHp$Cd` zF1Vr>vBj0>63sMA#8KZwC&CXD+Bpm|<*i%yd?zIu>%20~50t6$VAdkqL^V?u|EdEc z5;YZA`jz;Xi+<07C9V-(aOQZCCdQ;0s<@;nDYUZO9zudBYp%xmE$&F3M0{mQBsOt6 z4VC~A?1jpCgTa4E9!CA35I)7L#))+en`DwE&Z!wG_6*t$1AT%GU$h%wE~QGvsvX+p zA`T*`q50=N86?Q<&v^@kowrxhF}2`TB1dr8_cToUQ(IOkm9Ot3WgT{V#m}(+)`I25 z|BVsd-+f`)&m$t>x#v9Vs8B00#8a6P;k*-tzP}Sip3~$mKfu#L3%O6tvAGj8&G%B9 z?hVH+X|4SBgkv)cXiii?^tm@fYA=(>wNj`o|x` zH~|Su$K_L1IEek&<`fqLmoR_5E?|--Y_ZN-LtCAj+`Kj_=DA+L&+KUf6COsZD#of?hD^KDE1(XoXSZLpxpiCedh(}?v(KGFT%4ZjDg)1|Ik1E1@g3-iEX1n-CJfb3Wr^(3*G&%kz337YHu2_xT?{f)WD>RO@`r~RKJ|QPH5&0 z=RiKZNSHiKMyVhL*MniN&4;XuuT>&dz< z=bwxlS1WU_k1@?G$Kx)pWQRv~%}=>J7%r&`>WAOYTqR5B+6xF~5hcr)E@n)St&{4P zgR@AgZ)ZY7)HuAdB-0vsP1Eh4^1N-cXsTu`k{XwNDXFW92Zgm<^Z5oW`c7~cCv2!{ zo@2=u`IAfLY_H`K)D<)+YQ9fwPudq(Yvh6vCGyAMv21_vCpXWXv3}J#E=IJfvU4{0 z?XQ<0ze3$32xUFi$?BLZy`_CgnS-!3Zc{a+cHc?kY+^8TN_mIhRbjJH0}}q|^}D4# z{}t{sqS=wbFO1{DwuzMDapo z6qxJ_R4I4TaPz}H<7QU>P?Aai-D!FQ2odwT{I5+uknIE2(E8lH5V~l+!cLi>0ReBs z*UdMa1=)NRP0}`ml|nJf7Z*8Wvm}j5g^Y0HcH zsUdNw^e`b#t^ww)N}p>YLjcPJPJrbkOh`?%F z=>v}=%IxeX%vvy#3U0I5l|X6;1l1NQ5jfzG|DHUYVd`B)3OZ9ijA5 zA`vj;`jsa-#cmLZSDpCX!_-{45jv>#Y%G`>flI;XVs@xp>E`#sGqhc6CSR+7n3l#| zm#;K7r{U9Nn0;;5-#ltLf8UDr zlnXHeYdEU)?Blo^nUoE>;HxuiWZ+i=UV62=MSvQxnd`TKjnrx-Lewf#;H!YmTpcj< zHCx=}gVcb{T%Cqv6DZ!wSMtf}970`Me%w~Hng+_gl9HUnNj}1nk4Sxt^Q*(4JS?5Z z6@yy@s1RDLMwJX^NB;vFq|m1zLlwkQW?su5TASq}G$JV?hes1m4o0aWhgmeCtyQF4 zhkjTVg!4?=qIOevIdO2Uw5<~;#1hBEzgt160y)Oc&GNBTYYjfA@0*Sux7Syw56{od z?ui?f2Py^iV4sZu=QM{L1|8^!XA8A;4;R#4TnodPB#^8_Z^Xe0RKWKc72K z@D3DOW0A8$yN;F|U@aknttImJM_$XCa9eYT@*dvkb3y9d-N#xB3LkVkcz0ZIjTvwa zJ!2vWeHHd>Iwdg3^F2??zUcJL|0?iEhbx1@rGS_R_$)Ag@Gd! zdSMx2NZS}O5_`TZ{wHca7MNq`Y#FJO=D8MZnIk#Yxs`U=TD%vBs!&B<{beuC0|Z+C zY3#<;lq^ZSnc}-}%qds2IM7*48GB;1hLJ3By9t9O@u{4^*uB?)%WUHoAEk*(qPTLY z2(dVFiA*vaESG3^vzqQL#PqXFep^4^Xx+3gnLN8vs|YbWQj1JMBb$`9UGAj*wh9m{ zBs;ba;ZFWJQ3{X_}xM>Wp5PJ{SJZsNkeCf`N351`1#8X|2wA`EsXq`wkrLx#N>k_Lk z)D-drG}u3yXY>=9K`sYb%%EnCVMPKfj?*e!0EobXQ$C+*=- zP=tl*y%D(psAMt3UAPm8zzfWMtr4RR1o1;2>n6(_3n4-#^@Vz@bg3aUGE)1IMsWg; zf8aD1yW8dg!G0E}w|ZeMW0Ezbyk z$(crojNrLSnXfXf`qmmc&C(ar)tFu1jiVm7xMBWp#Ep4kip_EnuUQ^;0jk4)jE zptq}bv&8eH$X(GoJN|PHfZ_h5V!oJPqS3&ml87^YX!@ap!Sgi=@DD5j{{TT5cxKQv zN{ES2fV2`mP^MN&Dgp2j5=hMIq7)MVC!xULfXL5oq6eygjDyBMJ(|Nzmu@cP^M#W< z{1@kavUC#hhJWCZ2}+k$4%7e8G!OFIPXEy~YwV2a|C^@CYcCm=I10*lM&ue|I5iz% z7$vvs1e9jlDCT8`>t5F_J9MiZ8%jfC8hLe1CXa=?=ycL#TR@tL7nhn=DZNYlaht6u zQVGM#o5V<@b%{+^YcWQ>TDIMPc?a5;IVq@*N>M0-miHM+3fTW~4{CbFS4cBkE%?rb zO1=QVufFqdqEIab1F-9K(O@U5oDlnWN2U#RN%d}ReS09|f40`rk_{v8{vTfSA} zJ{ebR^WV;al}^j3CI0?RY?Sj588g!=u0x!XV&0>z3qYWW;iy1Mu|?QHHpJ6GhOmF4 zm+YWWE7Q*-BhTGIa)a7;yt@whJ25Mz?+w86G1II?BuExQ3fSD^MtK_ld3CVc^P|)L z!+S_s_^fH_C(6S%{=0`228$lKMf+d=x5w@Yi8 z)>olDl&mvn)iHZr zKWMbu`OnhK-2N?W0pHVUC(7kE_#UmD2jw2aKmT$_eJA{WYkr-QHT`C|R>ezrgX>*- zQl=YJ_i}M<5+bhXzG52h8P!%ab(1#3&DG~{t{x|R!^m-z4H7!_ujQvZU3q`lV~Ozy z)aTU>0 z!tI8fr|HE{63^_wlWUaokJ%+viPf1oebP9K!j0y}Z(-Q#`}P&6`E9hrl@?Tvgq`)0 z%NFbk)~0%%m==^&j&9{@IUHEY+}*9bk;Pd(-JFZv%Zx^gUrt>J{zkD>k7W{iYhtnS z+-`=l@q7n2;C;##R4c-HfD6um z?r(;a39qFOxPUVgF`^5hn2)mCsQ({a6`JZ#n3Gl=0DyOugyN{uL#4~mC)Wo4$>C$h zF24-mC|M&|<0+;P&UFRvqRZKS=i6&$AG7&M^*ius=-#%(jT4$vnGJ;nlX!ZbOWA#& zJsraHFD5RDqWh$?6~==46o5~0DFZqv_K$ut*c-0o7G$)>(?SvOiFt{+k)N`)+0v#u z^yF^shaRETC89k+Wv(BT`(kNJ?4LEBQNoL~;LRh5>kO0MH9dTUR`g~1-gKB}Nz)dvBbo8hHXXhR>MmWcvEWse^f zxnp~qY1g@O2?e}K+j9zueEK|h%oO16Sbb>$+deqd!`<`n;MZp$wygvWKNurB#7z8` zE}G;wPoL)me%^^?fT{I*#^{SBrDyE;1HcXPZ&11N2Dv7b^5N7rV~h-{^(g8gaUg^x zF%Y!qDt3I6w|${l^&wdpg_kdrOZJ__X^KncRCMfmy#dh#>{ri%*<@Z%*+%sGsQ8)%*@Qp?AS3gwyDjG z(|O--t^Z#$b7s!fxi}Zyl6I*i^{(!!-Ks}bS-33(KUq&!X>D*}PFPOYrGQqjwuR<+ z#%2uCTH5mSSzp=6ETs>>2~Dtw7nE13d~P3Ez%K)BQc0X3#1in7|HzL0lPysg`v>HF zjG#WY{u&Q3O&kqZ`MXIqqLx@*3m<+oI|~vpIY=&mw{TbT(Gq4!;1t zBA{dy6x8|eWF{m8ARA=uqJZU&^AZ0 zeP)ZEfJqwT(D zqpGW#eGfXd0eDew;;vHvve2CE=kIMbb~xTBW_n>)2r8w2LpOXO;ZJet?TS z;1AA#gZqZV2+M(FVq4Kd1BINQ#FkiXtbG{ zM(f)bM*a`dXacixDJj)JzOo(*b_J<~RYL65zKm$`V8Wfe1dd)| zTO|6jQS>NZR9$)5A*V+pT@e$}!kfP_7&lGV?_%sE&~ha^O0)?I5d_~cL6Fi-B5FAJ zvT;>2Wi!rF$6c~>+4rkxfkGHEd9wbni92bG-t2oa(N*!otIbXR?cC1dgHj&pTx}M| z7ZLJ0scfLWAcR@OU%wTO9?S!o*!TkIFk>=0X`(KgNTKczs2`x;D=Lj9g%EjBv2S${ za3c<<@E@16t09_*Jj^vn;ff-Z6=zk606Zhe*FyTT&RLA)LFoGbcpG7Df(BVpg*#At zC_(W0RK2-=1lp89S&9_tB_Zo+elzR%38Q@gU-C37|us*GZ zBt_a|D5iB<-&EOgH@U5?c&ueqb0wa&JFib?us{4Xmj@c<#S*xwK`Tb^AlTrIBWCBf zj;9~_-BgZIfzoDJfzoEISrV|JfI5IQt|igm4$Ytr_B9RuUj_X-ia}W{EV$59>8t9C z17&u;JL(d%rPA<$*1&#MtoWKbE^cKgudrlvYmR*LV|)knx3+F_=NN&*RK9aB_>$qD z6dCi5IQy$eC5fIOp;BIfgsO$%;91f@nFESNU9!`wci$miyJGt(GyAmyv(j4rOm`K+fLZU!3$ zZ2;!8V54gN)Pg3n#NO2gmH(5CB=DIY_-$-7HGzRLV)%g6L3Ec1fjFaVpgBksr`%(} z=T^PLtkc3S#Bb{ReIO)mIbzWc4jKd$Geh+>Mj?3^52px%D0v5tl(->$&U_Fgo@b-~ z2;=wK*ho3>YQb3gm3r}fok$3+Gwu1<{;mDnIp=*ozM?_=lq;_-$NDtrUrP31#kau= zSM@m0pqi*>T7#mObKVfbbh4~Izq+QpJe?Pnky>7S7^=Fju?@R(^7t(jQOaVwa|}_e z49UR}+eL}(?j*c~qS=ruNK@N0rtvJ5DCjR~XO!&cTJ8W*$ndHRHhV0z8jdl$mWtS| zoa-UV-YW9ypl|owu@+7-ssvijr#}^78hIHc{UYbAY6_3IrR^I4DL>!>?ZthuK)FF$ zOwP32PyZ-LHhKGo*O0oD&X9LBg+I&ne$(tE?NsNFpOU(~mYqAEb+0+NT(NA)ENsC_ z!FXI;a_DU-Kghd)HT09_A>2A|BG5AL9$*`h_WQQO1@8FC4r}`)%;SfazmG63va`o? zEKWbsE_q)SbEZ&hHJ50JjU!(Y;LzZwf@Hfl1B`y~oYh*<5%-v*jehP|a3|2(c6sc2 zinEYC9v&4`*Ha9JJ*32%F@KB|g+zIMbFy1CS~L*tau$#9auG*A z+329m+tf`C@JddPA~i-(d#UYbK}b%WECRJA?Dv!+!MhsTB6QGb}U zbMsX-zxdhMbl@gev*NOmrL$Idt{*;+PepTD0reavlLLeNw^A&ZLnUn!5q5U_y;QY& zthKl!>-d}vA4gnc@$=#xQnJX!c5|~xuERJc2z3B$;X3feJ1kX|i}2{&jSorxY)8K6 zcLnSPYiu^%B-q5`dUt+?g3CjC*06_p17xzyjJ-Rx>hTj#RzS=QDALX`wMWfLr0f}I z@-BO_LQVfEYgTq{Wgbq>0=DTq_qjsJ4t^ieqMA$>e8ohPSM?R0VS(DYyBU2aurnNHjhKhltw78&hRA|>-=%^XJ&9Kq~?otKBQ<{*(zwij5njs zv<}p${qwKy_S+_^q=sn$tdFG83)?MEdNjWh*JMaNxv<6zI*i35)Sblx)Tcu)3%ERx zy04@EgD!bIre6wCg#h^wUv$n14YA6kpXhWeX};)|QNC)V+KAAm@nXx4T>aEHKNAOIF#Z|LBvy*ZTx}} zwd+3k_=)}CY-Gr)^1nL=pfz|QuABD+LPdY0-O1h9ZIY+}Kf<3n7(z9}n&fyzXnvx0>~t+T?A11|P!M4G8Tr9N_63 z;HzmQY484a(Mfz?t`mwK+Hnyb;Ruf->JLOC2N~+*GGI!|m7(R&)~y2d_MvXaYtE|1 zYxYB)G%3LOnMqP>>f#6fM@O>C1__IDo(2-_M2sLgcd23bvILb$bQGrwSYc^gv zw|^F}AXz%g1dx_IrtTKY`htA({}{^T{DIOlYGeTK3Nk0pjW;fax;;l5SNYcOPM~vA zNEW&8K-5%K5lt@Qs5+52QbqX*A*iU(P&x6KFg=%0ctyXQLyDZYxyx724%IlrE1vJn zFNdK_Am106o8l7!`ZTLl7{?6boyu_^;oc!pYmF?5v8U?mZ|R;@2qjb=icit?3Tv!A z8M1D$D6QZ1!kG_kE1`~Kg4aC&392f!)H{vdcNmOV6nsLSdP&S&wuzzpMm3T7_}jZB z|I!Q7k`~M^8PuuydOh^=P=zz_ekgb#yuKhh%D{g%&FBePKj)V^fPZsEack@U^|Q{f z@CM0wGfPxKx-UOu9>xT;y01to!2T~aQ+d^T5j*mCQdGW;ScN36Abumg&p%Qw28)-f z0}tZuHpoYSOYuUUs)$Vu2r<ZY{B+XKd{7%SL-Q~ha`{HDD4u^exqY{au4Hu>7q~TvRnzc$fBKBO64BB zEFN$4dH;Y&rdg!YNZS`Urd7qXlNDmhFDmFzZ6Vz7eJ_ue7d|?Cw*U1CnLJc%?=c76 zk);MqSfBpFf#lXC3Tq!Ff8FXE=BI`J_Vvj*n#M^2Bx_+ zoQ{A5Y1=5Y=|tHuj-g`Za`#q~^>y}mP$xu(D0!Y^ZCh*gIvQAc&^T_Z-EA8_N#%sk z8$Oj4gu|J!LzG!pV**~7qLg(sQd~giw-DI{WE50=OZT0j{2u<2b3tSr7uL@iuHD}J5-!MT zgT*8}w?=7s@^w~;Ao_PZh5sxLc@Fdm|E?^+P1{zd8;79|E`5KyiGd@~-F-(})pmSJ zsE$TkxDJkU&{)+THd5ZqQp$E*9=vYMvP?{nzHSVMFjBr$me;PIl%p>tDrg5aV|?4S z4sL#MdLvm?vVOS`uXg4HdOvmrEJA)ZjIR{z*chWR&q`8@FK;%i7=E>oTWDhkz;__{ zO@DeS9UW9THNPYMFwRg|0c5yGQzzZt)DT}2cl-OTH~sGNe|&vh%IIKhYpD5S;P>n zrEk@uEigrWXL(an;;)%^fA#&YUeJDgxJa8=gZ0*~%liBJLjm-i-3GG2yKW7cfPc3G zlP;Chnv{mY3u6V$TT^w>J*u%gh6MOQUqn-&8Cr^UpJoiXw#)BOC*4t1ql7 zBS9~L@YO*96UulhY{M^T`QlM-%3UUSwWlsfGc;Wg!W380yk-o_5br@^C z6XI9dhlbXye{o><@wlYe(P>$uWVxR6nxT^y*%$xBF~B$%U_cIm2hD$m9+3577iP@o zvQN6V>%F1LvOV`4Pooza5FKYH@lCG!MLHp0ahrn%%{0LloykYR7i*8+zN8!8DP?bS zNceNcQFQiCX0SD;Z_$?n!9|2rGsd1nGYzQvaEQN*=_qHi_Gg`z%alu&h_z@C;C|Cf zsK2ryC}SZlA(k!EBg7wZon*2K3`?0S&mK=2GY`$wqsnogs}o4qS)JdKhk!409C#yM z%OzS34|#N1u!K2p%X1;HU=pq&<}T|7zXqeNzn4!tQG3lD11vn$Q8PA6UjtTG2v_Pw z>2tF-^2omqCT0YZrc4XWMC0$G%G$$*YK_k-MNn{l5}}unr8sm5)r$G89P!D`s$`T` zgub>Ye+^WaIeJBWnjfSisp^k*rqO**?oxkB&Sd^5*Mna|8a0!78833&2r$(^Z}NZvODg|FL+CQhD9% zod@?}&z;LtJ-c&(Jji$38QqvTa~DaN7kOe@vt^;f@U2BvZ&+} z=|O6R8Ws`v%%`-X{2Z}5lMJ3Ec0tnSvK6W56Y+Xmb_@ed&SO~8X6YX4(L?SP?ed4V zg0;=c#RCD5^;?I+5rmV&qA*S>;s3GLHxjLOG7sF|E2_T5bzxg{Aal*>FG@sbX`b)C z0$Wo_o`JMo5*G+Apv0o;zo*eHr$IB}J;v)WGfQB=dgK#w*W1Dn&d^Z^IsICzrbZ^l z?(0k7Xj|3{0Ixos1D!835vLNm=U$i4Q?eH?A^8Sl0-A5}rq|oK^N%_|Xf>x|ID#;8 zW)yL%jHf*EE%h*pLn0XPPxh2yrjV;+PLoqmvK(!=)GOq4)GOOzTJ>W{q+`X1NYWf_ zG$boH3{KSGF>!)NS4UFy!g}Kd@3lqrumvevWW5Y^>uE40vK+rCo$Ymu`_nWyS{bV> z%Zmp>rpL)K=zUInjUd4Wa{yydOkW8jkiby=3n(#KkrCn??NjVnF?A|TLlhICxcucfLM3Vs5i+|ES@2eHEF1a7<%$6i=83k5l=BUc$g$aksIhj;cn(S= zI$qs|Z1pU&M+dqQYB|D=tD{ge=@XXT9v?73Gk3@TU8pAZ|B4*+U!j^f{{J1SiAjQs zgoX2OkSY}c0VXA92NP8@*KbTpViHVhW}dE0(so7`W+ML1sdQ4i1#@1#gu6%s| zUSVY>VdMOF2+$xZ4z5P7W+co^s;*uiH?UHKdkhSJ}Td0o8Tc8-6Z-+H~xBlXJSx-)FuUv;c?w$f}Ym%G1~ zxg!^MX9Zi?0u0mFxPNuHBOijAD~&G9Ge81*JzkjT&q(1zjq|l~Q*6JgZHoI`+tZ-u zk*2B*+so1*=NW(m)Em=*c&pq>>R^SdB!mwc8WZYRvi$O1zJf;4WH_Y4NcDq=ZNU4zxoZRRA+ z?MBiLL}FmOre>x0H|vp_w}qlDBR_XPj`dF7myh%5nc)oYmyFc=9!`setykjqqf`xZ zjZ}LvT2aQ=mF_V}*0*A^GBijQWGXLn@7yRG}_^=a_R z_qEO6`8%M?9HnJxVSfjZn<5BV@So@Xd(FZUAf!GOqj}M&7;OY%Rd{K{ z`P=9JU2~z)^G@L<6T~5Z5%ce@`tp^^UgP85+f3oa_yH+e&rpB;)IFKoY(n-xqpWbF zLhw%t*5WW_Wo(YN!mFUWbcMpqSq5TV*Y?pe-Dj`sUiZD zXO0CT>)ML90=2nn6!_%V=S`ko%oB6}r+zy-v=J_)$gxU4ihYcI}9S*-v;51e=GeUp3p{F7)623*{v3Yg zbe*T|)ws#<1!!sMCZB)as;Gh@4*0WCu7H5s?4py3La>0g#ohEYi{$=MU6O*5HQw#Y z$GW-irv;dIPeCzUjeVxipvoRG(aTvAtg4B9Ga~}}6r&!GdH zdfDVrcKpV_Lhp|o77Qnx8Wwq&Fgpe{=avK?WVfpNOf7C`=nP{^^wJ&=vN*K?$x}Do zr%UWe$|2vnN(Jcp?~WJy{rv8VNh=b)?O4ky6VCC55Kn`GX(79XEx#SwXZe&hYyBKT zU2vQiTl#4hk_N?8pm{nel?=W|&Mt1?#IwxAE>Gitmbo53e1{e@v>rI280B)bmA1J8MhS)dO4lW+3#9&<+GOY>dWF5AaO$J&cp|Me?V%R`MKr^mz0`)P+u`hCU8uEma#AVU0} zS>4T_KQvS$dNck00`Z(4?)N=SAHbHAkpzpi4alg@oDY=zwr#ek`#u_V6o;*??5U~K z4#_Z$aow;hg9Rn*u$^&&Y5vp4oj;)kCC-oHt)pQ%g8WMBcY&{>`Z)|`QpV( zPbof(O?+UNQ*_-+1K#*VA#;~j4wC{?JiArQP0-T$0shj%hhzT!Gd7dpX7+;XjSE-X z``!qr#bW_G=scu>zo#qwf_S_Z109x^A{o`}X`;wQ$pc=X{sop7K`PeKga9O79j^@A zceD4Y3QneJnbb5`yUT^;mK_%Bs9VI*p_b}?!4Dse@sInyX%dIc%{8V(7h)Na6ivAf zbsHu(T&*5&UB-GPcm~h-vIzPkUrTWDyVxwp-`z({Ij-aMImkK7pAz10)9OA1U$0cf zDlBqk`S6?0RjdJX`DzzNxJaU@g!;p64bqnA9CZoA@6})XFx0^$U@n9v=lf)Jq=-FPdu&8s1NAZ4o~$(vgqmMw555(l z8;DyQpzqp910Q%gbE`-OG=I`U;{id3dFq0wvm{{qtfakb4qchLOny~f>&utngrBs_ zbahS3%Q}0r7kM{zZFmPQ>ra#sNGWG&($q<6sTf_z!h64!ly4!Nae+dxXkvJSS+!BG zK-H=*6r@-pklkM2u~4Lbxfr<-q^f9NS`!gIu zDUFWVjTfj3DPBf<=?ml|258cF8z?ptPGdz2PT$K(##V zN}{Ires~~&C+aPaP8uQm4c^X3$=fba=x`c}%&vO~`5msV*v*D&AKQJMu0E$%%Fj(& zozn#`Q*YVo#NP48!RqHD$UUd0kDor zuY?3ZZBLD>Re>yo1pDtd{l0|O&k;Ce#V9+pKGX{~c;G8`l+xAViIvJ9Mr`IaHcHEx zjid!HsI__qcq^DHYCP+VQm6T9Xf5%hH#qjLFZj9>Lb9W~miDo6<+x>FYSUmCYBRY} zV8Wm{88mp>qRi4?u!1b{OmU^(8CxjqqJKAgYD3mYG`kItkM7GC#x!2FKxZtQpp=fd$Dw$_ zSg#r})Y~)!UuiJUsUvV@S4Wl?tclH6ZHT#8D|}+w*?8d_*eS3AZRHEen&!e`%%|0U zwUPUHp3sG$G@ON^V5TPXj|1(dmk`-WuGvx4=3I+pWUkpMk}sdqr6{b$@#7~#7Kf|J zS3GC7HH!;YWjUzn>6ViSzZ`1amg;;7xW&!rufsNtj*zvmJxNsgNqzXa(4_ z#LD~$ws>YGX$}#gm`9RG2135+OGcN_{JFYtwpEE1@^J%45#oSzecVo6;e^^(KA;<} zu#0fAmBoKZ!6HAPQG_pb6HUtD^zWS!!^WdnfUi+#zKg{Po3&_V&f8^lWz0>l3f49K zjozxWhUstuVE+!v!LXZXAw#K$ZgA4$rrLvT09ucimBkZS@yu${tgeRM*>sSa-X(yA zXrh!+3r@TDhlZXpce~y}7X>-6ykj9s_ z4wrHSeTmg|mvUKa`22QMkl5~mp?FnQ{P1*9zQg-rb z?m*8XwFZ{pRQ0Q~77_MfvzuxQJYk_{thh8lBabP#hoAYu+Uc<#m>!wR)HB-ZBxT7I zzr{nn%yekFOT0h6OQr%FDGA>9SzG;_bOI*oI{h8LGdLLhpwVlW)Opf!YcVNO@<^>b zsCTmczZwE^YV?c+^4%-b)3-im#u}Wm& z!CRNPx-9sP0OayUP>;$H;xyxm!7ZQ%FStEbdYM4{fQiEEAJm`h!T4iDLgEIHas?eB zXIOPYZMsS_8m=zRMf-~%^9moS4?@cEhAddThr;{K-7uTRr{WVK>B=QX0~wYIG}y0Z zS@0m)_Q32}VrjzzWoy5^Yjp%Y!@3s&Ti%%GEJ0k(4 z2pXeYl`^zhYt`dVzJOq zVq*7bx}zajiAd=pcxr4*Cek8h0IyXWYLEubk0=!YLujjIEgsnIS*-#jCaNgj)u*bE zpJNST!Yze6VhLoPEF?uBrsYwut#!Bu<<4D3PS&iI30tsZq3whRkP>V3dTOiHeIw&X zr}}yYV5vXxdu4TE#h@caz*+?ij!kNT`LWJtY*T%WBnx6hj}}riFAmG4`f5VDJSJBj zQ#hTvme@RI`Az7PaK#T`VI3>09Tv?OyXN1liPo_4!V2c-f7RDO;Q)rQa`1LQD>#=H z8;P^AG`?d3REWh;BFF3irpA%*9JE(N;}xNhIzR?9@P>1p6sM`H7J&_|A*LxkV*KK4 zw~kwSklw|r9FuZHh8AM1PD-4X9SzJ}A+Z!_r%w_I_JoxP>UU%OgIgTR%E`scwiNsa zk#}z5jaGRfIlqPqTnMN%K-dU?ya@vWxmokLd5ohuRYhOUxm&I6F+cE&XB0Lat+V2UM@ z9)ZDx3PVUrGg?!PZ9{Jdgamrjnu1YrJL6xHtPb-^LGLU2*xGhN&T@2zOVb|-uMR(; z+BLX?X=k0<>Tr%^&{K@N9$|KM5yPOr#{ijMNEP7xmn@8{FQ|Z6KUHOyA|_DSR4=L# zo*C+`W3`**r_@6v%il`xn_Bo++2dWIEgK)(iP(0;dd!=ky@ZRfUU)$r{Wt}) zYL+6rbd_XT_bS8;^!9k^V|R1=$zF6tY*W8hOBwxkd%p*B!5*(yQupnyFCT%g!E9CA zRNj%^Vl&<7d8*4rOU4zgtwn`TFrLIyeWgXjbhJl2f$rKNv^60xdi#CfylP4C?dIgLgQ&x=M3uoJwXnDyiH;dyC$O$(pNR-5r- zpFcq5(dZ*COP}I z$e3;DMI}aJwpuNsB;irl&wk~n&W(%BNdVx8Y*QD%>T+3lg5-%wf}Za~xFheFX^>vZ zlfz!w`k5ozeAonA#4@LW&XoV?32p84i5xhDBau(IM!PSLnUCX&v@8`C@l>!Z5Uwf1 zU;287EQncvhXi`x#bd2Os6)a9j^z3()FiphzTs;z4Rh;gF^Tbn$cI~o$K09B3XEuu z^9(}F3GGQSNeJjjF%1e(yK=mf?!BVc&pctN5E(-v#p%a{HahA@gpGDGh>3|65{KM# z_o^(Cs-V{S76ue{;SgFqXCsF`!sHlfa6j@eC7IMIvc49l=Q1(f+B%O6E5GZ-ExewB_!u>3q#wUcRmUNwWV**fd9(o`P_Z?M^`;bw9(4%HV!Cc62Go z{R`PEYONw|$~6*Qk9Btor@*J3;`EEx@e({+jV81!U)W^;mh2NWkSvxV%w8|i_T>2d zAqWY4>V%!FIez>3k1^?r5sLD~x~OzznZ?>!5#EpZPel?U4=jeE@#S7wlp-#vz;a-b zl5nxrqw(Q`hjUfm1j1aW@lAQG)TI^?jus8}?U7`OKNeAS8c z6~$-KD5lLQOoOAKpht9s{K3>eY%)HP;%K`Fsw(iLxmB`j4&`nn-Ad}?_eWyVY0J^6 zNgUT|($bwF!#leO@~V#Zg2Oy)+_;>u0@3&ZoDz_H+-c3=C^ABp&a8Hj8wy6D$P{+D z6;k+HFluhqSlIr2k@5>>|h3%H{d#S{$^*pJq_u8!}lK z4mDD6c#8Z3Z~A*y52YlRY^pwB=!ri=2?hihcjv~&*4C7Rs^>2kCYYpl>a>+hvH+03 z5;EyY+UWrxvq1$&pk!g3oZtqDZvSVpi!n=KCMfX-8#M*c@+z1swn(>0(Cvj04%?E_9Rpto7e zUax1Cs1S3*l_O@ITETB&?6ikrTB=+a8z-_a3 z|MjxfF5N)Ge!TYv^0lP+6oK+)`1rc3rhT_e!tQ?mMC0|D0b3Y^t_N54*bw1^G=ly{!`oFS@?INOBsj%QYa zd5w_y0IY?!hj>*}irEIRNdq%=K}VcCT6jk-E5<|#<3txkYir8h?^>sIEGKD^(GmzK zzXVsSYNgawaazz*cB=Y-J+ZH8MPIJmrOkf^qtDF4aMb&(x9~jR5+!3f>U>Knm-0nf zLCL%eu3!@V0LpAJV|Lt@K1|KL3#)8$?$akTj?ZE=4P{nItoYGnN!rEaO6FyYf%YSf z$VuAeGQ!&hvhd^d+UV4Qa?-hz#lt(}^zs-nU^t->tkHa*9EP&JsN@vU%u<*y8Gj}l zXqdx6ZVhljxe^#{zXUUDX%AO8GQ2J06Yj6;!o)&fi!!xN}{mj z<*W};*ybh=^f+9CZk^@i1wlpM;owi>2D-18zTW&0_7(|DX>#!pid^wpWD*t!*WyMRldzVCO-VcVp`KK zCB;8W@*nRoktBMjeoV;lG5?-bh2kt`=30Cm@|5l%QqasU^mgoTuo>M#yWU`Q)buu~ zHK7(&tvpd_{3F`A;RkT_ESsSr;@chMwIiUsk+3~3z`Bj1hc0HsyeXxOPQIakQe0Y` z#03pxsTX$x({5NvY2#r#L_qq!g;mLtNE_#WmvzJ78e-%T8`zP-QC z&xNB%T*0!hxlc!pn}Qda;v??61$|HQjY8D{lWU+{PsnP($)_n?dS*I^rl0iTe~JGp zf2F_5pTip{IctdOx5}L&`aCI4^RMz(=1aNF_KGU$+6>;QH&)~wFc!;cqbBD%)1b}r zWVGVDLuB%fE!ijt>YbOn0+#~O4shLPOM*FABXB^si6^;8=*3rL}Y9upu;HRLnTDQ2hkL?6i|;)M{)bdAsAmK|#_` z;qcIGYLAZ+@3X3&pe!K(Q$=-LEDb82Dus21w)>p#?i87m#*AG8Q^D=@>U}xPu}BRQ zLiZJ+b0T?4k@^~uxHTc!Su;DyT${RfR6E~yek>lo3)&t(g#PbP9Djib|3MP`7m9=H zFFJuq)Y-vN#KH3$GpNPR&Cd9hl?0RrijkXDk4e(m!OanbXAo6o5;JqRGBHz;6k$?j zQgb%4cX9lSU@-a4r1ss>?B9+cl!LsPsg=?H!(jhH9!R*kx&J~+RG3uETpZk-P0Upw^eCJ6`ozX%HnmcLg)5R1PfNwEIY z_y@1SB*FGigZp0!XebVrf2;qWCE{ZLKS4VF-t+$}q=SWnlk@9;$8>c1ew(3aaRPRL zy@g*4_4z;xG?DUeZB!0^n6?i3VuAN5*rA7 z44iU0Y<0aq-oJIsd_3M52o8VT)-cud_&!}8q$(P`-8f{wpUx|$f5Z52&_28``;NDC zwdkQZF}t~VempQylJk0;lfCKtJO=o<9=ST6Qq1w26X<%n{aMz5v~k(!YGcbjIc2At zqhtB80ZP&}=I`???KETHOX&4s08~A)_IiHqh?oueaL6fsZ zouB77r3cKqBguB1r;}Dzui6x^>H1FLEt(v#yLjVQ)Eu93|0?l9J}k-(E~)|;f|^>x zUdSn+W>Xo!5O~TBtC(wzyx5i<+-$X5P<)+UOQ>P+bvRu0fZa&6vYYZOqG_p7j~@o8 zGy~3;OIM?P%6+uzh1{N(9c*6?$o&Rtu6ZFpcV`Ftftm&<+&Ca=7^rFVhkNEj(l;~WRNFms}^wQo73@6S&SI}7nMmw<@e>=UD6Hu+av7ccn@u>wXmbZvWhYw?ooYd8?EOA@9zk~ zlCSADM<51ygBftbtBPvv6YgBlIPAXsFs_3&?dD~Ge;97>2xdV%>22ANJiAMJkdm+M zHlT?;kO;0$s{{Wscn;Qdn3n>;;ve0XD(?tDGn}XAWkZ4%q1UkJ67ZMd*$ep+#4`oj zXCnf!fyB}KrQ37ry{BaB{hd=$G3SHyf-&WtZdtjvHpbZ-sojn#wU~nkvXU24(C0bv)WT)zbE3yW4Vgr-F%?udmt4;pQ5p zBiRnJg9hbcVa>AoB4=%9VQW`V9OM1C&2GSeh(FE`mg6oy!`+jFJ`3t$>c--&;^E@` z<>0&5-Ok?q62SeLSB@up0Rhlyrw5L1;8g6WOIYmqlJW?#6bGl<-gDR56Ug*=aT-&h zYOP51Hl@17%467kZO_p*o};>xJq*b!G8Nj#-NFaXpJTemAKSLd8;fJ?YT<>m$JECF zM{JGbie&;NC^;8>ZmlgmnseQ%+imAfgWOk6+5rIMiYyF=tNeUCFWeqmv8vGld-Db< z5GT;-M`UC+@(q>V7cs?8aVS*Sb%(wyMq#d_Hm?1L<3LYLRNf2?U;`Cd?u*lAP0Mty z4>vWZ^1)cx{Bk|~&$k|B=a?ji<~J8Vh}Ho7MK=H?cV{AT?T#h?7(oqH+(6ow9WF%u zl2&=-?9Ziq3uZ~w0$IH6#S@A|_J0KUzECms`FgUSy+FCyCRG*Ksm8rrn&PY`nM@?C z?F-p_nfQu)QQY6&1^7OB=>Lf`d)J$3UfI9_W8FwOLVzFlrLH5^E|i4|MFK-38;CQl zFHZl^#%>UhH2~Lemq?&t$e9Yn1|AD9hqr_oRc~{BN7gC5)=hnCzIN#<`Nd+&bTS*$ zV&%@t7t*v8Uu5p%b&jOhT3nOM_5D1p_S&}NzWK7DYtM6Z>Jh@$v%2FUiZpDsX{h7+ zc#JbV$n_SBfCvbWo|=STsi$4J{A3lPot z{TlbzwOFdWF(ZkmDg6o@568_^lcrDi$gLmNyIn_&SZVD?h_F}_>bpo~T2H|TqTk3v zg=+L8E2_T6PonhVsf-wJsvTca_wUxfk>vS?BL^ZZcKnLBcIbWVYh67EO$#DQx(ZO1 zwG@z^-J>iBs!;gG2z&?GUF=!H(r&$|E^`HV($4)*V2+#Q+n0m5&eLOB{L~LwLxOi% zD}1*lDsIuHg@)A}QKXCKHm+Dg!e4ogvO?TgUB`unFEPI@v@J8t&N{JkjHyzv?Cvjd zjTeIBl{#|kr_6y(N?3tOII#tcW?#L>(IIWSkE424>_hj~$2itV1@;DIfFkKD z^wE}7rK=YmJ~e;3mM;H8?C()zW~ITd9iYBTDW$9qhl}+dBa6P@y+=`o8GS<`h`Wu`LeP&{RaB{ z1dN?PIrR06B|-6m$8)qY$wxrXJ0{E{dhAP&pWk=vLl(jJ_a?nt7R$Xy3cQ(-3(lLB_klG)veQ>x z0?8PGpJ7+20Lg+-$!~P^2DFU>{SsAe7{uh2bI2%(=tW&7h3>f8F&E@zSzEpDI7^UF z>C?5&n|=@X8ApePW4YSfT-Vxs=9RCsAn;F)K$voOoap;b_|ehY`_cG~4zB1jvD<>cv8fj>5VIM9Y9* zjh4(ElQ~=Oq@UY>s9N11ReEizY`#PFqLai{UmDm!mD6bT{2NEPM~4RF6x& z&F+^1Mo7h{>R1LUQ%t<8m8Nw@Z?a~S+Ak?2W}{lRDzuM*vk(q{5RM!wf)VUuRmhj$^#+k8FGOzxF@A8dW+ zg?v9j^56a9^~CI%lBr`;teqpNXJ~X^v@lmM|CoA-1Fb3A`o*g;ob`Gs3})z=GzKl9 zCCH`pZzS|0mUS$7LIQ+X2k#s5MMl4npc&ibS)w|lL{6BhVZjzf58yM?K0~^ZOrXrs zC$^~Pg^LXxcysAngi4d|?w8V{$Y4|RNdM7d zZvBQG+`1x~2Zci^c;wwAF7qcdcqS}MZtq#bYiFn)ijqsyQLsH~nGMT#5bDsiOZXw* zM!Ifrh_JUcvK%*4FnxJ3qlXX$>GNC(lA46>O%7^OTZ4LKvByZV?{h=39|viOF(PY=r_TRON8m2}jB9sC9cXnv^_r z(gak=S4mAoc_^B8NaE$nlBti#?oK(uhl@I&ob+_KF`Hvzwbw!}jK{I5SaVemUQ~8B z<@53iBIA-ZzeEn8nAw+56tfOn)-VzxDd#L)5oR|@=%gfOA(2hieyS54Zf{&%*sjdM z&SK%v>C4U6)@N^qs1-@qzHY0!O(37Pmm3c6WNZ~S860)wkPC&%aSSAkU@Z}%`Dr2s z1y3a%2F~GyYQX;p82vs78134FGGnoaYzXS~MS&z_>v1O&oW@1O{xL(?*GcPt)EV(3 z#&!R9Dq0))v~d#YlChDIVzT-0S_*LT)fxq=%N?(o?^kzd`eRbEP89gnH-hIeH*=T^ zaw5$v|1$`aCF(Uz>S*;c2=E$2*Sdxb*iUS2!~|-|<@|(I6g8JOZ;2&&>@j_4-C@r4 zN+RG|8|DqS8DV|{X}~Pw5oMGw3rg~jqeK33zHthXtHEM^6gkeWN^3^-OT~1UgN$}qCr%uQ6-12jsil1&kgM)QdVmRXFBg%m@Gk>kx#qwSh-y&kOraIHIVl%>uEU`Z{%&ci2Z4DqAT4{y?{OLzIe-Q_PM2 zfxmBsmfI}QcjQaotILUX(jQplfbA;dK>aF^3VNyrskPhMzEjt?>DEi%{oWWR-_8uP zuPP!@_dI&+`vE4V2@KVysrmyr1hzndb^jB>v_0%Av~@h!cOxSzF^peqSvdNO7<)MS zcHh($PU}$gSxXWKD-O8hUzonDBJ9E-{2Iy?aBj<~kT{?DZbuUx>)Go*2?`0P7(FbPbxp5^IKL zeqV`0chEPhCl=Tgyl3vajn7)*C!q4o{rl_H z^ZfGzPJIbpAm|Ie-qdw|`7m}D1GKPHT5;aku_w_#vWJPA*w=B$6X>S|>unCt*j$yg zz7UKWZj=m4$KeUn!7$Hs{FtR5`3icNb-o*;?0xnn4MP_`A_^Tgn>Qe}AQNj4$VXw~ zXp8Cmv7?2wpmj`ih5FSKr>~7Uap3DJ=qU5D(_abU_ojh`tvQ&xoPB0fnrj=H=Cfde zBy+500rq5OMiyjd!fx0#h@Eg4y)#gTY;&wG@pr7Y$ja0mViwpf(3JC?9n3vF}(5j90@hD|_Vh&kbf7*jAHV#{tY`&_0p9uvjxdMr-1fA2TktGp^_MqryUL z#>h51fuSQAJu#8vqwMA|T+9PoB^eJHF7~!M1{*@O*@r~*Bq#_Ms<{M0smZSMC{C9& zCj2B`djSbphS~NMB7toCDCj3kF$9*W$-k8_#@JF)k(Djjb?wy$8z&_+?Bu<^U@)d~ zV3Jkl_KmB`>XqhjS0>7T`ZY$4H%Uh*g9G9hdTN=P14A^wRo3DCsiwNB`XY&g^gSNqM@2IR^rbo z3~uaX^rvP#t$kR+VoU5R%rrL(At14xAYZASz==|TamVM<+ z^GL{LNR5Z(zF>l&D z8S5y5E}78ci(O-WxTYm*&Vz%gPFc)GX`S)rHT}_wQ@ud8lNt2SK1UgEZd8u8P?F9* zAWp?==Bh|5D8_9?^7=AS^hM4Uk?-@G5|5UWZg1cx3!SHAUZ&v=?6dN8M)Ivgg}xG>2erFALugvO5$6~h7L)2ywcmb6 zU3Pz&IJn)62RPbniL2|7zt=WAkKO)TnbToMPqt|>G3vnZ9ms+g9FSlW`_)DImtL#d z%s8k3r)quVzg*d!ei~G=!1HtEFj~edwTJ=C2!FNrRS}H|_Y<`TSy+FqTf|r#h|1d^ z=$*v_QVtcLC`JYkk1s{0ag+VD?xW^^pj$hQrq|6X=1~K9aI5FX_K?m{$cjI;Vrb{$ z22znEO1)2IO!NvhwGFa6-#f`T)VQi*v!` z$~&di7SKXCfvt2S<0jC2d9`)!rsk-h;fBhQLFwwsd^saOkJ{?BgtsgDi-i~1DCz5d zx50H;_STS{C-#TDOd=W{1@{R;KBLyqx99e3-9AWr?1q%L(Jwd%`YKdCnJD6x*$Cqr*Ob~YrgEQtFWmy4 zsR#&K!*p2o?nq9>q;2;31Y`7}vFe-PLTZPI2!*6Xo9YfLgdUZg{qeDTJq{9(BOkdZ ztV^wnXv9_>V>J9GIacSS2=w3pNGmazVs;xyZov3h3bTz@V1xg1?3Lo#6^*f#VS`}X zxLKl-;tTT%uuvOQKQK()RCHG3Q86`ngMpqpNYlXJ^NX;4MzpF5=9Qbb|BT^~#IZ7@ z`h=?%$*ZX*CRi&^7eOTOi52$?>)hD@{n_wfhOum(ye8c$H`-$S&q=0Ti4xtxLx~!5 z`1Hm@$&#SL3}fCT2`EZt)5XM}vP`>@C2UmoBp}|xk_t%e@W)`1k!+?U4)uKY>xop! zN+G7MpJ6?*uAj_(opc^kFJuG(o$Qqd7DPu7syI?Z6VA7t#dv-o5ZeT^5$ha2w zSq)&)`BWYj7uuuXDehtxU`4E4NcneJWl`q+7u^xe)!%Lzclp(Gbt~iuJ9VB#l+T z4q78{j#=ebBG8jZ#2RV-GZhN|pbLaQqnDmju?qh#y%A=i1-2d4na3Hmp z-cXkjY9*o#%Y??1+#1tVVXR{#z{jse^l3*+8h#%MWLcIOjqO82EJsOBe}8pI6Q63;LkT1K0%-b7m#UVhr)dxxeneFhlR6Gy$q<0oW05}7TKZHNXW)N6 zTSiJ+Lz4LDa-T0q%SbnogM(s?z0nE<151KR?VS2kq1#WM{3`YoD)7`$HtOnB!(?ou z^%ZK27?l_yReFb>GC@L%T9-f2!%!z}TTi!z%Ncl$O&+IoI;pMU)j!lEjD){{u1CtG>Ci06aR=Idoh7`1HL{fS?34$eNQ5PJQ#)}j5`%Q_hCx-Uu0c@y9Y<>%TL z;G1xa4`vlm{hLPB4q=pTny-zux`m7={TZ5X_n2Fs9fC$~IZ!~BiA`KCi+<|I54jZj z5QR6WC;3iUZ9w87(Ok`xlC@5r+yKiR_9p!)w?4e^2=alJM}g64O&LO?W$UrWm%;mM zK=}>Da*>Oo%nhnEsGbC?FalRC9QIJ--~4&tUw__O`q!Vk_JRC)oP3j}Ez8pw#rbvG zUw>|t{*ON=8<(ID#V{6Kx7&ZD#FzwJaZrabr(1;4@e5|r(+!vCpq!83s)kmZh@D?c zdSq?HeoA-CqSO0ZIg_K0VvUBY7*O38S5N41_ceJw&CM&*Cx&dipQe0%pt+_92q_lV zyiz2mTiHsFYE>9qYGzh4uZPScJ&1uw$+9d7r^w(Yi6beKP0pf~61K3g&1CMzBE5eo z{#8-lG`V8{1mISi*XOR9s-@V$A_)XBB^bdge@oEr=j&x(C0G=@V2$4Zgd zT~voFx^h=*na7u{CV3#s({C3=Haj~nM69?-SM_1Vi6~rLEXpG-kuF%GsgtYH<)V-s z!&f9mBitLLC|IGZqCVx_@;_YFgFwx-l9I>6F0hEB;S8&}FRkkxt&$%5zY$zMDhI`$SmJ zt_aNVx1$Rml#tH~m%?WZ(EDcD0`lm_f8Vzg(EHZtME@Bhp9)2+vH``GD7kA5Nx zuvpw;Q_P>{=iYqKsmf^pwZch&m5jB&XhD;}%kmok-dHKzhHE3-rXpOpP0}LNFMlWz zO>VDbjNR&fx4sLc{z)F`ycVyjWg+vpXA&rM^aI+HAc-k$lZavIQf4c*GcWXa3joah z`x<$FM_`8}WC4?(v=)`H$}5IqkhN>8&M))mf&rmTfhKL|bW-ye11C^wh8p#62xP^; z>)na9RR7_ZOWPKVUo^Rc*pG(qSIf#H1X^^Hmsf1IDZ=h6gx=|{89#0&UV;sW{T&9C zK6aN8+a#6|@tVim1F;u$@nr$|c$cV}{F2WE8N2;bwZxh^;KCqf+nA6b0MEB1kK`DCOI{>h*$; zNf#Jk*+xD9y`Lpwl%S1rS7KSSw_BuVnNd}*GMl#4wW@I(Tw4L`1Yh$({ zX$gv8)k2no+Yz0_le3u*kr66W*xjHda zSz)}vSXHd}o>oibZ=`}n-ll@YHEJzIvh5Ym<8!=F}wF%srlf&{m;uJ2%lv24}Vw>rr3(yYls8F3N{ zwnG9{31K}&61%HYvA@-6@~q^mtdqw4;=~lDu45u`$EebTq2WesNg4i1mKmLLwAnE3p2N&z!RAwZ;oKU>5(&&%@ z1hc|mgJT|&$qYjR@!S+q)!=r&^A?n_R_B5s1B-g8&2SKzJfnVoydoTkQ?yK72fN6G z5pWi^@(~V)ao!Q*ZljUttI{N*TK}rbQWM>-N$Ioxl?F(A-R3(4BaK;LzN78_^PTZR zk31NYFGY~$Q!hoHU?-{;CT|C7J7L~dXvg>Ls9(o~uj}RYsoUfYRwheOtHBP?Oh4sB znJ)N$l&8|i2zmy)K&VDqP-_wJF`{uhA2r1#Un|bY6b7@Qa&@O7qdH_fp^@Q{!<$|5 zlm$4Tz9IE}O#-GZ-7<;lh4CUC`AzQzoisu6d_@-m1nFd`T<~G6M zC72V|I_w)iSuQT5sUpvB%k-AI>1ziJ23X1t2?S7Vji^+W=%H@Astar-39c&gY$g9> zcuR}6@o+9-u&rv-L)~)q6euo?{iZDQD554kbYO(DS!;oZOQmX3b3GG_j&*xpQXsxi z?}do2SkGa;6_6HY9azeyroZnQuZ(j`^9!l?c%=(0EOZq|`esL|y_2YXXMRQ)xi}}0 zK$gOcShn$TwklNdIYd0ePo<5$@S)*lx`a$7gRzZ}4bhP#T+v;ujJhf{^rBy`2l&msLlRe}WFp9t6=m+Dtro7TL7UdU;710Snf0B6ybh&Sdw&ASKaLNLtux z^nEQJoY;%nMVR@3t*X}u->)syAw<5oGS&>fRe?U^F04+!#-^*0KB2_pLLWEu`*Y&%|Z-BInZBb!O`f9bhJNd@f>viYDr5Lt~{DKOYb-+46!s1 z>-%l!lsUABS}xDeTr2gzJjbFcuWz)My<#s^S}m z1Sv=Pc#3A#x$$R!>xNXYa_( zI?{{lDAZe-)vg|;u8P`km8aQSAAuqVdk`Jq;f3d?o=JP&(pfb}B7>3%uX)6o85G2c z%PQ~4X((JWr%$C^%ml)EvBQ$ze{+_X_xFlAYfT?TMKNc}W@;18k@JwyBDNL_0pv-O zM_xM%=hU@*WsBjDV*(TYk~c{0AD^PEULF%a{AB;DN!FdFfV}=dDvHU;NxSIOVll$-*bXYXRm-4YT^Cz*zVK~) z0zcqOXH$9rF@HGbdWTuR(+|XH$vHUA-nFLamECs%Me8-Y`rmjmvaE+enoWk^5gxYh zKtclVEcBlkgP@PJPHXH2;Sz>}Dr~P7yIkKCU)M;A#GrVs(BeORh|Iz38XuL@PO_24 zBegCnfZxASTd^Um2|Xub&wmWi?9q$>&Tfxi9{9W?R+)sc-!18*__){cg3pRB`(0lR z(sva7pIAwlIzxrdh|I&}t3RM7bSothr#)o}8?|1k2Jz>Z-4QTW&&JYuKv$$UMtHRm zufu&z9#j!7v8iX{F>{kw#s$liS4LKVC)KlYnLNWwZoJX#{8&V*=^NudHIr8=2!(V< z$T%>CgT5f8HsZUzjtDaZJ=^tOsbRQnrl3fFX51?y>C#+Vh!-ZpdD7c7faQ^L>>h5C zM$u-vRkH{rl+Y~lF&N6o%t?8h7NWmMN?m1#uurgEL8uMQdZRxQ8}$mQygdzGjTv!< zl$k#b9tr_%RDw1@KqNyVy&|asvGmeS6-8p^+$5HTpfQVcwhq6ne$Cjkv3LW&>Q4B% zo3nLetzE7PxgK9bJNH5q8>JNmv`P=9k0be$O_c8EEjVuu%sdy4m1Gc8DQe@hSi=_M z!3K(zITL=`K&%Bvq9I%lm)p1(v@+&9ogyKUXgnG^+d;abpusXXO!t#*_O$&7IStN| z*Si0fdoQR?tHIsU;Q2TR9OsH@_n9BNH8E@S@_g9M%i>->X3 zEGc%M9ju8JB*x&}MwO8emz5;6xL@Q6UUHL765z&~A`_7%!qjB}FzPKu;yZ*ZaIh-~ znK*MRjpGSZs2<`(6lARcmN>V3!pMRC>(5G{@h`+gxDRZ(C8Z;VkJRB z|4Sx-4r)0K7v>b{@P?NlK6d6hMjUs%F9ll7#DIu16U{88ofnByc z$K~vT!)c1F-Q;*jIk7DmYu|nYXQYJ{BA-t#}*AX5G(f`IPE5rkeai|cw&7O{9b;-F(ZU(Xd6qBM2$Sz27>ki>0Hd5kqY zm4ZP-e^fnm<~dLbR)MEmmS0@%a63sgx{oshfhQO)lOxS6muY$oCR2V|oX3yU?J$Cu zP$4=e5sx$fp@FM))d*2Mmq}E0Z`k|+n>KLr6t^^&Y4y|zPTXX;XZ-6}@FYxfKEYUWz9$7-j|GS^f)j%z_zhC_J;(<2 za1pYB4Gy_tsniVbcF!W)Z8!DgUK9)8sH^na z?FUY|?Y9d6!7lxc^uh4?I=JQ5hDX*^n!8MsGjlYknVWjU#3q7bXvvz>GH5S3co#@Yc8f4JUoe(FMNFx+S?8WqGENp zz9GkdzCJ$e+lUcUef&bB5nehsl_49wW*aNZ$HdtgVSRMl*LLYCD78Dyo7>6w*RvcW zYfOz?B5M>M#iV`fNs8A$$oOW)K_VLzXvY{bvPjm@u~CveJ@hfYr$>$h`$BT|J6+{S z;+pPwsh$-l{|`cQX{B2nJuL4Ztm>7o#ee21o3`rFMSGKNX+G^E+U_{}y(B2cJPbt?{g|0gxuT zL#qr<2P)oDNvF%-is(trpp&i>&9qx1=g0n!;mY}Rz zNRaCdmR>MZSV3JL0rLjAObPeX=uWe+nAmDtjZr;c=xCvhGvmexO+8)+F(@joWVB)7 z0RN|HviPv1TxhxS`O$Pr;wZ_aaE4a$O+v|xhUy>upU{pYi({u|s6CtsuaLvle%?Oa z|2hp8e+U21thPw0ootu{03Rv?KpmIH!~$$vUFGH5&r67~hUK{uDtnFGyfLpdMR_!@ zqz_Y&hxVzIvz%H$lb8oTkP^;pn9mEff-=5lLgTA+B(Tn2bZZrn0Jn{-)}9nWl@J!N zn8*jjEGjkF${+@&pFg>ytMipY2g+H3oCT3nurl8!*5tytI3LInQM-tjr>-m)dF|*w z!%}-_oa|#w{oty(=h?BPB@&sHXca(c{Y?mwJ{uZt%0~&RFT`XCh_g0iS4|*XD9G5S zP?afDr7tC=joZk%G_Q;|tY9rhX$ zgXbA4@pZK_l>;JopVb~476B}WP$KO^t!XG@#Dn)4Xz`3cWl{%3YSEE-EARd~B8TRs z0#rYucv4AQ;-*=DB9?#V!&o@x5&z7Gp~SFw&hWBm)nNo}3l>nH=-S?*zV^n7iD}pt zaJIj7s-2muW;bRXe%8obuPQ%}kM}34tor#1;xI1uj{j0^p)8}jgpFsrs*k^!>($=> zHQwo?TV=wgZu7sy&jQ@9h}Nt8+{XJ`g>ggi`_(j}UB$!aL3i?zVO-0X<|4U1%J)xl zeILK%9Re7upGJ_w3g;}J&nv{6p?LXX>PXRh?^Me>Kpn&PdB4It=4}KHDL?0!*U<4B z1fStPw0zmt556*>Is4KI(HoRZ{vYYaz30dP%VV|<{o8xfio1|Y%yNgT8ASbHW$n`b zRy4FwHt4~F>ytFCj@Vk6tD>|6suWO@WHWC5vmOnP9^0yP!7-UyiehC&>HlE5vuoWr zL`m|^n%U7Y2v&+Rb_kNK%a&+IS^v78Z6+16-rsw)%sa7jR%4i1_7g>$dE)h@MUN1~ z9z)0b7`mdc&U+352uM~IPJ1NiRygfMUs&(Bb$bG))H;RzgXEjkD94DMOoJp(yq|!4L9! zBFJD=(!f%jZdiTF*L|aqoqZ!+kO&S76u<7@@Wm9@IeO24Mh*+?Xgj$;;mM(tNW{`1T))IPB*&HJcmbmmZqat8|~6@RAL7=mi$Q z{rMIs>%lb5Q6^1S<(3OL?xG}bChwzQ?H=pjZ z&Y^Oifhm5=tcN4lOAI>j=Dez){($|fX+e3njNX6(UKkQ0jmDRcWP2sF+Zkd=QovYhY{?+QGb zjDCw`eLt3bH!-^qe=`wJ-+0fex^FmH)sVXttd_M=wRsq&*!qU4or{qV7sd?X`0p|k zXvx1alkv7J*8fgsk^sYN{jV|;Gr;f^>e}T5rs6mE(dON)*Avi$6+siJ=<>(olQxR&X5W&SARZx*ei7A!@|Ylm1c z;8O$LeS-9hb0d-bFJ6ey*zGPOUr$FN?=8P-f!*ywX)gK5iW7?&$l$Pn*I;zt=4c| zFPC0&yv}U8X-Bi~ou+NK>(U=?veOTLjAv}}s=#PWA#eHuo55U*0!MqM55}kaV^Qn% z6{%r)a2zN!ds&UGyjGs#d}r7jjP%flD5=}TNFZ+_zQy}~A)=b!KwJ(>$5Efar7kA6 zu^&fu#$1tx8d{A^`zAfTUCB_R-qU2jsl9yHXFtWdjZZwf6*N|i&AQr3=Pg)o&$okx z2unnDxBJ#8gfgUch;Anno1K1s6dq@nK^(i~i!~{reL{k%dk?S1vu)d*E}^>0*vjhPz>!> zz!Wv`?u-Miu4>(W;*B-xW@$n$y5sLU=9~}r5rUGr4007lx|8;_%Ul&<18(UDCW!-X z2v&SL%gjGbC^vG+R0^t>bBnd|9!?X8r_gOP$!gpExGLGYWquJlZg=&TUhhL?nqNoV zg}Zrx560o?B4F953g3Jmx4gR2=f2DhlgK)r-V?tb6qUn!Gn~L(Ke|Y;nty0k98u`faD`;>ODaYnT&CENtIrLu~>;Jl=ZbTfn@7O2a%icpU0VC z$00}~@{}gP^@zSM+tTU;S->;u<{cC?0;G+ooD@=OQ$CLeHW-87*oV(T{JD2Ch;kTY zL{SLQc+rYaqOP~4AqdQ@Qoh?nfK~6wz=De@$abDjd^k8r<#R!ET4UOu!lgf20U`-*`GSapgMa6=5C?^rcL9AHPg=VWED32F9F=zZ zhMHJm(Z^qFVm^aH^DtlkB8isIX5^^%+{Rdvch@3tgJK{kQRn0OXiSpebhZQ2U^`S0 ziZlu0B5XzB;1&?A@`9MKhy)!!X_jtBh|0A$7fYe}eV;UQ6nT%Z>E0D&-<^p?n=F~M z@fK5YUsX1*By)>bA#1j*dfD5v6)mUwDK;-KW7*2d#b~Q$09w{X+#1BaO+k=q{j0hm zfLc%TKT{F-yG0jix$Iw6ldChEeu5@IhNCCfph)#2B3q>x3HVI}WW3MSF1a!v*ix9W zdP|>^xM%2d?LpufNUHs&N2Zkt@eMks5Uibk$TkY;-G}c-8H46f^b5Req?f(mHDo&~xA4Z@fUUQfw?G zd4eT2`mmpk02bk@!lA0QhB>2}WT!am2N zPLyxqi9?r}EQLZJ4dRSn!%laI?A9PsjcVGn6;_{Wd3KASP!JtUbYpvT;+G^XyFIP zO7DQl^0TJo7eZIQg9f79e1o|O{Q^n3;0LxG5`c+ag@?Bp06}ABb?xTDSXWvPlET%8 zfTVE#Dao2jm|&{TvXOAA2+<{tawOI|2q3Y;K8jbHQohC%wn}suM}G$K+%5>%XI2^l zPzR*USY=u!zV3jYqLLj@ppw?;%S~J)bR4eQ*B=;~RfIZ$5x;&9UKNx-%P$75=Hq|xeN|0SCnd#mOC63VMb`^6CnENAvqb8 z2{HM6T1&no4Yv&tzT@g7sle}{rP~u|rK?jXKtR6A&RImM(<M}69@yF`U6}Up3C28_XHviY;9@Eu z^Bw!mGV>EE2F|#f`I?QS#)@@C0Rn}(P=%{g+?S+1^GwS=oU!NdGXyne)%P}nI}ssF ze%6FW&AePS%z+VOFb>cv&9U8uzQ(hoNk}<*6lh6)Qnghfxl&8}BO8AD&#^PrGS&J; zf1*Y4BCLjmONo5&J1_%cEz72RgXIYjKZ^kp@TY_0vGuq2-egkTF74(G{6 z*B$kn_}X_f^R<;dMlNfxV3c)DSDISRBq3Q(cyhY7pTA@loG_2$ZO;WGn{tM()ukA8 z#D{O0Rvt^T#I@QwJdk6H6FkAx2DC^w=K*C0mdDyZuF~gP7_*$r)E&qz?u4;a?^{)& zqN+~tugunR9QT!~IoTIUE%a7gHXp`{Z^oYKBf|5+1?T>F-I9Q%=`4|#754ei_w<1W zY52lQ3;O8lXa17-7Nz1O4gSgo!9unBl25Hn$0*L{9duWE&iel@tH$3X6aSi3gX!OLQv83A zRpb9*B8~sMwNY6AH;FXg=y42=Idk%o0OPIK(JGvqr0P|Al1ocZ_xy$2=+ z{nz4G=o9|Q1OIybsC^=JwI}h|y+6-ex^?Ac?WStV)GE;qZ1;`KIJ|?w3s%<@vI{p` z-jBBj3;h5&XI+o0*N1Fgo{rb6tKjyFEbo`|w-4Tr`{ak{scu)7w}YeYxpZf_Dc#rC zx8g_DkEh4W{@vg$P_76B@8{hOP|l5tlcJmH%}5~!)ur85i}SP__H|E}*Vp>)kNfkZ zn<;AR_scV2HqS@&vkj-}#zu2B??**fdEdu^^X)_zPxE$swqQM9_u++(H>lI``Q3H# zmycWE6yMAF`}u7}vG>F+{)hX+nYZWrN;3Fvwb;ZF@MivWLcKz*w>mcBl^JLQUNX7C zKBb6p=TZf{%zWmSai-fX>3%-izB5$ZcsttI&<(s82X@_Zd3t8uY?)VeFJ!J66zCJs z-ei`QRd=ywr@t=If->$R3~n9mjH7s&!ptXlnbu9)K4sR@0`;r_92mj&@I$2;{-u;a zJqrLw%CkLu5oos+v}>ak-M^kZM;|@Ne5QeY#| z;b*$aQ29jyUAU)W7xlf&Q{6J#KEPn>Z-FMLz#3H0{I?(pRG})GS{S9Ss7%g|6yEhIPAA6T8UjQ|Tr<`8URczxn{lPUC*56(> zkxs7NKc3e~Q@Z(hPR_To|6~u()o;I3ybdF5XR{Tzb$)p76m40KD`l4p(2H(7ngUIL z;EJev<_`$E<8E+X&`uvBTfH0J2V4_(&3X^IL7y&K#+{wka9^=H4#IM5A9U|=T_zGe zp>-ULw^FH@wY;F6Ka97`0USLW-Yd>U_V9n3WHx0$uD>OFno+$cpkun^R+W zH0P;>mv;Lx1)hJ^*)wZKJ6<2(R(B*>?XZy>f}h;>2t(+fQa0Q`>`8y-#lgX~8WfM0 z>-LwnE|%YB_*22%W8&^mHr&yPpB_Y%oxLA7BB9k(^&?Z?trgXSc}%#QZfw0d;U4g1 z?`%IvpCQK(ci|Y`@WBO)a>sbsk?u?Zv>}fPc!ef;(u62tIv%CC9p24 zuTxm`tGO0FSoth>SY4C;Z1Q<%nKC`E%$*Eh&dYqy^2YpN?c(C~=x9}T@T{t=@92<% zG+Fj()c=gv*XjlD83lBLiJocQBHHBnF!9`KdJNNc(txDi5?X%x-M@k2Bsr(e?oowJ z%0lQ;j@|-4+79NOcx%i<`;0}Mer_K?n2hl;e*xwgI51F2GP#?mpb3}X;pz(?OcMEIH|2qhcU?5g~F*yUo}WXKM_K=S)SCl$@ib=uIqO6Gi{=-l%g zhZo>vLmRb8$P;`6{bIBV_F}Xv;Cur#eWrnLD?h-{VV&M6+yu4DI2ZNGgZmv!Ck(#DSI=vfNbGDr={-ggL)0Sn(svr47T3=aVA=y(7yp&AIygSYuv_S za^mNo?TPb1bI?`tG@5!LcILI4;=IDx;=^lPb;wWN-`tIT;P+)GRmaw8-qlWFg!p(P zdaq1vp9W8M(xtFU&m z#7-bp|5Qewn4h$sxDnJ4YP|*#_Gybwa1vOVFp!jweRi64d_ExuP|F8-i#px{*{-Je20pZYb8 zWgTNS1c-1%@|itTz8^*F`nilz-!R|0a71E1S3)sMkNdpa(H*<-*0@-ULAZZhUK!47 zqVRBt(ksY3#Yi|p=3(=_&sFvg?MIIIsXNMCe)1@1&AbJxEhFXTM^moXH2+Ujt-VYFDGMrVd$Cc+)CmNq5>mKR57`^6&6>@@!}Ot5~Mk}H0H zpJ*?htKkNCN1VUVMgR@5HaYdwkfXHaF&tgtC=z_Io8;?;Yb>Z;A_O9>F*uT-1AU|F z&;aZJua`FwXxn0&875EWe2lhU*|Fob zI@rrG2NeM`%+G3~Nn#P#zmkrsDox}+9Ko8e>?skf(7k2wHtNQzH}Wy}o7d~b?^cpB7<4k5`ZcpPy3urWe{;{+( z9H!NN!XIZ@8~S6(1~hBbCyVIr#^Qwx0!TMM0L zUkg4_ybeYt)c{T=cpWiZhHwT$mujoHlGQ&(fvtO}wPJI$LXNUn@fInaPv_K!L9-nLva{)%Yv93y{Z|>~ zdE2fW+XPH$Wq&h~xmS3YHZOQ4j^RHjDiDH#%eF4VIPrrO$>-qc{y<}M3g zJI7OCA7VLQ5aMzO>UIwq|KcbC;p_T#E+&gcq1IijgmzV#R}j&H!56gtaP{D!GbT?> z@BTPGN@Rk7U#5h2#eqdmOxuRAJvq^utz~sXI69qubUAAA;~E$a1%YpgHL~bi;>(XL z0jbUv!}8rM&+JDUB1)tBOAPb(!59`|0?azRkVIbbU&+sEQ{(pdfnmFeEb60ec)7%4;IHx*FVxf3SVn%xvydw*n+E=NL{7dd*!Vgc2QfC z+!pOaJYkYyaLg$8E5Dc<-+tWQpz=V`;Mh4^m8g1CAALy{983(8GFWT0GFdS%aj6(VKmlIr_c%lpuAj$)Y0 zpPJ+XPiQS6kJ`eQAzcHPA!S;ZeGU|DeBwz~eUJ&9_^HF;suFP?1(LSg0PGG1vadlB zfYdT2fP8Jey)4f_tPWj>uBiI66Ab592>2hdch4aiQB7QAqeHY2phuUvb0SeuW2x>b$!J>W1_B1M(S## zf%)rYS?qO~gh#jOoD9d=^{v2d4@mmt#FZOkcU7F-n0(oGsEW_JDM!283N6PI8+B)BZ1O)zQbQ~na1xeIY^M3 z8_@NySqFEe*T>b)ThuRRzeqd7iJ02QZ_6k!+h>-|Ce1)UB^e{ZbsWkx zps-fM_0EIYjlVypc&-RT*dTTEx6Sm+zg)7HiBSe7VJ3uMcr&f~^F*;lW`hym3vGRl z3wHV`ZX-n4!XD4GP-&Y4&#o=FkE1Qf_N0xMq1S{sm1~Y9AHRes7qAqXV)}++yv=b# z(RDa@LMP>z%k;RAc36r8uVz15FL3p^KzVHQsj&PIb67Apl;Q#T&>BwWPOPu^I@c+d zyyRO#pfsE0R3{Tv+-VRjenrb}buN%(s_IJ*^9D`I2D0NprJQ~%<2jZnm&q1oTJVNk zLpmDOPFZbuqHA(_B8vl%D_(CVwHbDDrk>-40i*a(T`Lnm)M$>fWcs%_j6)Nhlj|UC z=I^i2Mh(@|Zw#6ALSN z{AoamaaMfG*!&r2s_=X~YO3S>Q46XN)6SEHXij^^bCgt*4$rJ}6R>4&8E2|et_WCa z3w)Czyu~NMZ~uCbV9klQWn0ej*A{Xv&r3l{T~L9T+?k<2Dfyx+yS875BPzQ0N7uOz z)cZ%bWUR~tAoAI!?^ooj3Nt;UPgp;tvP=wjE#b2gBH7y9;ZIp~R;9(|m za7!LG&9$2k&gc>D=#Q_GdlNJ*9H_|2=yfw%mC3+M$rRO$YoE>u&nja;G=tSv7mbOZ z8)uZKl;78eoTxIWT^eC|C^xC5f1XnoBjqS#EGUvLSb_CuPl1bzaxjYdi_CBP8sA;r z?8~^Jj@BKgPwY!{r1^$#q43w0pEnJG0VrMYI&9oZb03E(?>*ZQRRu zQK`C)u_H~HTe5|?qA}W}@D;NyeItc_G#yf;atzLJuZY&{i@Cgh0Jr7?hAZ6Tp#Lqf z@5H39bP!!mpp-%)G1ZXo1mYUAG>N;5{zK#z+DWzpF?)|vjZ5_{Yoa%HGp%ei3ZX2c zvvRM@uRq6WeB3MoQJGhL&5^h2ZmTFT%v-N9Msq|;ZPMUCstMMfUwmzb!ak=wr(Yw=b^DD z%T?F(c-pRVYlgh%!klMPuk9Gn{lXO&oxZc?yqMO|w!MVsAnD;|-fwi`7rQw5N*xW& zOY@YgQT!M32hs|>YPg=p=HI{jYJ>~Nh*4Sbo?3GREak`AQNdC3Cw%W0Y1UUbQ{EA? z`{vuxl$WXhDt?@7UGPA-+=arEwT9OAV-3wCVl5nB$UfM)VlB9#*i95IpQAm+svYGP z?wHfFKUWwxH@6RK^a)OE-gn*mBC#Akv1QRWAYyY%sv-QLE`{)a_*<-*S2? zlA}w3t<_QsC9-z(r4C-c74cv=r<)R1@GUilCl*XH3{aC7HfM3HNU5+FXEge(>k0~B z1y*9x8~r-{TZMvJ7-ABUq^F<#wgaIRLq@#S?W;ph0?6w{2b1XMmFB8b4Mb?pqTCV1 zaw(IUyw%NG5u7E1llawQs7lP^fUHbXs_BLwuGArIW^#O13ddbEHpWk85KYVU9j?uMPsqjRPS=W-aLo>$9;}d4w9j8H8s<0 z>Gze+wj-+y40q>TO!m80%n{xL@>dj+pu{i}{bkrF+ppgiT^A^$sv#Iy+NYLciqC}T z#Fn)>lw1ici_Um(f~fP=t_UHemS70&APFFpEfBMTpMSrSOS58;p8)%GsFE*xm~_c+2NU76KYo=dla$*$`&z4o>U6n?~MqK z-_hX&$g{>l)>Y8HD`q1fs!zI24P6&IR87!r#R}uuC)Zko#RPk9k_uoHaBT9HlB!HX z{c-JZ^>Q9n{x&Ls7{<*sOlv=ErNJ6bmBF${Inn*`s_xbyPdS|wF!tJ5&m?K%OuNFWc++?E9B{rop<7So(tmRKEi z-aXxb7Sy46IQuEb0^)s>H)Iy_TqhQJ9WS6J=3fn|eV1b*&%QArv!4sdPq?CUaB=%SF{iU;K^GHS%U-L*ppf3~V^ne> z-R9LVPZ{5I+~K`4=ISm?!3In95G2^FO0X>XZ3E!yO0sM7?i*G1eo~pceTNGcMlX|~ zRmxQVxf*<$z|o#v`tx3N3o&lR^N4EHih`54W)nADtE!p9Nu92V=$5pK=oYC8aT0Ly zK2mLfp^`ZZE&gULQo;8j-4F%Eea2uvL(FiS%5FjZuH4|>m9}^~_!?HChc$UuLzJVx zy(uWb|GFNf^5amtfg-cC4Ak26B&g8;&SW(Ecc;H&IZi?OmK@7rMJB61k{YZe>VvtG zWQrf@;ZzmrNl>sWgiXxlg~oiw(<`H2aBdPmqu*-x=vo|2MI&q0$&Q%_dxIad2QbsU zVcY-JHOC+;PT|u}5MfSDwV%R`7YezFO7F}v+^gT)>#g+Y>_Mwv{v@GpVMp6A#mBzU}vHfDFe%lm0AsU(f_=?s6&$!$2BmTOt>BPlBVWxZl$8?V7 z;@agZT7h;dFSgW@R`ohZC2zhZ(8$}rM$&8wGmVxd=@G15K< zP!NqFGECdRr?M>}rovaiQ5ZN{Q48AJHW@y-e#gXm87EaJ-E%Se%Z7JQ>XS_c?bTn-U8I! z+NN$wi;!B8;f3Af0|U^d9?&I;p(Mc&kX9*iy@Fh+ z%?xEL6Z!ymo4pqtF+1lw;{AwRx9I-*4o z{uKF8f?*uOheW>raVy|b8e-F`ZP{GbhU5OqJ-O0_6aOA+C>=UUa00s+mNM7)4M4ny|ry=B&h&ci*S;k+-rC30O96#`? zdGujNK^}a=;Zl2}@e}B%cOt@X_&A7Tr@0` zxT3cv)Q0G84jb8WhMRBa0^JyN=rNg!PD*!WXUS<_VQ63nuZHAOHf(O!`vFj^0a41 z8X`OY2JhElJmSG{9)R9&(t&6dahiqJbFvLu7G+$^YXH5+V*$m_($?~Dk%OxwgP%)F zo0APuJJXsO#+S}q^2-vN?&z;-B>A|ORbv(Bo^y@8U^ zaO#6RaE1v+ptDD*=NokydShkXTN9IW*1YuyzwXI{lpT?4d0- zb7WhH+D0uHim=+-8NFA$G{vPMQX72J7?|h0L5=f*Ef@^cWJS*(ZUZ%fwf;AZRfNZQ zoF@{DLvbV`ZeN-9s4G^MZ(}P6H0x8ogARm_0;P?A#NC_B#1l-6^PJL~3tqLh2T=It zs3W>~;!(>83?YFtt@iSH-~CbMB6h>^k+Q8nmYE?fV6xq`{Da!4d|%Xrr)B_bDDFxE zCZfNqmX8#t71jYt%-RWzwt^0|$T_Hlg_{53{tsgb(}`$87m#R13Nu5llnGR@4vQzP zu)ld7PLmq)-$8w;pIH-cqc40A(Fe-M&!(U08tcEatR8=xf;MN^fWb{3-ga)@AtsQ= zkB=&i1r1U-4zM?MRWZ#7-6tl*z#%ht8UMof;btoGplJ$A`{qx?m3maiA8J9iLcndxw@Y!cdUD_$(_Pz8&S+d3 zq92SqZPu3wBmK99QhMAnb24uzRaO*%;c({8)ROip9qyhZuuwp@T*{MOc{23zTop;y zvc`J=eR*6(k5e~NQ1C0c>b-JIFTSK(gqBtP?0 z?V@c~`MeB+JfLzWA@A_NKqqw4FYZuqjR?Lm4Tl6r66U`M>2r}tDYfe{`@6>yy-051 zB9B78=7~|Rw73>Pz2+sOp6hfd1^LWKBR!fStTD131o^Zpbwu$1Pgz`Y@kyFvrR1rx zLo)&K@kCUqR)NAQiU=prXYJTciBhB%DW^A5p_JNN`lH=vj7oI__cJWU0pW=40O1JU z05sdE6GRs8EOZu19R#VijRS-D;67#5N%gbYjxegzDanVxP@%*H9ahHg1{MYW!Cw<{ z%CtO)0a=lq!14o==bT!~6ovhx8sc8ZCEEwFpWf*am0i%7yCNUh@=nXsHpmJ08<&w> zFNKbr9qNSr-01NDj^Ve~w-CG*_PTr|Y*soR*kP!F4VYAi1|FJP~$K}QxS z{1a)vL0#ASSr9Us2Gb{aK6F|Bd8CXUDp;XxY!{akmVvM@4%{R~jB1CP8@+OmwWJC7 z|7t8k`CPfNy9)plN^O@PvAaR5<4iJN5_XNBZhb~c;N9h298rA##fjy4K2%FJkK8C* zE?K0E%KyZ`5;+Dab)^7uR05DA1_q$i(E`ZPyz#M+nzmiZT2hqRieKc6KVi4#zLBtb zF-QGdrl&GGMmDvws%rl6TlIQyWF$xXLtf1z04}D}oP4xxg!DVu<7*UZY?IFB0TZAY zP>28%AP^yEsthmzrT`|upru1;Cs4_?<)vL*7M+$>ZfkzIo*ENDWyW|@r}L_qwmQ4X zH+8o%ZM#`lb3GS4h;%Fuo#;7uW2R-^1<>!vq+PbkwI~62P`WY{A6@r#0pnC}IHe^w zHj?J*l&d$)CMi#1FtI9H+7-lWkoN`ncl*wVf z!)cq|S5)E2bqA_P`Zl>0oNCNSFW0a@D|uJ5A8P=k`dfyMYW1wV;2MHRJa|;p zDSFU!ea?zrj2%xhsQG0e{z87}bARA_zXsVx1eH0k5eMiGPX%D+i&J1c&bDP$t=hF* zSE1H2w#iF@$q5aS=z_+~PX+Lx(f8v6%mb{RNtjRTk#sOJ_lFPxw#g|$YQ4^piC-@T z_&7y4o(j-#oCG~_Bq&USrUp8I>tH*Sa$>%>sA;3BhfTxE%g-TwGr5$YIx7rWdC#JQ z*ZF zz)}aO4=E9@p6jIVTsVS|oj}#~WTfED#L~%b+!lGH;EFJopW7z&E>iQ4!CYWC-+I-{ zpA%Uvqnus2Z>UTb7`@4Gn|PP3`E8Y8>q<6P4NgE*&EIius6@~s1$mS*qw`iFcjExH za4GLU$Un{7L(1;ovbZ0KU2}AS@zbUgSmbFoiGhUua@xA;;!{>^Z{cP!LqU+ZF^M|fybleI-SZA1+7bHwz9mxdO+bp< zm{7bYvqx;L{2TCoh4IedJsIzyDcdu=YRj`BcVC_DLNOiJ=StDNUBFQD(KsQ+WBdJF ze+t8a;pVo{zhZh-^5@N0Uj%Gl?L!Lu?;&n|ZN}A5!7U(WjiXkjynnC5e^umJ9Mk4~ zI@Pt-usa|ljqO&c+#BToB_#&;%CqGprZ2N}!@+QSsw*dz0|Y-q!1>oCfh$}`sxy>< zOeY`1^QjAmqJ?fSQC~=IipTTeV!A`;SQ)ETqF8nSCXTE5nYfBYUUL3ax}K+@S!n?Wu-5#~78~cPDVM`nE{0S+&o)y#Rf{#Yj>a#!Y8E`|U;aYC zvPSPKFHd-S&!j#3OE!1vI*WH3ROUx7=bAnYTZo}?qy|}rs=c4ca=K_U8nJl>ioKuA z1pGUxsHeNz3GeGy865eXjK z%5%FZ3VTM!J2sC7VEABe{|%ojG1X4%-$t~lA_qniKDnK9e9luL#y%wQf-n1ISOLisDiTZYc?=f%60Y z)P=Tz@%h3jc?$@F5wT|y-Gu;r?>ipF-0q?R4lS3wEhm{0jVsUdPbKYN7Alrm-B5Zf zzW~a6l=Fcr@n)$W7*z#?ndcfQnihfN6^N?M!j(9idM-dUp99pJ2k}p9M}{US9p9Wo z!HZwELo_8QRjDqI|33jRg3n`_2h!0^{Hb$owig;Mf7pr|0<+cpwbh-N)crr&W1wPY zPooK#TR~hwL`WaO6DG(XzR{eLAMa@}aK3y)WLiZuJ&SPZKm*sf+4K1_51>A4a1J`@ z8($g&DcaD0S4qBTweU}he@NO#Xj6|eG}&#=LfNL9qO+3oo>Ag2g)dbY=asknduwqr-N<(da(LXC8c4eOXQ(yuciOxgQRq}y z^Du@tVMg-#j=9$48RHgu!Y&!pYplkq8Q!9=MmJA}0{JJ{hCq$UznbASW@F_vT~Q+c z!Q24u2=Vm6c6sNQ3Yn!7=1GGKEhZ_gTSp%-EI$CQ<56H{YQ*VooqnnzobOyDeEK9d zD$z)U;d_6Om!6u~{?Y~4 z#9b<^rlpstKZy6C@AiH7y??$s>hfh7NulQIk|;Ol{bCTLGsQ5}v$j@beTKXkXE!Q? z+uE+L+YLMZvfi5Y_l-x(9H}?-X`~Mf>GgcbP{e&ew3gG+TcM;q$e{fFdHkQdB&6Sa zzb#_fS*@~+TOm`ui6-K)D&LBR%%5YXJ)u=BYEMhnr_Qjgk&9~^Kif?m1^*F&0g@b@ta_D@w_&)PkoSxhDbFYS5n!EgQGEU$ytP`KR$cPMz7mtIb zmjB-P_ejtN$AbrQ{A2)GfrWz2@6w)z`JROSUTTM=qjoE=o923$)?7@rF)4OSZT0fi z871&V(D4YXF#-WjY4wp59HEDQzlL^;M!~T~Q3fI*hGI5!96nj`?}UKUa=gOp1ejJ^ z%!DZ^_F(0SGj==yTFsgxHt&5cb{cO}!;VY~8vlLaFC|UbsE%`p;1~rK(>7qEm#faW zLbqJlknsqr)4w#i`vTTAd?IdB5J?utV=b|W*4T{sI*k(@+|AbFacf+Hj3_M~QOu>y zUaK-0G#yuIt)AF1Ippy2TD#pEqL_4>BP&HJdd#mkLuw_Q}#JVK0oV1RGJ>x}d+$c=b_%<$fcXAoq^^ zXn##YVzosK{+hS}(H^q_;TZ(DacP0ToT=8qSV_P8i;g2!50=hsH-9ee=1*^{FHu@U zsLZ%8VQ8Pq!sJa(a89)kK@kk+iG%^6O#a#cHuAQH8mLd|{#49gt`CzM4+hd9e+wb_ zUhVnHY&ZgQOo3k%g2?mq+M7;?*3O)>S@2y=n_M+)dX!cGfPH&cJ=ukcLxvBx)w@=1 zYri@x<|4BNEJPd!2cMY@p9xx19aM48f$({}GM^RBTzQ5OQKRC3?9SJ`4pcjZoGY+L zr>-f;IqGNkF?b=ESUbc1JKuln_bEAjt=ZEXR6C>B9-i0Eo?1jdz$7{vj{jFVr{rDh z#jR1%&@+D4s9Z9?iaGnwfUFC27G|&R8Ua(>LoiA)UKYXaJ|>r+AIQKVc91`L863I! zyNwSNGQ6M}-ynr&bEJ738apRN7hS=?opYn;yK2sRZ3S)1O!i+s7#HA!g-HQEn6+_f zzW5p7gTJf;eDF8C|M0=I03R&&j}Pt!_~3ki5B@%*;YoTGYEg;m2gCSZ&Z!$>du^l} zLgST$Y3>in-d3G;{`bIlT+(wS&A2NdH>aa>`S603#*Hbb?)be$xTm}B77y}pc3WBbsyb}{rq1B^&ze24;jrz9gvs;KolbaL~)9ky_ntz;M^6nckFxYa8N`@Va=1wQj4cI#!j$+d^&^+)w89+YA4ozRO)NF)3B#?7oVwqp zez>+t!8>^_N&fgg24rr=X~s%!eQko{6}LaMa!7G^)()EA(UcImKpO5$ zLz6e*W|pw659gjCB|Eg)v^4(Gs63Db*d!+c)Z5b%0h^@y!5}`M)}T|;9h!Qs^}%Z~ zOI(3UGA#!2v#C*?0ky`bhxpL4V7=@!G&2n0*Aq{KzyFrVG6#NhTVlO9U~&AP7s%cw z_4&mPvAoNv+qFrIC7b+T;!VYJ@YdzWTE8eei;rB`-)}W>`AVeXKP!Bdk_|qB)KT7n z)l^Ua9KX{Q$#uk_k&kw?L5ki4ijYU)q8qs0!sgp0ipa*1q!JL-i>^kP$mon(quI4!!`tBRIUA)Mxc3=6& z*pTm?W`x94Huk76i$l~L>B!1C#ob*ya~^QD>~DP*fJC6V?R43zo|Wa)NN@1JWUQJv z!DFXo5onJC6UpbJ+H7oUp4)VE<(4^?KXYmqms^Ye=Y$#02=qyddHB$=SMHQjxvi(2 zJl_)eLwfH&wDRPga_paw)&91OEDFM$rTu$u++%j2#ovr&cYLOI`EuRli;7}+fKIa} z6cugR;93yDF(Zv)yJV+23$1;UFE^COP#(-r0}wO|j4q@A2rLFb;0-tc0zLEr5Ev+; z5NTO}CYB!qux}`q96v1!V(dyN{^OZ}R=m;kUyXDhkINeG06KOF$s=J2=_PC_)Lh>- z$hmwqD6z;@WInH{P2Dx){Q%81<_OMdD5zF#@nkMAi`G+p5kzO#<^!%JS4-X>rlJy% z*Rb&`e3>zSjZFQ(MVsy6$S9uvkAS{x0-Wf^!k4ki{&gb^Z`^k8{B{V9WVFp*(&u}S z+P|@UzTQiQB7#BwEFf=u^S+GGe4#q6whN5pdYM4g05FnJM7|5mu#RG{G{w~WD2C|X zSuT5&KXLYB?kEg&ai(If-U5Cqj5`27rQYG;XB1OZZ||ge^Re?CU6d(QB!wu4cKjGf zBCPE&f2C{3xfot~)=gd5Db)6P)T}P0g5Q8&91tj4K%gC@V^^F>*P|u$6p#7aB_;!q z+5Ep{`ocWk30rS7DS)K1Dcko|`Q*>f0Dll27?(5!M1VJ$fYo79e*N zP9Qy}c}7J2de&>L>{P2)f+`Y{D7jQl8UMxGlW)ls=; zA(qSYaed-BIH~?y*Ed2;Dt4Qxibm{?N-M}QV=WlbfRCf0SX&IcM?69}os@BqSw2B5 z6ekURn8igs+$anHf%n}obAIShI7p@)`>sy)(M;4mn_KU2v$~N+q-(W%IO*v9z>g%^ z2!@b}g0t}`p<$ORK`G@%Dc1fL(Q~XykSx{8eUGoZhA3UNpT}1{-DoJM;?@^A{dTui zvqUa#b5??J&mp3K6(`K+QhYZ$=r*V)4SRT)%kB$2_7N&l>enf9LbosY4>(AB!~V>y zu~Cj|qF7(24u}|yvPK2Z@wlYez6>FKGO@xZ+ACE}syxue-Tl$zZ9Ip}tD&k4;wvN) z9opa$SW>F3eSH})BV)Y2ix?F@ci}{~;)^EgAKd3U2)+}ROYBYuaA0u8kP~YO^X3G| ziPIT(ellywftAW+2Ge^Co*l4Zw@Ry*j@~zhAk+)TY|YCfPQ$VDD3LFeirQNE1u6cU zb;#Jkxb8#h1jRCb$`mcc-J9C+g?0A9`fVKAP*FZ)E?iAiP83a4x2R1h-2PjikJOuB zE#xl3DMf8vidGFns%PAd`M zB}^Zwlq5W{!L(1sD8uS#wYpxUm0`ADi9Ps*OQrk`j22EwAj7DnK1hvKKvvi8Fy`p3 z*G%4-m2O1~d~C3hDCH8Wt#l|mYqr3Gk<2+jVj3iF9%i3#y1(-RM!N-bJBzTcOE;-Y zc!-)Y&o_|+Ua+vAzZw_$Yc;uw+=6Q~!0A*8Luxe8S|EpvE#>TIsNobW zA;%jplp`JUD_M%1fG|)Na@0q2JbzfLn}w5NNKr)If8L~2O#nQj@*d+AJX$+nRbi*|BVURu_C{qJSc}z`=FriI=9bNSH?7gqH=~gvfBA zNn~#~<(x)JeJRkA;NV7{>gsN>F?c{DS-eao<3_282o=RBDC25!ibr& zf*-fwHh0)q zS^dn*^tjrZ+>fMZwT{YAG32Y+XEtrmM`i+XBm3p0;}t-5Q2GM=Ie%V}%CyIlzjXjqR zRyMBy4w1l?`%T5P302?6o{LE%qik1r3NLfQ(wAvpM$&l=8&PQe@|18{17;K)9A3Pg z->Dr~E_9EMzc5};C&yJbk7uzPMPi2VYm@zqzh-}+e)D{F`!(OO(B%E(64`y1vxxo* zL*JjPk*Pr=p#P~yyAy~u;||*zL!v*YA=?=o7E%{$+!_3k_MRNWRNkK3Z`b^ijV?Uv zzluEOK&UgS_7|#R{}%19=aBn`PWbTVn7>`D$H$}>u|POP9^k@JvqJnuzEMosD3FWP zi7`Ae`|P#3BD0b075sNCw!)`c{`iI+D`6vpx`3?Yvr5I4Wm#g0p(!XQ1e=z-By|fx z|Nmmbi(dRpi)EXy!4I$?hdB$R#l1bmt@CVpvlXCJxz+k4&uQqUnh|p^aKMy;pBuAyEu3B znd>C9oAi=3W$m6OJ9DjxkyrTun=j+Ok^U}*d^_`+(Y*~vtI5-ODC{K{z76c9rhbeO z3d$buL95ZQ9;w&CCqAX0wk^k#2YNDG{{e-`HK^8`Ldc(Wjx{2_Z&GVS)Fpc-yPt`7 zNJm#KR19zjHLufN2sHQVQA}Ysb;Oh4Hle*V$EA}C=) z&PA;4!ez)ILn=$OLJ1)?nm*c}kG;!g>L zfODo=^JgV>6A}e>1`L+kZ7_UVb`4_E09D7EZ;DNBlS{CJ2;>O(D{cq86!hx%eGy6j zg9P7!eYXFQpz}W@i1QB#TJeA(b{nX#9F>DUz5eZPv>yJk5gJh9SR1e{Us3dd-}5sU zBG=Fda$B%A15DBb3|;8!hAl!Ay)e33z9NpA#k_fjfP)M263#V~hFBT#<~qSoNrr8O z&n?Y&Ge6R`eXr$v~YeeLeo1&Wf6 zCX}Y77)yIHtwuTlPPhKd0U9jF7qWY009adR`hz z9yDrbRo?Z2O%s@4yk*eY#ygqQPQOKt^uF7SXJxNvL30~`941FWQ^Et z%{#s;P0Jz^am#M{hq_~oJL<~|eoG|-m6I;74yH;>V+!iFOzXXrTZo;G4fl7?l^s-Z zHk=|TNLp!o$OvkN&z974pOX}|k<}F)EcP)H8X@k{R(^hb^j|6Z>4#o~w_df(6ICej z>a`uZ`8$1rMcsi!Ay+u56{OGfcYFx*Sco-c(NlOov+{9TLX0OT0Jr@-xHfFt4uo zi;M%uaLc$d8-JP9a^HN-07F2ufJz>`-hkAlTVzz9a$YDvHzXI`I z#XM0`ZfE}oe-Qtd%dekj)l5(J>s22&IJB2bM`;XPOls#n>B0tK%K?>-B8`yt)o$a2 ziHRh2xod!`9ffBl;3fc8a?P{*BKpi-q}sXQ9yVjNlex0VGH{MCj0D^9*ngiOl3#T{j)lTNn6@@oRk+j4rm&p~S_ zovJnZd963e{2>#)H_XhL`&+GBTNY9EF~>aQGD-_x+FYe!qD~mn_==M;fk0!8nUNCu zPxG8To_)uU)Q(@1v}|qk&6V_2^_sj|m`;&N=^laO{#WmJVn!hbIzPBo$m2~FMH5Z6 zg@{M*#pB861O3U#VuYlMp^T)Uzl(3N@QYu1{XjTZ^z+*NUMlF-@3vp%zb)@4AaUW+ z^okK39iu~<159zi42LiSR7K9@2kI@V5+t|7^L20K)qHGcR+m7#{gRfpvXjfNe ze|~M7X>V?OwDWoAKwV9T=v_Tsv5cn+UM;L9_p{`6X7k?Pt;tIE6-;17^;p_sErn$uNCU(SXrtZqmbe<3tyl^> zVBvm_ZMj0aV1b<#p%}DyLmnck&QKOUv~m&~GrLNhau_#rqU>)PH>H^s)u6fg1u3g` zQ0{Vv$t>3b$cnVMrB}vesHNa;()Fn7RZF&<7tXurFeak82m&&oh5WXpWBpIXw9abn zS}~F}+X_H)=I_2%siSMOv~aR9Hx#Dj92!Mg4-qz@f()sn=?Ke=iA|zp{Keu=aCQ|u z8YJuLX3gri!lGCe=lEYh?FeGO>zz~0g;u#^Z^x%%%oTxydb(6S!eXVcAv{vMQ6^q2 zm(yF?fs2I$Sb`=tHouml@diH26H+@B8Q;}5e`+NVv62X}kdJXTbj&3wg?|cp$2tb| z)RcR-%+%xddm=09r!Q0f>f`}JbU$#2MT_x6u5|;uuJHrJgT0Y&<;HeA`EVGHK-@B2 zag@7-jaembDFfFDX?Fstg<(rwe~XpLY_zVg;x3|GvfONTosDLp)B?COPp%eL3aG(y$5Gj53B?BGBE2D0zh;4Iman$TiQU+Sn8Dh=o zXznSSxtMI}V0+0hhVY;M#zI_$_U@p5^=VS2$hzFXI=007TQ5rivv|NNu zz-1tOIGqw%ct=Q;d%!fV;zT*#RAS1osu@AU+yyPW&7cNbQuP~hC#7f~VP{Rbp382| z*eaL_d_GJ@tj}YZ?_28uHMdBsTT*3A=3*M^j&;xdfpW5gGKKk)0Mlj`q{!Def%GkAg-PUROr zV@9sBSNCDl$0c41|7K}YGGzI23r=M>kQcE>0j+?~!0c{=`YBAj0-5}W2FYg*V`Oc{ z^39&V5Z^4qS^tOFJ*>?CQ|ulV;G{Cs{|{pKun;qU{mR1npT`mZe+2U3BxdIP&tnP* zFey6Oo2Zz%=rAdYiZiL2xw|k)*&11x3IF#)vxz4A@qVi^2U5ov zRaQWSxx^eLHApGl6^U&BxZUgDT+if0Dw!7S{x?Jd$aTS zr-t+D^3tC0a%O+2i5SdYpl`qvy+mM#*2V4;y^(zi~|sTrpG)Y2QW@ z7mYRdPxdbEECjvX+WkJx|4i3RoNSgHO%I%G-dQB#H!e`oVdY9s?-`~fhM#QvKEAC! zP3N+wzTGy_y$cSGVz6iHcRyf?Khb=ieaW0w9 z{CswtxvO7EZ0vHqBZszDu+K_3v-j)p_+Bw^a`sem)k|-Mf4D_&h5Sov!qBr}qARMs z{qNL zcTB{d?Xlsol0Ez!reZwLNCH&08w5T3UrsdKTN4AVC_h;fm-r&?&(#E= zzT;9a)&ykyVOMN6fMEE;J_EFAYl*n@x0!1$-EngC=RPVl33X%9{Nk<-R!IkTA>p>0 zY89?>)He*wZocjr4Wg-=>5G>^7uTzg+lE)?@0h2j24W$xYJ-yj!Hbf5rN>=cbUMrH zvs!W_z7rY`De)8`&w5(M;oHd+q5nNd{LdNF?{_M|NwZ5kU$`5u`aUaSvRLB?`Y)^U?hGAcybYnSwv;BP6~WgzGimzT9-&0$-OC(8} zYHa)Z;G#Vtp&PifTsT`BNE-hc|5}ADn6_$xwO;=%5ya+>$tYUK=;A;~Gv3xOgVnJ8 z4EC{O)0c}p>F472vPT~bUu}?9!TDiNG8-1}>DKM>v-*1*RQ^@>bV>Q+7 zo)shMTAkts%lbPm^z9GGoB6kX**LXe53Qfix43iWJu>(EVopEW9W2+0b*${}g333t z*`vNR4PJuQjB)LoG8N&9orzd&is-WFTHNNL%y{;@-1)4&8{o{7Jzc)67~|SDJ*r?1 zj9NJnv7VED8uwMSs@nTC%i|UmB~j$olA`SiZC~f5$$>MBSH1Z;`dLfu#v~;Mb{?vD zUmam@VP^*`PUhm0k^8~@`OrhSS{&WTYzyBm#;KyR#<|e9ZFd8 zRTR~1pTwPE&#?u>`M0@|*jG`hkeG2^u`EoYD#bDi1*HVVjE#I$pU{590n|bCq#sQ= zqTfz&?a3#di0>$uxJ1u1M=nt?HtH*yocJCro%rrAoA@WaT;Wu_JZ%F;HAAA)T>Ee{ zp7?3p4{NV2#4;vIKpQlv{2RB=DS7d;k_UcgXYUOB_&NHcT%ft1=qU1axMbe}Pf{O$ z1YcsN(WeK52d}f!qrV%!ZuV&_#cR&y1GIlmM5>YSA{zDMYW|$gSyPC@?v7}#h zjpG1N2pQziZp;kWP$BgQwsB+RprOSZnt1=8$yNiL30X2Y8Sy$dpt7%j?saoxU=Ei-B&k(9I;EG+2n;|;sQ`;E zVcV`oJ@l6-Nvi|G1Aq2y^19cZVG6Z2yC0l;@z=r{V6cgkH*zhQz|7abU}1uK*lpw_ zVal2CZdm%lx}G^dQ6Oi|F5Fn5WljONHfU)tu1BAal$JcytvHa(jhZ`jqa_vY)D$-@ zjgb_^DsMh8sPe~Oj|fS@ri|QSzMu{!U1*FNEm;NiTa=cPBph8W!d9+YxG+5OJSD@DR4lo!DtAUSlG>z& zS_q9sI9|5U;TuPi5}C54j$3I#VCEb@Dr1q3=~3>;;=XrBMOXSOJN?I6orh#XoVl-r~^}dXUM#tn25`wsYVLyKP?P_E``7H!Yox6=Dv}UU5f?t4KhR} zy6*XJ$7vDxe+PF;JmJE(GCb>qLEmy(iBmuSX!CF|x$eJM)%Bt89bq1iB1Euj!;e7H z&fJ{@)9G-ndRr6(*+D>~?w;=KWtV)jS4>Lout_mY<<}aXz%9R4&`_wH-lt_!awf79 z@VTvVard~~-t^^z&usDKPO#gs->fOFP*BjN>28>dQwoPZqT=Ly1w&xgfbU`Hfd8Vj zHww2qdh=-CI||n`TDnQg7;+V%;UThp(f;%5BD;f#JjTt0U9x_>hGv6xd&|$$!4-iQ z+3($TGx|9Fe)IM9ZlAVO*XQ8<>6dk^Oq9{`N2C-MYi9Zx3yvIg2fFJbvTMxc9GD(E znBKRHV`*?!j?q;@ssX%-F9oM3VJ^729@PW3v zEWg?Ijsqp~+pvL!Y#tdxo?kaN9s~w%qHYb@x;CmI9Ya>j8E3oPG)L;Tj&g04LW+P( z+EX#6){_Sg7QI$=v)w*5r%j^tX~SOg#Z_s*ffvl~);#=gvlpwsU&k-n*=^|LCU|ef zk9GUy6(P2CQYykVau!j)busAQ_I@U0ueK`@KX#ZMx1qC>lUb#GaY8ru$NOcA zXJA7(JXi;O)_>vjbiM0il-fs)nD@2Ww`j3u1RRYMKW1-;xDRpC4vjwxh|zlm_ubI; z2DhAJqsG!8lXjX*1USeB+!>aC@(A!;vx5kSMoZRQ)=!YGG(=`1VWK0YsN6?pFw$d| zp&-UjLnbvc)D1@K+S>>Qv3;od%e&cMXmH;o_xJ12r~tkcu#<)>h|hRrL2j=l{RyvdmJnk{Ap$d zXIk-IO(F^0F~TynAK)`)?-~HciW>aZlt-E}U-Y2!hp3ncx2S30Gi2}T9i8VIuK2B~ z1!dJ>)tRInIJY0g#-T}2hoiT#Yng5O{M+cBN64wrdpt)poLybmj0~5i6%i}u!q(wV zF7aJ#BZm~6GsD|cm2^-4NgW)I=67sbG`+1uQHW${<`>CuJA2|P$P{FHWd_qVU+i;`6OjZ0e+@KkCXDsOK`6$rdwkK3Uk}2dHR|89$7+{kR2_6Ac(vh^jLq}8>Y zr2HnVt*D9!W^@ci5`PDAvFnUX{OG2V=y3}_H2Ttrjr6sLR&6FUCm;EmyE}Jtg*omT7}&+AnE>9)~`X--WntBH=d%Vf17WisspB}Gh8_he*q^o$!t ze?+RAw$s?c$)ScCq{zm$d1`FtQ401xdjESv4o*APc3a`8*9hOMKl&*zv zb)aiVd%Ee=^qqD8o832SX=pE2?hO~TWtBRz9+%`iQsZg?=@Fe6vXQrNa*6EV1tMo~ zO#xLb*~_%57L5xRZslFicqILJBmE0_KNCe#eWGYJtjMH(>qz9Q%s_HR#*-ujqkxkj zf}w#1^eLl&=*GTm^R~KrlNqFq@Xo(IuIS3wc=NVsc|B)?@+RBrFp$hYlVuT0&6~T@ z8f1{DCAZl`SR6;CDCT}>e`)q`c!-*ahkv(3m~!CB53g|bh_fr9jx3H0?irg z`IZ$oRB;+a{zNo)R7O^^&v|Zf_meRONzB5^sxEDtc@BD|N_~ryk*O7CdSN*kaHA!g`XDHUso#l{0x=2Z@EsT~9KGzQ z7`)LGtx)ucX7EgvP$w;hEhJbkH#v*Rsaop55K%SCtsf;YU6D&^9y}ULQZG%Ce(r4V z`=nF`XD5-*#FlrGgoN;?Etx)!)Z`+j8MD?CLN>0`McVHoS7Qzd$Gps;4nuLz_#pl%oQwopYaImAyZ<+Kvy6)HdAaa!Xt=+pHMurx(?s9{S(-Eg&Uvv zbHv(kJudM+^b5r+I?R+`AENI=CV!3Hgn@mC+Mbs+toEKN7xO+IzLUIQZh|!LA3rl- z60%UOs%tEuT9yJ|e=SKrC5nvA+?<6<^i_;s*Y{K)X!Tn836FEuEqPkttZVI38aJn} zo+r~l(Ry%B*-Pd3&rUx+(q>8B*b~twM$Q$lV# z*O3l9cA%&b(kDjH3Tyn?0VjjCs?M} zZ}SJo!yN}+A6*}vm?N9`nM+iDW4HAF9FmYthN7QamhiK2l3$9#DXHR2sY3!-7|}jk zEEq~ipeWD8l_=$RAhEIwV7Doqe1TOgcm5`qnuLK6matIHr7;ULaKKfRA3PQpf=V^@ za>PX{A>3$N3}!63+&*l>4-aQC4Zdt89^4;wno!s$DeA)ZE9+ELg>#v|jHUHpl%-t0 z{JChdAYyb~px7PUBFbhxhM2@@tXd=EVFyYh=SDiSS`fS5PvzBQpLwZytxsCvNq-%Y z$e9oI@pCZq_%A7pht_Zwr9WaEiPnpoQ2_`Gvb^(O%v9VP=xkdd%;L~L`mNpr=Uy?Q zX6<9Bu_mum~jfc4OYo9p-n`n;z+J-2l{z1+-OrJLge zx@iHoe5@m=w$75-&7|!FQvjm1Ov~gJtPKnhPCSKu21J^FFU>OcR4)%GF4O)91C99 zzn;J2=(*O(BanJz@4t$R^cMDWhfKPv7k9?Mg?WK}2~cM{mKNJm)Gk}J^F)19uPKSE zYNeGsJdQOL+8C?~Esph})Nfe&e{IseufZYkY)+EY6n0Dc!m!E9@RTY;pJj2Z%NBl5 z=a~e`whi061d>bWwoCifWzxb=+KxCRV8ri{d=SnR<&@41@R6RNa7WURIfJF|Gq#5l zglNiJV2R!SP|eRT^q8>TmOF#9!|!f#)(~;mv@3@A;ln)TGv~zK-OIm}L@nZ7dt_cr z4)){ueo0IJRBCXsCr&EA+P`)p_@M{M>Nf-R3WC{a935=-&n#`1VvUC3lwn+yp$Y-m zd(~SThMe+CE=hNWuS-h%9|&Ts_)jD7nQtc5>r!f^f(kP8}v>UZ-QG zO*w~@9cCYBsU!b2N5t)f>yUf87e2DqL|!(S_?C9`n1QK$ALYzt94aSvp4iEQo4$N6 z)2LoYz=F4dwlkKKCpY}aCm2fd5PhNSF302=HK7hj6I{ItW~{n}K5OuN1O)FTb!F_I2qQbSb8B|c9F8-dc`di4I zvD!dbsTf$AKfHyNeiwBdDs9B6P+I6nl-WuAf=bRqr&ZY}p~XoUS@_LTY$BY{J-jw& z5C!=PCuBttj8x;;OtQ?kdzN5LpcH6J+(FllnwIZWIEb2zW5bLp|Jqv9C`|%>{<ibzv7>Y^%eC-xg&<#aCgoOtIocjX*bT zEh@sw*0e`5AgCtuB8>LFBl&$#~p)`lLxQ-3zK|b z7~cb%u8kWrjo4`W_88}b!ZorD@mb9vSqt`C4&3o7lQ6{}lKiOm+Fa*tqi(fY-wWY3 z5VRJ2&QRiwc=6WQ-&_$l)o?$K&fnhLA#{E2run=EyI#Bg&a}yGb$%(TlBb_QmBSGo zf1Arq_d!=y*)@BZJL<6ZsXM-%eEVd>d$;(S%bhwq)Eut%^fz=ir-gGCKI&Z&mYw`Q zqxzxaPyZsl3Y(kvqeH=o6EtlX$>DDGWy5a$ z!iO8SwRNK(>-n-r(BRbxAFueHTW+J<+ha8c+t9l%T1GdWK_Ak>x09FK!k3HR*(3_5 z>MIu#yu2Nq$h|!GsW;*fbo%^0k|1q6lHiC`5W|NjF*xlz?-w4+VDA7`i4HU=H-wi4 zd3yLxPXZ_`h?z{QH^zAKfmD94xH=hoT8Ou_Vp$XYHTfLVXygP4q1j#*KYG1$>rX zxbq+~GKunf)4ve5nrFr~pC@kih^p}Q9W`c1{1b)9R9B=Eo2Mu`Xpj?S98dl|kpAQG z@%DUT{iHN=iqG?DxU{r=abv^R^=2w{!|UzC)-R1dmzIA@I9vYfj&FAxi z`ab8ozVR>aER=uE>%ElT_WkXMyq_U=_}vuyEShnywVwT+Cz?I>A=l?Rc4LFb>sc~- z;$Xw;c@*?vWV`RkzUFnaKPNvfd+@QbR%F-qzV;&Tb8G7BvuFGF{q=}^ePZ>_j`{U$ z3K%~HFlw-=@3lp~PaBzb?=N%mUALIN++4WLS!S7tW_W`T@3`d&1fKY+e&;+gAf}g! zoJrHG4aNiaE_b}DXL|m>ot@3=6S;hAuhEZ_4lchpe(raSY}8J5vu3@R7X2iZdz4#D zH`CLaRDECBbM3fVdd((UOCP$3%E?%`7-t0v0GKhI;mUY(L(VNt_OdiPGPs`Mjswkl zs{{Ro{2<_1T7Yi>wW^Mf9h ziKwZrIX+sh)&Kfx>+;rg@_uPJe7?7sxjUOHz*#93Wp9v=v^CE~U!Mj#F9I($R$9In zxtFZNEJHb5G{^0-G!$_IxwZFHS~_oBnf|7(Ti9NM9<|Mm{1!NZx3)#qN>42@^6IyV zR(ggHHxI_Occ%#7b9wrqRmczejVJyKxsvWT-`xT|?zH8s_IOOV_DhTlS@h422L^M; z{630N*pG7BZ|vTXsvmu>r#E(ke|&M2UZYXE5@}sGt**?fpkY)$Y&OFA9sl>YbSv|g zSA@#<)vmc_$4?a>O&8;5xIM?+XWYQ=Rr753GPySS`QK@yAF*J-XI_aZ_UymYP3a*G z|4z@33u^v%fi@dhE1V2Jn0M+gfSzp43XOaAz-x~`NC{u?9r(vbG= zDlBr*=l)G~HfN~$*6dwssp$m_;RJ?cb}>`!4=6H{$Mj{n)jmITtDO&Jy>%H}!HzpV zw&|J3Enm+D{h+dX*nep3nq65cZoGn>l6>XwE@EY;fBm@rV50G9-qe|N#)0_g&ZPf% z9-No}sqwG#1|<#Xbw7e~ZQD}y)_FTRTRVN-t{&7%c`rUm-0%eJNgnv(yiFS8za}i8 z8{v=Lb!?1|?`$sK`240tK*C9VavuIu&G-v5_04(MWWNU9gRjc&wd-W^BHfT32jNvE_cmPWR(xVaZC^^QDIW^+(k_k^P+eF-6N17qi!U zD79YR(JLZqL?n=x_I`Izor@MRQ#s2Emwh^qIan5Ja;Z1_atJ5Kz?u*q0 zj!UgpU(Y3994o&gy`ig)@hy5%kj%xSbDYzfhT*2H?D5qjVou8z^p@(YwAF zX{S9to&EhdtKHn$WO#)!nMttY9XJ2hu)%0QAkTTV@VLH~5O$GzW9Ba`cfCzFo2 z?Mr&Pc76brC!J_EopUd@B zWFI)r-Rn!Uih%Q&V8@m zSDu`3Y{n@#`*y2)XoF~*x6UtvhkkkwjzgeN{7}3rgksc`4<~OHRk8M-SCO1DksHA* zA}td>3|4tZkvXyot<;Y$5}>YYl0p`!Brf{@hL3*-G==W)@Yj*lgRRQ2~(q1(;X zyKxGId{W&3(HddzS9s{b&TCfedNR<@%I=`Zmu(O=@yg}damC9jerUc5LS(;{=qd*> z@$=%DGrcdIs0ixP+|KYKzcy!v66%hcYa5gLG(BaF<{jp_z`hkR^}y62}$BnwjX6{pRd@Mq|WFDyzZ| ztP@ge4y%a?96HG||A7Y`;ze+$VYar7fzdP~zp(lJRdY2|h5|q61KPh?b$Y-}l9q0KWp+UPSIa>vD zgpYQ0B8-iEwJJYK#92|b0Ik7O_N9(3o0I56_>PWQe2J)oWXILuyt`PDNaDG0H!$->2Mb;pk1@XiR zn@Oa1;Vn5^eNGEFkdEd{B;$O-<15{BofTC5=m%XCg;v%Cr)<>QDPMD^OF!oN85c^ha~E*=ewstqwdywBy6~QgmPX+NfIZ2 zw}{}`Rt~Fto3jT>p$EZR#0dqk`Mt6xfN6@ba>U`||DRX{m zYDw5wAU%LSh6NdVL>K=Gvu=VZy&gPJ>>5GXxw+^mPK5_UVzof2J4*8^AfnwmV3o$u z3pVmw-DA9XvsW-O1JdPBDhRQt;2h}^lUgj~Z9S==UwJMf6$5AwNnxo_DQT1i6euGr5n*{cF_I*r&P5VZ5St@w$8 z$4B^5SV4j4$w+AH!+xpLuOgDJN)W$}T+*pe>poCIHRu)95dog!-JM=Za%(tFjz5OdWB6Ib)i+#)D(>VD@f;R$A>88w zD$DHp>22(E&=4uMhj@O&D%kEbIZBWeO8eIABR5L$(k%HzoWXDnc|c5RlYpr7uAgNM z4Q)xd>XLT#`5N-bXqAzipy5^UMIzJE16T5W$xGp1-*Vr1j;2oc{lGZ>ZQ;Ho^aKdX zcXKeP+I2rV+Ffg|xB3?1atvQm}K0w&HHH%ZAxA`r8ux zixI?yw1ddl8cJe3S|cn^iwe1yOcLKeP)-bAyMK#v3o%BR;%*hUq+?6`X8Pve>W~B! zdy1Fv45nd1D5ePrjL3lUDel&i3}K?IU(2}?JMmo|#@_9D zh%?Ys6a>WPsZM-0eH8gPWT1rnQec?RlA?qVPJPVbCWAS3cKT77G)G@ZrBB|RqD(=+ zrT*=-Mf+@w!{FQGP<_i+%mbyq{CLr~5K|8+nYk}9Uz*un;A!ywSZt|a%)pYZtBBvu zC(p`ynv<@V1RO9?dwgP(!6mW&ZCStNaC9)LpCHRS(UfE@p{-b*Z-I|8;j|v{#RY#c zZ+0dtDUvJ0Q|4EBsXIk+#{G#bm+V&{3I5h+bs%D>xCm=E0zUP(Ryr=(%>2~UoVpYX zOI_L2G~l{nQ6hBu#NI%J`$wf;tctFHTqdJD_OLa{6gB^Ao6Og#28KdEodwf%?2Mlp zL(UyE{oY;sKe;7S@_DRV$6^vq?(GumWLON0u_nc(D4jJ13hUr@j6sPCV9RWKQHXIS z5(KLyyia*1SS#Wy^K&~Ab>sVi2__r_lCDKVwdG&Z5rtC1W1)T|2l!@uk9|b_ZuOB= zCPf6VBry$P-z^#F#LN!%iz@gY>Eg?idjSW#eudKJ9!)Eii6+AqsaK(tYkIqqt3fU4 z(O^`5`_fJMB`EJx2WRV@ychSbju$sLg0Z@DTHV}oFHtYZ@G;HD*QQ~)Y6>exwc<&{ zIv?AVE$y`a?`_7uZj*|)gu0??Fa3jSkxPLk6Q1l1`(@;vvaJ!%Re6huGeTI>m5iwW7(~@#C ziaF>!e~|eMBBY#yri$|lBI=9E%O3ec;OZh0Y^Sl<%!yoi>C@_zq#tIJ`~J;O&DDlT z6xdNv$bAIg=tK{ptp4k$sko=0?Xak}><}2p6q#U)gvVxHj%j+tSX}J!t{b9cZcr=w zTXgu5(L7EoDXAagH&-8CNsEg3qdE*-8wc2g=+X_~HX4T3Ao`a;(IQ+e=poXsR2eM21n{W>>e z2uVE&V$xWj+Y+mY6I}YI&89bgs@ehafO0QDbuBXxNXqS>b)Nc`i)!?3HisP9juvd$ zWcFZB$p7L^l3eAkLdiC2cfTjuz&rHK3CfIMz*-)f?xv8+z&a@ZCe>0<6O8nZ;ZmNA zv~u2NpaI@;L9Rbyh~&4NaKAj|UNM9M=-YOMnzyD)MB7C zh;BTo5AUCqO`EsxcQ2TxYG-J5kKos`)>#Y~jbv=F+7+Eke*O+mV-fjy=OCLVG=g^& zi#j~kB(9_vlZkQaK(#__LAZD>0d8E(hGo#|z%pmhXAGALV=(Jf%oH9Nu^vA{S<}S( zEfnM=-Y2XwgI|tD&_;Yz0xypwkSWD!#dqhte7 ziL`73Z$kn;6^e~aEX&3;n6M`a>69Y&ntrP$GQsySbj_)H%0Y#1YN$fgZs%uVS)}<8 zA@>qoIf5vaJIngt&B3OMVOD%vB|rb(Ty~eEL{|9>cNU+-BTi}`XaX9K>Ybko;ao|& zCXc3(%0*L=FBGaXlc@^z|Z z+X9YC(zMebZxJv2(L+_Bm%3o!p&t9QCh~fhG*v;x*TOI+{CgI<>abb5x^a>Upe2A@ z%wt@ao)?yY@1iIRJiY-bg>1re3d3I!W{Phw%ECu0GJ*9@6ohqU5LNgl+_4$;iYw&z z&huCQ+OfrZ^+2Q+>+LPs{n}`g^&_i-#W69uRLgo$4vhD!d>SSTyj6oO_NZf}G=^h2 z?&&;VL9ZtRYGLqax}H?9P^@#5Bj~RDQ<{t;lZ6>pMWPpT2wwnwON

LRp^uf3f`PQpTEONRZbIc$_mVsksP3#IPeA8n6P>L?SbfLy zOeskP^-CuFt(`%Lw8(kLPvUt*mS_u&c{G}y#*rNLn*EHuy>4(UuG|q@{HY+4OF>Yj zfj}gNHld+1kgCQ&_&(XdyRRXRY~er&!QhHiR%G~DaJNx8A>pnFnWd&ne@p`Q#NGFU z%1e?+vDOEPlT8K??9dyM9Z_t)Lht!To?T>NJGJ_@7%ea>?KD6T6yu%PFdpcqKyZohv0ITkF`==ygwt35F!n@Yt9;=fQrL99})zRWAf(+8yAoWZqc89{P z))~iSQ$Jy;Cri9JBeN3D?%)mu^On&r9+v3dl!o*f!<*lAh>4cCwTLK;aheunU+RPD zd0pr*k@S?GW>X;pk!uPF1NE#N$;tckLYt3QtZO%FnLn}h9dx6YT z%#%8r^Hu6%OUI@a$5dg}H0J@_1M$FO^@?1+@^8O~RNW`;lA;Ie9L!Gf%OocSQ<==Z zIQN3PoJTjsJJ!ciO7(DgBDe?n@NYP?goAK4pYjE;i?}W7i+9rGw1eEvig2QscBHg+4>=uTd_$Qoel`=K;)yRDT3z7a8GZ&Cgk=$Qw*h3Th z$M92Fw#x$2fsy-KI^9ZwOku$*CKCm#)R17yQeJQjjp+aakCj0O&lMox4jT{1sVG=C z!gCK`V|SWGIq<|HgJ;F(n`>pSQ1#X~OL|^drTP z2r}7bixc?9KBum;Yn503zpdGVPs}An`_?)CW?9(L6f&UvGSedh|@wj}w-^@7v^$7x?@N6HzK<(ynY^;m`N) zTffZ7f})D2$8r;l)OXwq^8RXLS?1^S{q2sOh^vY?T+E3P^1@qPhikr&kNj}_vF5|e zUH1&}ZsS|fhUHsOb-R>?fP=igDFcZf*$7?J*on2gBJ<#;`Oz`0CeFq-=l?`-=nr0T zW(Dz}L6w}P5X~#s{sa3Z$o!P0iKJ%d^IOF|TV&u~X66w+RChS*`UFc_ZD%^2{j3nr zcAZHM3f1&*UODn1xk%oyK{0}vc~65g$By3-x|v9krDj$m0^vP}Rr*W3wIF!%*cutj zk5BAvrmN9KFcQX$@`URrT00nJC`!s@;xXQn4ch&34#OrV?BpzxHSx5t(##1Yd9{OZ z{xZ#tF8PVzFy@EOCA-`<%_oMQVsl`3wYcH#Tahpde2>)dhp8&9E!4`Pj5C^ICS8=ouinL$g=VpjE&^Yv=GX(HB8#8= z7>}d;{MF&qvt$oj`QRoHkapql8jFZ$oHZ4~F z=`O#MP~(%RpCC+LfE7DdTV6dL)^n~!%aHP?ck$TSz50c<$y3?sX_n7BWEETqbKp_A zm2DyND5rcaEP@T&bKn7`ov1=`D3?`rsNHE~NIZfWem6-+gJ>3C7Urs`)QX_l?57Hl zL<=wSo5i`O$inAyE92}}Bx-1Ns&dbBN3W`Wf(molS^Y@ocRNOH8=mmrO_M8KPyvQtIYtt3fwA=9bf>tfK$QEtuz)7~?LG z++B4NT1t6)t-b~&!B|VmE6#XBu{X)i)!`)v<8i9uDOj(9z{CXPEeuxCJzzp z_`g=OBkLxbyc!=3GU&`ykDl|jEE*T0ePmQ_T1>%;%CA|~byU!t2qI9ek~!uGFmCaf zyc`{dd&{QWHQ05eGm;J(-wbq+QM;`ai#f-yY?bdkYMVd$t!;s}f|K``PogVog} zH2NcL+Zfu{u-UJ=;cUQ+Gmh zG1D7D#z7gn=D_X_3_+eB6X=1{bI^x(G1Z3&j|fhoM1(Jj7lnq3g;Bm+`3=F=uodZQmsF{$m;c)0Jg@w7gZRUv^h)7)u1NnjO2S6 z@rvOAL=%z@K5kjdHpzp^IG*ua6mSjl6{Oh4v4F9jTZ_)kQDc(Rv^VMx*Hm_^Vz0B1 zir*VuJ!3fvF;mF&tF{nK3ji0~3MjgS*D4IrS<_{q(RNdoVPc{=H9t^9@JGRw`U*z+ zpGNC)D@PKa^hNM%3`Oxr=W^=4iQ@PENQsFD`Y5Bi1HjEz58d5OzMYIPlBbNGjC*di1)vl!Xv zJ8(2(SkLn1x2jRZl2AR1Rc#{DR@dT)jJG?&_h_19jz_e_iCGqjT8)ept;hVx76%l{ zRijWsG7oBWS#Njn@3274kR@k5l40#-%qL6+m2(Q{(7PT4+FPl5UYGZ+$(9b%L(m+e zyPIOC;!htaPPB_d33=+$XNut%KI`!7>rG*u8d5azejue?*@ogbgt{RJ+FRy2UYBD7 z*sZhF(CZfAb!YM);==z1ZUY0chaqV1BVnQ_In*8@~Sy z)zksbN+-`H5plIf$omP7Be*%;XZ`Yi3a_uP*;U?$&Ku?m$T|u=wtaZ-(MCiAYRe%G zskvW-or7OCl6M!c)KSCZpjtPUk7TQyql{5qHld&Rsf2v)M`pG?E3)YOzli@Moch`$W!`UEbJ&_Ur4Qj6S|uQpoCr$03|TD#h=%e z3dZQ%H)sc<*6!3L_aeyB+ZcoDiiBsSS(?(c5{}Mox|8rS5d?%&c}X`UtIMN+BFOVd zs}iQ=ynRZVl4PqNvk1niyzmaEb)|dQOf)!jKx**mA||u?b!E^(aMA` zoG#1C4%rFR$=ZcaMIKe+B)RiGgOuqiy>~3LI`=FiwV<37D~Vr#<&k_DR+50de~K(g zI0Drq;A}`G@G3=brTOe5!GA))M5%DPyPU+7D@w$n;KO8WN_6{e> zVq$o9rTpvkh0gsn56TW1wOZnh41f@5BBz+o_*!_B8@6v`0E7@BHpzTdRdo31YJsaf!Ss=?jx8tBFQMzx>rAn%kz$rqq=558{@?VAyh{D|6T|8c7k z*oLZ8Bp89U@=3^_MZ(pMnXv7Y5r6xPkYAqW0Kz(zm)Y15LW{!Q-B$mb#W-d`tyJ6? zB0^2nB(Zg(#Y}q|VI06w(nc z$w7hBHG0)H5n*$WDVm^hg)_sXR$3>3*J^TtVfp^bxdFlR%-EnW_Y*CH^1cPkVwal6K{> z*RO;b*!GGJii|!`z`RtCLtintA5J@0AtY-Fc#DLJfu7wTx29=mU$Te^(~JZPiwOA*$+oo z-Ub^&Jp<63u>}~ApU97HWzSj(s+J827hwO-0QSED^c?OQ!7TXzn^u!bRyLrtw3F3~cf=DSnR!z18Jllt?uXK@?ho=yKi zwa;eB7~`ETiCm3ov*0>F&)Lz45A(}n+C>k=%OHvhnGnmwlS*M2{BxM1iluls(a2i8 zU_iEedH@OS@FO9meCO_!=o?gQVz6zJBhmu@&|HxZ#SRm3f6m|&GWWB?0d5l>&5^YG zV===QMZrFL{ssyrLm(c+#d58*5I@BPex^&mRG&@sMJXq+9Im~Hc&3B-cRqrUFb+TI znWFM?t$sX@H5Kcxu;WAx+@^_^WSmJc$sRW*$xF_+1TZu0sM47jf}gmj4+8uF5g2H+_tq_N3I4Uo7=jZrg~$o@T~ zCLwbhXfu;nM_-Bh3QlW=EX-8zr|OO&#<=1}97fzr5dvig?&`}frSpkCDi1v2q2Vvn zUx@Re;F-&{!`2lR`1G#6J(OnzZlU_zlDN#O^0TA%YbaTKU4;yx1$zp!^}y^;jlw|9 z-f+fv;K;ldg%BVH>;Ph*tn8v@hkL6_4HfN9$K4BHHY3CU0FnKPRiYLpFGWj1;(L|0 z?TqUZbWXS~r|hEZ9&`>(3keMJ;@N8;^DIuN(a04PB<)UK)akU)55*0GQn&M@$mPQ> zYWb_(EmBztNuX9!Tu@RaxlR$^WNji3&h}aox%+Ve{4OEh-f&zYc997#Nj$tJ#iv7f zmkcx5ojnUcKoK}47Jm?KFd^xVBz(CUF854*@YS`5{JL`>RFTmuro+5nLsTG4ouG8G zXlJk7opm}$*8LYbBK;A+6u=FLKZ%35%nAQ-1E^vUV-v20M--oC7-FdS z4Hnrh$6}4Y99;`4`Ec-S2sv*i<&HxZzWSk6yh`NUcPtW8@&{DVBnt!hVZkw{;JV*q z?EXEl?DaCo#orGLg@PY|e@_7XOP~PogB7On9yy-@P;tfPKPLb7_l5rzKTHpbcKioF zl(&rR?XkS##^PNr$2Mu6*Y17J<>?@Khyr5+3U0k=hAgokUKzKS-Bvad=UeZ}TAJP2 zPs)Z(=xi&quTe$Hw8V1xzx980ICOKDYU-akaQFFMJ(&yUw^oydI)aV zbmrxnpNX<7tva7{gd#SodSd;uH1eoSWm?O_J~N^4q?{WmxDU{~LiE4!b(`!a7sdQq zv{8vih~<+Jva;>}*~%o#txEk6&Vqb5)o@viB z)M8%!Y`i~`D=Okfcx2jLT+&1HWL}(eVZMcQ3{*1IrZ24&6>??t--pJLg{<)0 z`#H1O5_JIg%794AsEA9W9;*X9(k;pCGICriyETCp>Q$VRDsE^dY@i0w@FcfppJ4V< zo~Z1Q0dI`f{!g`gj{PlBS+T(<#@!`%acQp8!C!@I2H7!M1s$hOm2hlvCjUUYF877` z<4`abImR%cD^PMU7ND#8-C(TY1vTR*4#hM;4dG-OX@IUIQUA64830|m9HRC8)77vV z6f>Z!f1Lt~DaHX^8JNaJ7)b=8)-`+{*s&FWWzPCv$u)x@tOfZFABdUM4IVwLh4~RzN?~Xx?13Wk6mYU4sHbq<>x;U`9kXBYSzlO5v%iXHd zR1VdBW`?C36L@r%e=o;5{EH6c>DHkn-Ko)E0u*IFz{PNp1bPXrJ?;6YsJNJ0;prnC zO1u*bn;&=w#0vqfq>~`@@iud5p}2@^qmj$1q=cW-BGxu!-UA*C%?!Ht`lh|2q!PoA zM8tLA?=`98S zF{l0QN>U33A8L39C<`I2M3bd;@bv(73ODmwfE>KQ#ps{I8nYCH#-3;7K8Sx7?c?4@?LreY>*?=u=J#x!di%IyCOyNBM(^ z*#^6xkIso489QE&&$rGd&ffYXySus0lzk@jw+A9|#rR|1hsof+{@LojpL=^@SoihP zlIacAKfuQnFaQz4N^mX^+>LND(17+<76~>P5 zZ}pY0&aXC(iA~}*7bG`Saqahv^%F9AH;IeR4z{}5gJq@Er?d4$v-_j>U0VWQPBhvf zBC0;biE1n~!CyiU57nzDN{mB%so*RBEx7B|OJ`uv4*0kDW>-b+FKUB@lbxl^D&d&= z%@5|j5{b@Hm2~}e7Mi63tSjYS@(#7~kUO6W1Mi#jyU`_%YJrbuh0W)8??)$4cgM>m zQY@bUhx8&gWTf`V4>~Ac-BySfaRzY|A4IECA)d1@;u{)t=F?e`v!Lph0Ug1aAIyy(7JB#vqqj$hfzFl?3)? zw%&%F$+aNy*N&d&m2|A9%yr9&n&LZ@ zJcEjh5@eb*)@0N$spE#vt>`}bw(n^G(txCM1MNVTOII;MIqhj?E@Q(KZ z#_<5F8>}MOjF)n4oJu^M$a!)EG1@}cfWhLeLa+jxz^4R`xf?^(;^Jc^SrWSvuftxw z%=LBA?R-Rc{-G-3hOBounkj7{`r0v5Cb)FXc+V2!sTj6Urn2i8z{~)n&2MyfY)z;NynnSp9)hk2%U59 z1kPNNq_@IzCqZ(i0XsRD<4QW5w8utwBc0j{e?>shOXvCJre^3rBrtXrIHxmU*D(s? z2vEd993j|200jNd9dpDhm$+Q=6vsd!cDEAujcfjep1=4XO%MM}J1tjo<^dt)xZpRK@) zig`K`#Zn?%!l}Coi%{VcShpYrK{l_PpVuM`hrV(H(Rf<*0hFdE z`#{8W&WrF|k^eTm|0Y+_ZYjUmV?Dn=rrA1U7}QS->=f2BK=CKeuJ+%gyyv;t1-RTx zbwp#b?v=$%O9i_HKw|gH=kulzJ8gUD_G8NGJW-eIj?oN1U0J#a=lD0uGcyoR6`58o zU0vk5*XdnOE86ZK)ryY4D9h*9IZ9&`?kkbb@zIPYmeOGifh#W49pp&L9P+EG-0ou$ z&h)?0$=&{A37!qM?VV>oB&kT4%B-^S->CEnTK9vAVVulDAk_iktHa}dGz%s+gh6hZ zn7EbjYxnCRbPIcLm97!2{+{**#2xK6;*d9BS_Ukbr%2M=vW-e0{V`!0ENe-#bZ+Z} zH!F%|H!Sd!kMOU;RxceGoeD*T*rDCGJ|z%J74;(eRZ?aQOOy!$Ucn8yU5Nv^Z2?z|r1{{JEG$6okJ~m;R8;GH*b>!xuEE|dRL#o9v z;asjwV8SzsRo$;iqiKE#xv8YRHkSD(1*6tn@!FmRLe7rFfRdNtAh<6b%ryT>q+Rz& zLujc4QniRlW!$!0J~t(t7DcFtvARr}2&=4KXGx2?k)nl}YVs)vg5hkeEPR8v90>uL z3_(WX*)0n>xp({%!;dDCcwuFwzXMv4DoBJ;l4NoDWdgX9%Tpq#<$lQzt|=}Y;Q2*g zm|KNI92xbSNLxWf;+ZZp$**2B{1fj<)siF8DjtZVH?fca|4SU8w9VB2QQ9HJWE}!~ ziof{)S2TMat4QJZ*lY~R-FTTk2(paJ?}!KFv>t`fwAaRbnDLO6>ha>&;8rOUD8$!L zRkN{7>}3tH7(Al!p?66xFPY?WyIZ{eWIeIaB01|QwAT_joB5kVN#G%CKx1GyvMh~= z?|=AoBGksG|BFwjEX{!DfB1BkBCr-sp1)SiYMt6kojk{xRww*?zP6Xb*Hv=J;%@Is zlkE0d(6aL;{?jAPiRfc`@N!}ix@$Mipk(wNIGizU=dz@KZK}!KFU}DTzI$leZn@HItD-XAE@`BO|BYZ()XQ-OEQyHP2TyJFLB-a~<0w_0`L99qo@ij{1jxB=cr!b5g|qS!?e9thMx1 z0RAvV|ARky^AuQ+TZVxtv&XzH=O$n~!tUq5dOl|50zyCojSG!{}bY+y8vVc0%1BNl*HJeZNrO zzmWs(0sn}cw1-@9HI0a1T$QHa10Mej0Jq*h&!9ZKqg+^Ed`)8{Wi`7I>HZ*bUm=xq zkV&7casR&I8$cdKxeUaAjR1=`7Ks0<>t8NHGPEJ&;K+1ZWydKo4!uLUKs8G^7qlf# zKD~8sh2bAII?!M7sY?0ZxO>a!xSl0GP_kq(Gg&+$i&++0V6nv(Gcz+YGqc6a%*@Qp z%sgUg=l_z;+qavO?6>6P(`~5RHK*!!PghlU{oI3Y38VVk5rj(^PV5H2nJFfr#an zWIFptl`MAYLK2D^%|LT0rNR5JO@t)DJ1{jbK^qHg;Os>PT}& zFG_$ZqaSR(gCSzjO?&~pE27b3k169!*pd#UjC+>&qK=EQ>WA<=sP?x96y~3B354o% zTWvbW#2Y^hodGqsu~VBdwot11pFEc0X!!r%s_V!b2*WV_&n+!0&VSp|M&|b{TV23* zNWwv=GIHrnqzXZ->W&Mi9D#u7=tqI$y)fk826N+_oz4LT1tz-h!dMdKHX6GD6H7Z= zm-1`JZ55XH=yVTM!NzS?nZ`Fe3ue5i1P&+^#MOgiC@AU6eM3SkZmHnd4}@=}-Z1^2 zedwRO)Ndw???^XbbJy-TzK@oqLhOr4oUxfn%CsvAD=8^M*b7AGs|ET4$fQD)-vDRT zPN0JornBkQPy^f-)sfq-4C)y0WGG6+m^VXz6}Z2ByE83OBDz9fEN!OS95WgiEtWKk z2?F{LPb-Ly{1_&~XD?5}S*$4>uq;ou37(21-dEN+QIU3V3tE0)E%X6ntO z+Oit>_)FWyIBpOIEP@tSa5$2bt$V}9>DYm>wPjMB^YN(9L<2m@4P5vH9r%Y+Kl%~w#ME(hQ>#RrDfzFtn<6)nYVZzea;a~rfB3hwSXKpd}zN!5mLQU zCE?kjZ&0Ai7NSY(6~D9QStjet&dUZ(Dz3Er#WTynk}jb6iI{XdHHn z7>W%%lIXYuN)9;7i=ICJ!vCj-RpXDQ(`*2%2N6UNcC&+rKUFPBIGYgss&$JYlIROv z-E}Tr{y!&u+B*yO2%Nkgn4%ihE2C_eNG_5bbD)02g#CkZb^C{Vs~N$--=S|zzz=pm zyCaksg2}6Pyp%)N;4jF13ITGTLZR_ooKzi$#`}V%q(m@iRUHDYstEnAqX9n0p^3hr z=$+a>(K`W4#DTPyU^mV9(~d&_IWJFxRQPXx+ftkm z?z1aypb*3!IpgdEb*tWbwGxKHZfa(QGq)mK9aXDNCgmG^ekPgVRwaDp=i^QnD?KEvFuGHT8~2{8Cca}kXY zUp*V^E3eK_%Pz!rh9{8m7~Na+8sFwg%QoQe+@Fca6k|M3F8^kAr3^4+9#;8qbl*55 z)Yn3Vc6WPwdI`?1f^SyoDkiVGbTDM>g2bU>G(A9q@4|Q!B=TI+4datKV+-p%lMu=7 z!P@tDbM;Q7p}%Sh8{@dr%8rPf!md|9K1jLR3YOtG`2^h-UUnwRq17}a_-Q*7lCAIn0%aN#-UY<_d>+7&~7>p;FDbr+8D%r@^8(R!odhV%D8i zDjAwsRFZN6PngF9$Rw$Q@Ct`~d6wiL+NDSe^7Qfgfog>{Z-Vf1hF(8ydtx+-b=+`` z^PyV_Ii=!OS0Gq{-;ylPuMm<{P14H7#=rQ}6=2dFnz2kKjnWp!yjKcKJ7J)i_u)xW zvj#NKDZr&2hdl?t6$W>{eimp>OdhZzc;b;8G3BiR8#_F~oQSb#RlEhoh#}$oU&9+~ z;@25~HGAbxxY06hyNB$QQ5A&LkUmo~#b<96-Sr+>HXE<9!d|NtapJ2LX2wX}(up+& z*<4`!N>)gG_Edb+sY12A#z;X$aZ51yzZ1qYSM3{z|0JbDlebQ+a zV=j-z%y>X`Y9LvG>b`hhU>ONBBaH|Ud_=KoEx_MTzlU_Tkla9Z*K50o!hvUwlOr{V z?%s5^hfoa18@+e)$h&lPC7ZV(uNm=dbWh*D3>lW;<87C|zYIx4p8ghFev74k8fD_T zn@0qMY$e01yq$rRii zB$~e@IW;nm$Z6mR5jLdv_s~EPABn_7sK?jBWwkCcD?ao+KUI)|2f86rZp`vWtaj9V zrpRd~XGOR=pKD_WI(Q=>tGujw@FPKfr?YbFGlSXolEzFM`};e9Il_})o6?X#>w$cy z_bs_-zBR_=(S&lU(J|+XISu7*o|kjH6qmwW?B$P;sVRM#*ZcHg_Uz^DCUp>SH0iiH-pTkQbg_{HX}#6_ldTDpurW2rnKU{N!g zcl$Q~T>$xSVS4k=H1V5Z5IV#wb%Xr*Usp?Y>eJ!EZuDHPs5JWRK@+2zKG8dx2buGn zmWym07oA0?bEQ4mflM&7R%iVDRN*Lua0UH8C8l~)FYS%eAkk2tElXXMR-*e#FIoC4 z&RI?3&d3+_XN6dC1Agg+V`L6v4}sn_#Q&@M$DuL{7?i7@vOd&NCNu-?b-QwCM)hL= zTHYZJ^N$09j0aW24~%c;G(;^vKM$n2fx=-(w+T(aGSL~|EEO;xeLWFM_b*{lJE4ZZ z84JrP$_Yg%J2Vp-ZY|9)zb*I({o(lQLJLK0zCRH}inw9}^AjHq$)Im8%aRK5a3Y8T z<3*e$P|5|#Ed7WweJX6SUC9orG_Sf+KDghMkKVKoa9VB|ER0}%@?)%H+*`}c`$>`S zLgVmL%2{*r^K+`@b`Q;LhUCKeC#<2A8Day~s(I&@81BS(YJf#v$ZD$uBDU!!Z|UqJ zyT*L1^u{kQy@oI~NNOdya63tU2iPTgrUondK9Rzuo00kkL~N4glDXk2Pfupv@gHVC z4Q9>!BIclf`m)27RHV;4)W}+0K{qy@kOpx8(s53NrfJvuRgSDFy)z^uvE6suE!%Oz z+5cDzCPb6O`=J|TkVhg|V(_VPlsxMp?^)i7z*xa?F%1UCh>wRdO`Zm2+m?XqL+`n- z`7i<3%TEGuh=eFKDTg^r2yjkEi+1Q4u~GWgQS4vpbU%zf!aJo4pf{6XQW7SucdtV zi$5q4`+J%~Q=;n{@7@pp`vegJmZuavxZFzMMg`#>lF*=!1k#d1|6jCxQHnxOMi)Y>u=>l z7a;Yd7^Zt?mR@+~E>u1Z8@~V1>8NEXBMf78%5rP(UpS{KKR>>XFV^Hf9$Ux zQv4f2#X}y-0GMhzbH+O(GsYm;ZzrpG2-gbVH1!Y*p9JuvYJ2e_c1ki>R`3vW%65g zX$Pd}4}QYOR!ZcBk`9!{f(`=t0o^p>XrNs^W-w@-bdSw`stUi;mYMvV7EXcLZ&Af3 z=6YvEt<;Zq6JzsEHJ%Fot$v5?mrfdSzy62eh)IV=8=aiz-A{Qs3CUipz#D$=u;~qG zBKZlL1i`Sjd;#NZ7JB(}O;OyVO~H!b%R~ojc@oJK||n(}N$T z?qY#H?l9Ky;6gSEk+7(IP#L8w{V4FofyNfb2GiBC)!7Eur6UALpCvR7}rdvwTDDf*vKY-p^| zx7D$XD7d)>8FT71)KkE{N?9an$E7OwQ$}J5^j&D6r5hRjHI;&?3K{iXNOhrHOP!99 zbfMg6UR{D2S-9f#5oAQFSp!o?;t7NpQi#hiAUa#VdK^=Gh z^BOSc8|DkA$X<~g`hoR_*pDF5at;^nr|%cO=GDMLj&+T_@&_~86aR50~5fyS+c?|<`Ri|lKWEFnt#wx<9 zy<`t#qKknV2|yUmLN59n&Du$sJlKOPKL~XEwvyk|qt)Bp{&n8-?dG9KMuww_f87(5 zt?B)+Pv*1T>+Vd(dFdahiBFq5htHjzmj{MVw_ERrqPFxa&>fNI{MYmFskToIErj>& z&zi*$tK&h}^ThLVtasYBp|-JbYyMM0dWOo+C%5y>cMn&RR_A2w`16MO%)~mGf{E#9 zdrHBVCL&EO4|`WR&0Aw@jT3K_%uQl+3#rB@l+-#sj^dsu>sM~8>ewJpziR#qP-W@!xBhH2?vZA^_h=GSgbI9k>2 zq&iF|S=w%vQ-(skEGF|-*%%etpavU3KpJgOe;UknhMW+~Ethl%SJ_gO+Mq5G=gWI6 zR@qScwzb(JUDq9!GmP&UiUxVC1T7}_jQSUO1RKqX9onFFzHX!#TP+EMIU(kQ9=|W} zhFdft0IO`WrJ4|I4d#C>+Mv|x&HsYNbjxQ``CQu-Gah8442rvBhCL8e|Dj3U>1f*; z{&V!kQfMKJq~UmBa<`~R`Q@}o;i-kYBdwBf-MZ76|B*7M@}sG2x~8<5Ev6c;1RirE z+1>EWjhnL!WjEME#9FmhAY>~65bz|eD)?UtbgIPt)}y59>BuBr3RrXN9xylR{~{9M z;2;uw6U2I^om;0BK)6Z2{pVF^!M8#ll-;I%5F~~I;X>ule>#?(5JA`+38D?=C_kdRPAGsO{BJ?QU&oM^a!<{Mn_ON|ad?O?`Y> z`FZ#V-TCoW#?T7h{3&>|LB6D(t==Zqn644P-6CF+{U@R;MZ7NDa_#RZD;^L0MeC$t zmRpPV5067ZAU;tSf9BwUG3+7HhP4+j?2g`<^0l({hW2yz>)MbxSF8AZQ?R_-TTD=)^*|EemNM?4||T+ zs!zes+sR#w+%J+BHUJi|jIFH?lFEd}97yAuoFh%!7reT%xw8rCEQ+@EXgeC*{nZ!# zKCYz8AuHGqnZ_FRWISu{!_YGEyzw*5~QaT(_829^#z7YvOd*HlurWwMy+4 zxg9KLj^bDk9K=HulZYc?;YFlJF*d)wW_uz3gUQ8KOw-mYByscvJISUgF?JLN|j7@qm{}vK&ogd0*Ahd$YLL5s)&4$+a<0S z2F9q5t>2=)Lm59;W^zt?yf6`RpDia*WC?N}Y;O22Y&U!pWM|FPtWUC>X)b!KX}5SW z>kRB7Yqha^64Z}WTFQHpL~X=@C|8ER3lzj}pP1qwR>3UtVBSfQ$?s z2ZP&+F8JiAo{=YvlxO3cr~6t$UiKme&(jm}?$|sVnS*6R+8Ye7TrV-UO)l!|9M*4> zsa`}d37xGEJf|l&n|Fn4-G$6m@YA+-4I`&df@acp8D-b}m0EuYo6b|n%`Q%ElGnUH z-+I5HIT6+XGqsk}w44l4%nP32wYqAmARglJaIKlg^!r@Oc53X94PeIrc6R_0_sW9T@4eC_#rLbmEkQm$s@a~+sv5Fe=c3=^jKNvx2xHY=r_JMxyaFHc-g;h z4Ef_2KYqkz6F()fW*9cnSK~18zgIbT8mezYcR_D!%)1`Bd*2=*?F~&}+E^JHmw!pT z#)*KM4RE%{`X3IiE=4Qcm`I^!w& zu6S-eSwDR;t(-K4{b?#{>zma~8;S;+H%MtJW!2I%W^{Dw07fDhXetlLXe+qlCFJ^6JYi08YHo-gI9w5qub%jx5I$upgdWGt-TBt2x#k!=N6Jb67I$b49T<49PZYu7Ov0dGunzlh|oZEHZKWjWEgGFBc z)`J;0$r0jz;lE5igg(<9^r}}8F{75M*5qU_3PuQlT~)Thp#u^?v8n&y2xfhRIv_-l zwDP)^bS=p~yZ`9`*Oe78+jN5F5e9H}*-j4#%0)M{h( z`wRhG^?)8~!EGG^W!5Rw_ZqY?sv_!FiB|5S!YIBzCgc!5d{_ce0uGG2f2#b03WQ~a zm)T^-G;G#tGbpl#09&H$zUhxLY8M)KJNNVyRD8prkol>Nyj2KP5Z_P`U!#?+>HvgtHwyWStsnj(r|<6T z3aDA>Um1JjUt@M$yM^AJXqj7-JAeKitS#>+V!&_sVDjauemg_@>m30WO~)|EEeJ>8 zEDPwrz@q~9|0axj#ttbT>Ua{Kj3NfD*4xS+geE)bn~Z`zW%A9(t{gxd<4;4v%$JXJ z_Tv5>oPgSsHmul>Wms(04_^C_MWyvg3?EjnWpxFZ>y z1;#sy`}#GK-}rGYquglYlx3rBHx;7GM@VmmIqsapyKVHu$9LLY8ZT-N!yh~+ zke948>>vF5fmB&f2YH6p^`jqwYgL|?2*0L?u6Tpg zbf;vT1D`KtI1v}ilr77`0I6o)tya#xfA&(rN7)6ht|DlP)Q)_z4|53)t`a3WnO8;5 z=eyX4W4auQjp0OiZzA9;xN->Eu2u|HH)eZ?qc=oJf9v3&Bv`XwVs&M=2yEqFK>q`m zS}=^V9xRRqi9|>_N=aX9^Ol6b_9!!6^&Hts@XW+5a!>SP@bC=kxvK;CJ(mL`kjF{e zBkCLe&pYUYnjyKReJ)p{er;D(dxQRC0+yLP{{24?(&Np+6bTn-95aI)ch8EC2X$we z>#XiXe52q?t+UEJOy>J;!ZIp})A(5_gXJ27N}DQlRjN|hNTn&%!4`ti%8dB>z;P%R z^?uUl#awJ2CWOG(%;wtObYmv<%|Q-!Q2~LKFag6&GL&AsSik)>i&H9?F-9Mh!sY8Y zEjsMqCCem3f`1yqdzvuaaRgWBZ&9)~MQKIJd(nAfQ$vcUJ;gIQA?b9;}%oo`H6;E0B8!zM0n zM70PhLDZbIk2D?bgm(Fbt8KLg0NO0Iy^^huBp(yTl+)T!mY7H>DhlQN_eB;<$0b%v( z#WO+zmUUnfz>j$YggheuIFPZ|arV>K2vXAJ3NeHlU20Am6H_>3uA8(?ofgH^Fd}@^ z0BLof`FU|yqi_So2Dh;M+AJ1IQ!P`R<)9gXN*y&Zg*O=_<`${W2`^+*pX@K`y133Y z%l(h~F343$@D@gmTaoghU`NLB%GgVr3XEe#ao3y_z>84=$+_`aWphTs{`w`wmbXd@d}YvAPfGR~RfB?31nE#u3?i`} z0kU}b!9tR-SZ6BlF=wi$EC1)SkOL8^xC0Um>^*NRxs#=oAQ3yGxoKRRQOVFRr<;fgPxgVPJS_55d?ICI%byg zo;W5oqQ5PFvD30&r3HnLn^0x;yGO1wS#wZ?3PA)${rm!t|_-h+%&!}C%H^N zi;)EaI#O>S2G3eYrBWQrY%6LMxf~a1$oL}~*Bkd5qsv80>qE^E6JXLJCTDP2yPEW@ zZe&$fP>xLv2ZBOLdVh8tOCrEhTOiD8t8Et z&B^K`v;fc60g$UlLh{8v)dU+nMhsGd^kyXso(6aMgaRWFqcvXCukcIL1Fot8Q$popIRDs|4Z49)O?`xv3z5AImOm# z>lDQeLZ5Mbie2#IhfzzvnIaHwBgbn<@q%FnP=T$AD04%Wv{w}G5+{_Pc(t>_?SRkY z;T=vtHbYwWkA@gMj6$fLyRpg+W@jY~8D=bF+`S{|L93maiyaXYLN?y+2;y?CnpI|p zNRyUTN0(^w!s)OXXm`Ynkd3c5`YmO^tmSRuZpGXIln%C|ODwrw%Ycn%09iFi28juP zT-NG_Jhhp(w!QP3?%)~)RUTCIh}w6(LK3v@`iBfoRI~V~dPH4^O$BxYilWC1(kqvA zB{5GG5w!c9Qq*A+CK)+|oiHnA_F4FANDlvkR@O7N{O1kur!L922Cp;%@z-oQ1s&Ox zSugQOb<)1;Vq4f$Q z8j4%O@UsJ&Ul#Tjwz3b6n`x9cCWOxn7yvX zR*0|U&((IhlPzktGJWng`$a#D%P#cIM$&<}UT@b9X_c4!?e(R0X*}#Aik@I+Wnoil z=&3-8>5OA^{;+55>`Qtt75kr?S63S5z{d&#iwJ%%=8|OKuywVrg|-fkqz4ZE9{yc= z^!JmbW2Z{iCYT%VKQq^4|2=Os$G`od|Mo_6{-5uS{$Bt&z|8nRa!mgt^Z%)1nu(2> z^FJU5Iy^P2D4Jq7J3x>F_UPLL5N-=wM83M+i&g~CXOUmOj|4Vg@6AN;sJP~jM>yqq z6FJp|P4H=I({>JNjdABCPZT{VI&wT?lsz9<^Lw~G0vFC?kh?w}lDppTPZrL)I-W0g z7(ieHdorKE1CFk@`@=E*j+c*(SLN)@_ot6B{?E51nYFH$D{C#!$HP8rue<9u@0Zh^ zPp^*^M%tzl@06m;9Lpp1IbMe*SGT9@!@H@EsVc%v?~l}iiL1`%w>pMT_1Eh4w4I&w zrfly;KGvPjRp@rRb8FA1gR7jCt4|(2kI$RCskGp$$1b|-rY-M}6>UPItWF%zH~rSv z#p`j$&-Zzr4KcXXa2RoBd17bp^d0TVo}7$-!*UrsZH=+&4DA>1)+(FE+-B0j&I9`? z|J(b*qjl@yPPUiFQ(B8rM`XcL#D(QT)k&5%+xm-MzA5GJmO|52qyaAIJH^SK_5}NC)&l}sP<2dYvZoeQWj`P&&pdNd z8M4D$Y)J{KF%2`tNv{MIaKnUjEe`dN294;B{$7l7nFQM*sm;aTtgszK57d13rj62k z*0(($B?{M9{!k%!y&c+JPUgoN>U^u=1cFFxsX!z`AQA!)$(}5TWC%pUnMN2sRY~nl z5tX->%E^@#8V`CJZMpF-t)P`)2u$AugCcVH|d3>Tas*W%4~*Tfcw3 zYm(7Mi00=V@ZRL{Wa8~a_I{#&ySps8Ao?WYK6%8et8X&Wi$JCPD7CJIQAq;}ulsb# z!DF+L&UnYxgsAgANV|MivIS}fVQkrsvaL8k(}!2JkW!_*Cu^c>+Z!(RFKMi>g$D-R zu`#|fv=uTOff;=oF3}zkbf0&fr*&pP{6krnU=LRJS!@1d=>qg*E^bMI$^bRbVb1yd z(+rZB4N%(war|Sf5*H*jX_-Oer38K~5L+kdXMI#-(1`!Ps*xu(Pv>d3#-x)U;gzWb zQ~e`1QW*)xyQV;*P31iyclfg)HYr9>%5>c%F5|f|r}Tobi_MSGRqV+~(F}ZVRL;;( zScO&KPWbiK+ZKYk3S9s__L?8b+v865=hH%8U$Xb=Evon1De~w2v_O_F(I5t8o;^%_ zw{#aILlp8_o~IauFVe@`T-jquG;qw@_2J_+c!=Yw>q*<&>jxUP&S~xVnz<7K!%}s< zY7iskB`v&PHHKQ@MA{C!`Y#jzJh9_$BLZ(1MS?wRZrkhkF(j{JEu-rqCIn}kzV2v} zcHFfyoKD#9Bg#A3T_4pIbX%OF{eBF(s14QIT3=k7PuOksH>_9rc-A{z-;;+LyEq(7 zx++|>4f4srIkpai{9hgCkh)$cGNG5*FPzZd@-$Z1-z^QF-%hQoK=W{ZGWx1<{^<3J zgU(>eZ?LP&(`;x6xhiXLC|XAQK02H4?QQ;dbk!sOXZt7c5calci!X@({r+@sNZP~| z{W9QD=HmM4Jso)`THVUA%cM<+&jaD&=z7S>)8lhvV`yz+$Ckr>@BLmE|9q;7gY1(R z=kDh6dI!KBLGacj^EiZW{hfQ=`2134%m`~hd2ObZ)n72IV)`~Hwo7#?%V$mxs8~1?si}z?5%g3iatT=wJ z&#}Nu8t&CbSV$YEkh+BHCMTE_Shv&1)DYpxt$E>&8tB6PxMFsEBQlVE<)WY3 zoziv0`tW$^*a)};w0X$5WvK@Y?Lg8MayD_X9jCcs!{ET{Tp}!8DIDEh>Gm!eCts!8 z(9>a^lkknpbUlJjzdp|5=%mHFsboj%x^pyDEQ@%!-~9?uo+L(s(2}q~7HYGS(d~h9 znZ4~>CPYzZ|8=bA9dONFzTvb4ljpVkW>G)pLN~yRc2@+S;TTt2miPQ zF#xay3%NO?Lv#)*C&570kTr$Qkm&h-4tRC<*rgu}p~8FEoEp0<9=0@NW^J;-@F?{0 zJ`O4L!t7TRB<@!zROY0o82B3nmO9e$KCo^+tUAkBzTya!P_jhns*NzM_tmx(&_eWZ zVuvG_Jj_iIRni2m#WZRHLvj#XW_O|CkgE-MefX@bLIn3H96yh~*}fW%ajrpy5N;KQ zFznwj!jqpr0dKs>vh=i)e!iSk?$lXuf5$DqwlEFS-7r?;zdp5PI&9sTAUNdffRDaF zyk9Hg9<)xGu{7lgTIlM0N!VZ2&T0*UFW2>`>4vK!?XBjZvZPS@oC|(WZTfVbVt_#e4Q!v>yp59aGtAaefU^EDAKGy5(xZxSVG!J5U!lBA;X!Qz>|72B zvsm4M@)l+#1jEh@BVCJ8TH%hE<5l&}ZCsk3JslHFeY^yci*nf1MRR3)>LeLwd#cp( ze2YEQwOy&eP1(&k!uQ^+{b4)yM!@C$2;4ZM>-)v*s~=*dF=T@+dD65?wCVkJUtf^u z-^2e_&5Ho!_kxpYa^~;!P6LwPE3fh1>;XNV`YDP>5zo?q>_Ff%OlC${^Q&KcbP8KE zj+D$m$jqDqZ*11C?4FJ>ADhU4B)#HWtLYHiIIwN(0~Vikz@B@nFbRGkwvolzY?rbH1S-J%<1OiRI%|Dw39oWk`mEP-e%KKk7wSCXY)WwN{neLW8cZX1S?I zCE$L8FdS;9oO0HgfQDa1Y{RtX2}f&dDN@2qMQm-x)K)`ZqC%IEp%dq%Z5bzXdm}hxlo1g1T3YRWr#Vp`a2Sh)Zz&_2V(3`yFS6( z$q^>mQk-&_Mc%5OnR2;qz zAS1Q0QHt1TA~F`5-S4oD>XZn38;{?E1^L1ZfYse8kKBvq49WTdEWzB!I$}%tvjJiC z)(mM-gGa73j?k*i{8%V^3H&-mAFgi+h7*qIBlMh*M13`TJ{{sZqdZ~I)fc;m48)Xt zUC~(iX(?ptK>L*L{28FT(I=p6zQ;w1-->M5YeV zTUa8!hssUphb8b}!x>M$1vZ$zf4uU8mH#sN}tT6^lW1lMBLCU zHHoWg^bO6g$V)Ll?`)VfecL=&jIX83OlS00$qq}o49diwG85VK(8ZUw1!~tfI*aua zBj>>xEc+?^8c8C^CENS?R2+p)_r+)#g9yyEtr$~nem}-mM00U7tES*eHHH{*i}zCM z57kT_4#vT{I}oj?@uc>^e0!}RwZQ(}b=MZyLeJQL?W|i>?c;Yt!Up~bFL11xgMFVl z59vV$M)IJ_uuh??2>!yic0L1xe4HgO7&KWLAl0V?8(XaeAm=N{;-~p+zMy`xix>DX zUVo^zj(E*o0=7R%!NM=B5%H&GY#wQ(=X2T4ZdI?6iAd+9z zYjaR2`qGa9*#ML?Pezw49a;u%1^w~;^)y-I6G}XwpLUaF%syM6EUAgdMf`uNXTk|MIC6m8}{BH-uV_>S1v+$k< zPV6Hc8rmFLLF#g9R%Kc!WQ7^UfZ|e4P}v`6*}gau5*g+>7C_2!susOpC|Efh#Q~49 z&Sa0sdHXy~vWlq|bxXh0-K@p|+EU6-dg`N=FAf%kmc}8$CTibd%K&oUxx9=U;+BPH zB{*YfRjJGYB@kNQL!}`rgmJ`^R^;l@O5(}%Nz4JgI?MpAMF~i5W>3`_iTvMjb~K)(r6<`hY(WF0EC8vkuEdY2M%`Vu4*fdW)rEQjjtIv-)e<5*Y z-5zrjAr2vJk&Zw{h38=aLeM9!30sG%YzHgwOE@x|JCB~KLI0+;UQ3MAPFkb|`G)aV zua({nPfCs|>jsxBrOIy&BWlbT!LmwKT}2(}0KGnB2&7V8_c^edO1j6fTXl;|<~rrT zhgK-oh!9VVYS_vX>Jy6AK?l7%n?x&N2c@ zrGj*;RtXN~&e9DGd#!N%GVhLj{~$S(0~WvrNSk(vRvtS+tI}M1j@31A%aWWXI9~&* z5*+j?dH5Im11ilp4g!{X2F-LRcZzk$Ey|+~aQTTgd}pP>_coMTV|SD;3R7;?)>Sai z4|qy(pn>^Jn+pGQ_KCEj_JBGwu4v{}zMUK53rBou6_seC{_Eaq#xWV|@1ij2j7h5q z>kdO%kZ#N0Et_CfOX24LQDJcMOHi_9QY+Ca%8L91N-cCYlDRPl9IT*>DLBJw0;`>=i)ki<^Vi!d1N1QP-Q&1w>iYz8|4q`3etfzGXyoJ$CRKRa zmI*xFWRn5a%7}qs;?(sH8&X&iZlPb{Y63fH#G^YLfyTvPv%98%$+6UTL z8Xfw>X^r{i<>*!Q{np*{`fi=R<|xy`=;B2N8EaD;2V zyOzXVs-Um7tZ6b5~6on=Fx*cJv~#9wz21~^oTBElce3aVtO6S9Qk8pvBaD8 zP@TDBMk@C`cvsj^M(7FEr5#Q#t<#J&snMpN_CJmWw}u4G!4!W69zo%oFP^90TvD=F ze|6@Mb^RXgI^J4xX?}|UIKL5yacEPw_V||{&r^m1{GyX6l>D!L ze+*dtlh;XA?)y^kN!(T0MILXjHI*}Q#e}70N2llj=T6wb zXT9e2$2Wxf)-E`+PRC1kB7+YIH58R zFH(K`PFkv@YtwvWf=X0HLVvA}+-msBx9w!+Wao43*dw4$XZFBhgZ+{+e|K8w3@_c?T;D`8xdgtQT znD?oGE4wd#wx)Zk-VN^=VQl|HYFCP6gv&=n6BcG*u*}>sDucp+~Wiz^^yFng@b1 z89Bs9xovP9Ub;Oa?Bl!R7E=iV%H2Ra%wvr_DA@4wtwvW;R1d@7FoMG}C<~>O9MKJ3OHy~55M+$bob5b3 z?IT!K1;a^W)LfeQ=0&B{g0@m-wARv5j5^I=IBgl5SwsawbA#;YD?#x>;@aRc@;zAQ z1cT9*O7Ord3eJ)suAJ1<*jatJ;;c%y2=n>BLkS9+5OCU3*K(2ZhXLiGOhTuTD}VembYB9CCV1GEsEw?2IOAFmd>D*9Ypig}vIMFwWIZi^Nf=`ZzFa_P zg#qd>LiHrYSrMFqGBVxVFvi>KS_2=N-eGn_<|g`HDop^YGN$hS%>TvRTSe8;bnT)* zLI@t*A-KD{2VJNhIxgBAhFl;<8o$8BVJK1#Wm&;EO)V*9f8-_`Z<9pseIa z!Q>y-U7E<~kA&wTDEfLEt6yGy%Y0F{yaI6NpV?aHZJsH5xP}NsH)-WZzT+r>H~OIJ z`x*`xj`*wuJLg$B`l5F0Lwlk6*96iM-F@wkCSnlReX+zmIlt>sEe-HeYr$~pWs)N^ zHh$KX-skcO!SatiT^dZWmnA5-Oz~k9*JQJJO7_BfV{`Q4Bp=0NeOzYpQO!9sevS|v zVDfRZ`Dy%2U82K&3mTzYe46H?@i}fssfs z9H>e)#tl{@hkQm`&eJqY2jMOiMI46YwFxISmQ*r+8RRLeWhu$emL1#Ve82?ffQ z;OSRbCok_E>DO8IFO>eC`CQ0V5;=*F)>u~DpPrjki{J#BA^6x3@$+yJ8 zBs3 z5A+T7?`mghjs9JG-2O2<*a8w(>z@KZ9|I`jR)BSLHC4I1Ur;~B0q&(z?x)mAZ@SKG`@}#s)JQoD!1`u()%;zM;3!3c*5KA}=O)1a%r)BGRN1>50+qJON;%N~4hLRu;t)y$Ie$+a zd5py)ioRsjfojv;BgHL%=HBAX9ZLAZr-g>K(UecIL)-?#kp#vKE#^!l zX!(AFGj9S(0E}q)%|z5vG}=T_B@(6Fr8Ax{Z7(ol>f?Iw>rEgXsBbo7Ms6URxWBLL zUW4^-H~KE8Z|X^UoeI%#_5F=zGfiYCzx5NQg+Fg#Jj|HMD2c7`SlZ_!*t)nm3}{*) z11o>rqk|K13H_v`l5RpxAq&ba$xnI>)fAD~h@QE6j=I8CL?{39tO|Kj`iR4ZX!)V|m?i z)2O^hWPCW48&ZC!*^gDF^jpSaJkFVOT{@ZuoD7EH%6_S}yo9wF9+H0G^q3!0o^cgm zo2a@bcREZ3t7kgYkWOx3+kO>wH#Kn)sQpL-U5A@fv1qg6Kx@re{jq0Pi*$TB@y4^D zfpMvgJiqx^0mF9C3n5=E;dC4T>ePb7LDE69`T<=P80p-tGob%y7=50oV0m(xNf2fX zt~!_I&{8I6XkMLcokEnh#Fu>qI>x111Y2LK6107zg1K%(-#e~R=*;Sc2@M7U^n zYE&d`9iJo1<_*@r>U+}kKdEmqY7`q65bgXT2>vO7e{8&_$Zj>rO*7SwolP>8!7@z4 zha+ygsad*7_fUVezah8K>M9vJSu?=6r;gMstn>r)??Cf{=yd8^s#SvQ<*iG8_S0ZW zmD7EUYw<>fdG9ATF`^>pg?r4O*#W-3_j^%xTS&Z!a9X1>LB(rHnUA-JS!X)EJ3a0h=8eB6()#}`iT13K1!zf~3$qMS7Hw?#E>yyh&vwNZzc_<6z3xyo<# zU#z|I>eih!TMxXni{W@~;5aSm?xV)#2IGS14k(X_N50O4Wb3{?@eb?EW7e@`)C=)+ zFxA0a+K?z>=X(nuiWjiBS+Qmdc2Z=bZR>@o5$fnuzaTd+Y#rl|R6DIa5*0Etg3%<~ zxDuxZV~suOi4no~5?L0m7_BBG+E6cg9kQYPdYwMqb?b0iF|;E2k@}D#)rdDF*K!Ic zsg@?DRk7Q;oheeeizar!Ap+Au&BS6&+%E1{h$fdU>m|4M%)zQ%&A6(M>6&~+&)+fGJo?kKChWZGa7^kil+)k ztMt$9ZIH89ey|gvTI&Wp-6!%5r#9mfGrqtCO(laFJ`GlH;Rvu)fB9q70Of?Y0jAX> z^mWD^aav+rnB53Ds!3wYON9tVZL57PiVcsBpJwV~)o;x;56guoR2Ob|{~nv=FJ)s>{>oL07u~l{@HcSq9-bGRDd>wg+evGB@R>OFNw~IN*n-^&1SL z|E5mcz~p%~Td-H^2|o<jeuST6 zuc|GclHi~#xHO1K+ED6ww*02;(Eq-@od=i(*jBv283<`LHpstnXN#)3eUB(acS6hy9VK0Z%dNbnZkJd}VMZqWvkj0+9k87Qkn z8fWKSJ-7U*y*h?A=_yms-}7q$pj3}BM0(9!DQ(jFq{c(FVc7hUI*Ep2tKn?v7VIb_ z{Bvggor@{I4USQl0K!!4&p08Z|G}jcqdu{b`@Y6L$uiyRQ#700z+6WEa2N{otT(hU zaaPNEk4-VH+#+bj08KAVx+kfY2G50w^6t<~!X>!M=#?L|@5{G~akmcgQokzSWno*0Va~*oQ!1l4>Pkujw1kchkNn_)e0Vl7xRfKVDB$Xf zWKLqGTtG?Q`Uw@LHB+hAVRYPCR)Pgm3sE&}fZZm>?Due`V1JJdfaCanc^7C+nMRSt z@u6r^K1TQ@k+LXzlQ|O~G1nxPPYfB3{FQCt%Xe}nQBeX+iB1xu+zr-Jk@V+<8?3^z zg3Hp!2%Z+{cBPxtRT7nFF8{EY@4*uurD!pfMfO@(PPni0cw0DpXF@6+LPevN}99e!^P7?+vBmJ732)5t2m!3R$tYJX&oyW zVR>3epnFHfe5(OfIIu6qnTjJ|_md2bI7|{jkK}OJzoVTD%E+l=HzguJFU}B_PuFF% z@6wWPZd3I5)*12peu*s~QB;Mk3o{C@@L)mnz*0E=aYnnVh*k*%8~TKVtB6#g@n%%@ z5Wy)cEpfi3I~Liu#g|_?b!u0mIapVWP%h=KXkkUjOi)u6LPfS!&{&YVBSR@AmBFyC zACJ`y$%;sdN|b;dRdf{@$0@#RMP&YwtZTnt8gWeUmvk$NV<6?xjb~Vo9i)lKJm9KR zGdtPE5~=;bowWHwMDZ{gBCpl*QPh9oFTF`o+172IA^luyXo|ip%oJXt8ztdmoLg*n z{b+dRK2^1v-w7!vOgSlyB4sjiQWYh}`HUMu;mR|HR+m8oA^bgcDn zhjkCWZ--RIPIEwM3yo&UzM(_>q8Hq1gd8a2te>Xq7rGs;Bd{~9>Yq<}f6e^K*$yJV zZW_^iCM}eYK*mCV5IBR@Dr5O!6Tj6(T>KC1Ddn|t=MD-Qd3o>?OXzQ?DqCq7zkPs? z1~di3N{5qAc8_rtVU1lXV_#_`c!NgMYPPJGNFt<`Ud+H>6aw1K(pRDAbXu+308ylF z2`2F`NE%fPClgS-dCSNW4WnLvzvBbnSrm#~QENK+7!@=k(<2`$KB=+g;LB$XZ=BrM zMAy1oT#>q|JlEg*jt8`E;}G)R@qlSr?yJI=y^hs!{k9 zgrvc@W|Tt#7t;w7V@tWK#%@W1;|D6V2DR4N#6eLmkz&`qgR&7olgC`j>4f3JCbwsZ z^>6znNtr)gb(>R+En-a|$}sDd{f>Co`t5d0QfzF;@rZI#wTLP1^{JE2vF8S5ddYa-;?!`@SU@! z09?&Jz}2k%2)LSffUBwW?rPT4xk5_5yPAIhSCdxp4<+prbG#cN*}AFMmczUst=2ww zcZ@XreUCBH=X`Oi50`}cxd(+llZ6I27fFFZK0{CPFvpT`~)kZMU%Q3=Cv-E^+rbW%r; zPUraoabEtpA{qPkAf7<}SC|hYC@87SgxJ3<4W8Eq=#sFOuBYyPwvGjqIu$_h(R#w& zWK$KeY=(|#Rw8c7)s$pyK-7WG6D#B}nzLgfaQ!HhsZnRL#p)bThwOflJpX*e&s&h{>7Rj<-rGn^S{>Sb4tX_uc=e}qjm zms*5TMnp!XoDsJ@|ACs-e3Ihhb2Up>gPcqmXkCQiNMr?;H;*rKHIZ_{(J=rt55U% z^3Ii-=~$Qgak=Iw`VTRVJCxK9q32kN2zo>gU_dMZEN6pe{L!LXxV);eI?)Gxy`o`R zA8TG&bA!j}C~pk8PiQyB9X1qKc-?^LFFH-FhAgNbq|RF(Ks&22!+6Zs^I*rLyM6K= zQVt1jZ(H(*D;yio39PqDFDwhnA&F;WqyTMyj;+&=or{S4H)z1V@Jp_fPa4YZ$ZFo> z$t=3gifGvXA^8&L8>_6<)X!_xU26B%kfRbVHM&|{8KiL zF9B=?xEv%}cvmJ8SYGVuS@v*3(#zR1x zv^FSQ*31`ww-lHS^VB<-^v6we&+S9_w<-!r_;3Bdm1QOKWY+uT zJ=l?bw7a)Fxd?fjtbVY03)Fm&kA7X%}Ii4WMmn7$>=El%Jd{>|Vqk@G0?oS-+@7Hq0ZC?|dif703OgB>)izw`mG zxLErgybYdwXNnykCtA>%$#Msc;q>uUz9Q(N6t08UfBDIavD^H!7o$I0U#SQCQUlHs zBrmDgcUZU{SD%DZ05muq+F$8P+XeJ5e2+JBYi3z0LQma|MRp(_E>fR&LUSOsQ>HE) zuzoQJK*a1w*(Ao@=mvHCk}&Zqnw{xus?6FS!~_T|_i4a_Fag(+;2Kpqk?&9lDCGTp zB@7D~AhJIOZ3rAbKoy7d(P&_{EU`#Qh2O<&;$!SrMt|Kf&{E&gor&_@~Yof*;8xN7B_!G2eGn`eW7cq=vW zrKK!N&Yym#dsI*l!SFxA!-2pxQ1#tT!w-6-NC5vg-qZFEAjKz&nhL)qT7Tl=(HB*j z$l64zkfc-h#YaK=z14lS=>Z!%Zy)pef~@Js=UFn%Cm6#Kg_@e;L`=;F$)px8WY0GF zK?e;?og^}Y{{jy86aNJqSX2Kuz+oL%`Rg?XO4O%k43x!x6xUWb^ndb4^Sv0s8_YCj zlds%==5#n&S}N-XKMN?Kv=wzY5we99S6+of>u7FcpkQi7K)@N4L5$k*k)eIWybhr2 zf_q>r0q8qF{Q>U@puu83myhY+ZIr9A(hi9hhc43e6lL5b9zT|kJ3_VYk zvy|NSZ2rmGA^xF$K+qM<;=S&aLzG6(le8cWp!Aqq0ZLD4N3Ruz6%hL{n{+;+8K@X* z97@PvMp4Msb;{hx2~9{JNXCI^e{XHsC4LW89RUI*lp-2FX6RP(&ff3}iQoi^W zq?^=5$$8V=8si6Y?QD5KZq%iG#EA4Gm_HvQtQ5%tj~^qZm8Stn_6=XVNT>8s+6K97 zqRV^Wm|6XUO7_-2tnS5Q#OIIlB#mL0z?9zuV9IYHFy)sP3HI6UC}hU8Ivf8Lp=i#O;MAR0gcBri$nQtMGo z;f{G1V?os`E8Oj!?5h9S+G2YS&VWA?W!dGMK`q8Za(a!-<&s$Xzfl7}M)981BWEAm z0dHiHXq&1nUyI^a8r(3DiHsfm+`Y% zh|++rA@vJIlPXr{AQQz7J3oRsFP`5X(`znq|MgN!y8WNejG3bIzwd{eD5-W9svnqq z$V}FZ-@^q=K)4{5f{SI;_!)m!ZQvYUQf{8OQel+S$%st9!KM_GizvQ}sLcE$Ed{|! zvwD&Q#g3R=ZbWAf-!k!uixQ#&&5r9MzUXTpb17>;~M)R5)HqJ@I6>su3C z?+tUZF2Ml#-Ieh(EBds};gVH2tOfnf-8ZmZya-qRR8z{Pr!XEVz=Fhyy1p?~&^{m` zvS>Fw9RuNHhl=|$!R3+r_Kpym(5XA4`N6ZNtf5DaZ*Y{^*c;#f2|6=Btw*Dd+-G(S zMo9OdjogQ1jS8Z1WDf~mPFg^e_B@%jZoY71nmPNT&FaXX-}p)+<24EC-%Q3+)+udISAab4l!o3i9Xvq8*3 zR6dN$rJRf*>DfVQ{pVrqOcKqcm`!#1x8~y%hwuy1a!G%tP*Nu)WsD@zja#4VME0j5 z6NUm+42Tr5G#gl@Kt>kYcq>tLB1KGXR#K5kLrPY^*}{K@NmrEBp$SPDQRR0IfQx*9^_Ma66j-=~?;@r7$dq~aRr%7j zH;uA=J1XIdvFE3wt*Ki%TQeWO*djo0ZyI(spWrJ$>j)d5@f(IJUw^XlMtOM9(x0{J zhWxa~&9Ax$QAyQu-LypIL$Bt=%OMe*EEULhvc*F{9${ccvc&XjBpRi`uS|iG)y5F5 z6NN+Nk{kLTqKQ2yd*WK;g^{r`y!atC3jjHp*8tIkTXx@G&}-F?zeilCiZ1ftG)Jx7 z9UPYve#y1j{$oQ5Fd8R;6A9vK0{0GR(B3+8re!6eUYUnnGr|2v&Yp+^u~Mm1qiAH)%;z5O4}f%4_u10VN;KEJ||6o2Ym^0Sj3N?U2iHSEpo z4bZXH{!~88=w)CtrZ^);^rH!2A9NT#Gd!er0}i=g?x6Pql~1;}T>tqs5Q2Do4?$$p zN4$q1jHwc`>8$`Z5XWN`US&l4mx1$7;A@6B8^^!|Vykf|?>xQuKl703C9N=QL~T@y zs3y#3X~Mb zUC^kME&+PV+$liCIqmAf^ykbwnsCNO(w;N_@lY8E3={G#`x<)z>e}vyK1NjY6Q={H zD6IdAK*;^vc2$5MVPsx7=xvt+Vh}B@|1AaqbisQJLjV7R7{p=p8nx-+SJq8YVJVby zxV7}5l_3Ph$^dZ-Lj_?^Ac1rg59{RK^!nFiGF+iv32W&%3)>haQe;J(_>*N#BUL1X zm6QT?dpo;hDWxJdvIiBR-ofuI4YLCzmp_!YiA4f?+0e1naB+A{NXURTN;J7!`4j}p zj$usoNP9+_)CNM18bdO`+DMp)-UMJ-L$i8lo3kodwzK`~em@VxMw^+<*lo6PY9r-P z6KO_kh_RV%nR!P5;v^l=-RtR0+uKunw~k%w%jvjW*CE})3()3cy+h>aEgbH4T`#>rRwwYy%$ z68mZ>XX|)Z-zDr?cDI*~8-6Vl_bblcv6uWfeI6l# zPCZ}K(hJ3lKStjBjW?*NtKcll^u9q=oVJSp@0MV5{;!q4|8og83&a0kmSD4dWn^Gr zdVfX*`fu!C8QGcM5Bd1$E%Se(JL9dInhg4>zf)2{re&O?}vmoy_&3n zg|VR%56{0P%#2@I|LGh);E!Ix)=A&V_$vdwqLYKOp_81x!$0{{nHc{MORfLu+yCdK z)@*E?EdMqUMtv3uMeZ0%!lPfjD2{9kN0d1IBd)C=0yZ2J`@t9C1A~x zigdYyzWk#Rq0;*%T0=vI&YH>7CJwRTv7?(rSeHkt1biJYw>Jv}ww=#=WxC$L_72DA z8(xl2$7S>zZ}%Hj9nS~RwmL6+H?FoD?XUN@FRiM&&)0K4ZUiZ&eD^y-cf5XKW$29ZrpiwtO$Uov)|2XEU-oFR$TSw`=@-F9q%1 zcZcMLu87)AV{5fZFp7=@Nt&>GoiB~D{0|ed{FIds3%Uc#Z>pZ*%8`xqo!Urg_iv}b zUIvXML^exZy%Q~7v%+>cb*{j;q2X6U*j1a^_ zW&E!%z%xJI-mcs=z8Mi5ravh?iTm1G5@4MPpAye-i6}=07PUO(mYw-vmbMZU9i4>~ zwmb=|uDuW{x%#F^wrue7)G48S8KJvWuJR=7Yb?7>z2sBo|J8R_^Eb7m9dT~r`UY3p zkQZu3YodE~-jU(%26t4L7wQT)ot|~925S50}Y>$Ug5lNqd8PZOseitveye51dZi z;088ieV<%#{PHRD`-^V~0hYdj>rkRrgG8vK^^HT4FV4&LpYMyW)}k}g$t~@7Sld-u z{IIh8e7(B1S^PNJ>;1kDWUn{3Kmz+$-T53#P?%+o3xbd)%lSHfqT!zdvb?--#EI1T zTHXLUpE=^qZB<@~e-9RT{wdLRzMJZ=@-Qkr<7>HRjm`#G}fI!$)_tRNr(>B!C)Oy>r0ulw#^j~9=e3QxDq)>-SFt-P|b=bhe{E+V>3 zC@YtLS?JfiVP48~4>X0g)(ZzX zd)_3!>}>4Z;g2(QH5x^fb==f|IKoY8vyBDLx7@gJ*8>nJJ)vWl+`Vape#!K3)vdH% zzOu$eh#iT8k_l;$EtyVxSg?nxh>jX349M z(?pG$trgRr8nioMp~rqP`qr&=|B5X4f_w7hM?>N@dg%^etX1E+hJ@30Jr5~WCw};}Jme6akHdZGawFh0H1+^v z<5UNAUXB!u$9z>~!8z*^||}OKrCOdo6N(ZOGF#n&sfu3*05`Jol=$&FTqh z_z%^qmh0o^VB`2OYBiY-f3nKeHRB&-YCV6ufQ!4BHAYfEja1#vTy{qJF5?rsH(<@1 zl(%p{NB(5?9n3Vl=k*{e)?KI<^z~>7dsS8;p(CjNOh+I?sQzbaMy*A#;zMRyew4EZS90jaPJ{Acm#mAz@V%Vg*@A4M z29#IK?sy=b3}U(Tt$+ z{80GXRGv2Pz@K@?1)42qUQQ@qZ1$3tMvzJx7t%&Z_~l;0_lXU+UmMYK3oq5=TKplRn7&!ubw008o@)mE#ynCo@H{noeaX=p6I3D zA@6*8{zdr8{CsvbF>pWes+ujOP(Kyi6f^AlG5K`ZoSQL8Rv5%Rz9M~n=_&t}T^`H7 zO}FvpM`uNw5JJ;t_HW`b$z6tN$dUQ1*dbA^=1z)O#~0oz%@CD@A-rnl#rkLyg$UPG zXI`SetG}=xx_=eA+(dk%BM#Rli(EC~y3YG{)~y}Q3UEU5taP=1ve1S{Xw#5}k3r!g z4(SIzsG<%~R$6QbKH=Y%nj%b8Na>4H<%jWJL=#twn$txS+wj>$4(c2yCP=U`WN^!+ zbr|g#n3{JW$x_?=4!wSK1gw0Y+$_Kj+F=SeasF!%ju0Vp#y~qeY@L;gl8&Lb@I?13 z-9#xW`cm0zqzh(mkA+#NIh6ViBgi3rpDa83rMmYK(z(V9{kH^OhN`*9eAlI`;0M{P zBo;fGJhM#$l%c1f4P*G{p8~U8HKFDHmd-IVwF`vio7i~QqI^_atakMX&#R%CgrZ6% z-^mo3nG4dWA|`1FU4jFZD+qJ^M=}LZmCZjbF|>)U$lfCtvUxnWG!Rk>+z#@~4Aj5D z*t-dta5{k3!PJ1W>>7Y$%Qk~WB`$u#{#^6PNWFYhKI4bZp3m7Eplla_P6Gs^Ak(?bvrQlm9hgPv`%Q8a{Ir8(iu%PH5%LIqsU4q+!zHSZD6^{VS_Wil>bbDewC2CqgOq!P|3c0-pm=QKHG|!*3 z(-$SprUU(APDbF<7zCq7TKZIkVo7(g<0=va(MXN3*5x_G}zt#GoS%?Q} zci;>otLhO=(Ja}JSn8D^{S*~n<3Jx4LKz}zbQR*VXndo{s52xWQ_LeMbadH1H-kjx zh^)Ehj?B5|Mu-lS-IbakuAknC{wvJhvnBOnHM;2VC>))q-0j>)hw;_ONYVc@yldyp z#4%-pYT5M#f!$})*A*9$0gk&Z^P$=x3nXlXQX#Nv`!mB6PArI@^pk`GF~?tsDk()S zUS9gYvEqX)l8c`n2Uo6ypn@(Y;3#MDtmNl2G0dF?*MsL}K5BQt?RcXz0vi~1vEB|0 z_$w-OF-WdvF(xaBXemlEV*T_fW*x-Hqecp5=bIxI}@VmRFUI_a@ zODZ-N#3*W@jx47oXRl!8{`1C3`SZyB;JWeB!1v{#)0jX<>8VpHPiu6UCQ2XcA~IE* zBkPoc^rMA+h~33?&o|5OKITaMiX)Wld#J9>PCI|-E!b~Rp9mLzE%vl3R<0(DNh?lB zu5dRJ>wi^)VKK{tJOn8T3PYfCrI$xXEkbTrJ<-V%G>a5M5BEjOs|gU({(NSkexOhkG!wLp zKhC|>GP%0j5))x{BxHTfa%EQ5sTmYzn;mjm)u>yA@{qKoH{o0zCi0NkMh(9la1VV- znHU1Lz){H5n8EXrSPr?abYzbZX+cTj{`FO8R+UG5r2Twtbo=h3U8Hww^T9QmUPBjS zs&Hi$&{-Wlcdk(b+>6-ZAJ~>{kBd_I8n`Q4pm`B91{^M|Dvb6S7u0|^)X<*M8P zHvIl9L6X22o!5R^tXXuT`C8sqgT(vZ?Y1|{uCzyj*~7w^g+Ak19#~es`!^)Nlfw7j z%%wNDXeE$`U~G3F34|*(BJp((WpH{AITTRe(0%>aXsb7hf3i4+#^`JR6doAGID{iK z!)-IrCJ1`*Jn55j7;P0`-S``Nq3POSaZnay>@y|{0WU7h<W>26MHvT)0( zT!dH3-n}-@7=&ou4h`~9hd)QocWOMdCF&U2Isv3T@os5x)@}cRV-l@kLf-HIcE)#3zj(e(DV^)KG!5yhMaSwZ5%O5t2^>)h{i=e zJcHFrVrzCtT~*p9tLal1uq}_=7j7v(s))=z@PSQrh>MXlyI-Oc2DvtnQ@^}YH1Er| z&oaGLoxXp;T>I*Mw!5pB!7a7BIV4{M1`M zM(z}yaeYdiUQTi|RlD{59}SHMITkA!(GSlKNLV(;T%2Nuc_u#QoX)Mle@FL~r?~t+ zZ2?ao^am=I)tT$R2o|zI6^$9Q+J?u?^QUzjv#r+CAv{sb%DbogMahnne(~UqJc~&) z?Uo!9LAH2n$epkprbOP_LIbTC_~Y&`t!wiM%`BN84Q=|g;D%@NxDZ5HoV6^39G>&1 z92jxYhK@K;3bzMWN)X>2A@poDi~M~3KP}|7h<#2<@e1eg$S8Rd?Tzz zZ5K3y@gT&t%>NQmxK4&k(@us7-<~H%+8$|HaoC_8q+x1mu3?&ZZLa}pmzJ>Al#;~I zH29r%iGz{tm0|XF0cTFrm{F4+^|~W_tS%@{?y33q+E~omd6KlKr?}FoIl|nm^#amj zrbSeMRVH=AbaT)RtTA(t_Dt!Uz{oMk=SDgzL)4TBb9LuoX`5po5c3W zOf>yAc@`NXa1+2<(jQ!A{0@}4J6nkb!`h15khkEMWAnd>hhJ*3A z5`}is?Iii}DGKRC)JU=16n-%Ncelm&jNkg0jl|V_Ve2Aeo(Ltl79CX)JcvyLFWn7> zh3=TgafQ}{;#Wkqlp~J3e6*IpoLr*2u5q(vx;%-Lb^E!eYU{zHOQ;!_0mE<6$u%I_ z_1%^Or!Cl~nDK5YHkj!km9ZZeXewi&7dQK&5N%^D@#5m`KW$KGO$A)K zgbbh%C(3g=sEl$CY}?4i>Qo*ICtye%jQ_~iQaXYYNF8Ea)bEoNt9G#_(QgvWnPFVi zBzS;t{G{YGv6BX==L(A`n@O@wxW*6t#+58nnW-VAaiNbjOiYW@mTC43Gb>|AJXs4{ zlS5^K!z_^IleSp31*)a-xs_KFCDg;Z5Tm-BAR09TIs|6M! zWA!02RP6&Yt;)qu;Tu?^i+TFZ#se)SlCeMpg>2M6a^_4_I4erl+g9bYrRkPn1HlVy5zD>^@kD$~ieo(MA*XXOlKOXfAVzydA^;!)D| z@1F^mshmQhtUL5a0a00bjEcs491~6TiC#l0an$_T#agQq$|9FxF4=S+XGIZ2vbC1J%W&2~V9 z4Gjfj3PWy-B`@A|7BLEZ-mArN91B^R$_=4ekBBHeAS~RJohnnn>0%U?tQWl~UYX*S zbVo;IMmQ%SH-y6MNkv~ETXjnK)*tD=y+HFOI9b9uk2qtT+ zN|lqXE>#)psbt-JySID=Q@vD$B#5Xc2T@@y0DHQ&zHeMGoc+mcP6P}(#1MO>MXr9cT8T<_RugmVr}f=Iw8j3kb%l_?e^5qN&NXM{FO zM5^8&^sNzP;ZJ}O8oso+3ZY&Su>Yv#=|iTYQ*7RcBKd9gLiHADBgLsLkYV&y#`&GL zU!W7(_+9jBAfD<*Ki|P2A?JbKl2%+{n1_{>;&{pa0}R=23^3kglu}u<b*wn(ut$b#nE?2u)eS&PF=fxGG{FZpk^h_Yg%m=0hddWG}5i{3{%Qsh3Uts@C+%+VF{zb)nPhh7`ZI7O9}GLps{~b z<{Bl!5cq|JBQXCJJx4GJc5^b!ItK~KQXsD%2A?h>*r)5ey<$doA8h_XhKf^h&7lgf zMjJyKU$)yES*`n8O_lBkLS`uI4o(9p-F6s^SI;Cz+>ARztH=G}z;QscL%+tx&Gw)A=K> z=20mIsY;-oV|ODDMvEGXw1^x^uJZNM3?))%vDVk5*s-$c@-4SYJ`HQRNu#OFep3uie9SSZl)wy zXyl~AOy)LV@*Hm#W(<{ly+vB}50CPr&9pi(faSgrTFl(jJJfNIy_dROiHWV*kfD*0M8z*Px?R1$u3fLUpK^N^PcV?m|T z$J$RzJCoHq8_E2s0s1niPTTw1A)E?gQ$v+^{GnKmP0%JBH<>dTBw{4Rrthf*eCIn1 zAP%1Rfa;y2h2-&J3prMa(1s*l?X>cNfd(ZMj5$@kt)u*8%h@kKtXjB>e+o_&tQNJh zh(?B4g^}^)(dXEx614N=2g(gOPMDFg@`PwH+h1d{pb$*>C^bF)*-hR3UfZ0{P3|i= zTwrmA={VeXiJWh=o%aYsqXpbtB!o~dNH)Si!Ena0GG$g1gX+KisE-|7_4bVO0SP@t ziqb^}nLA@FZFk?`FC4TgJ`Xn&$av=x=DMT9=7LZM4+N>h;scgCqp~kvIuF;Y@{uk; zQAzPZL|R;Cmf<#%%mfyINU@$`V2cmR(-10jPIPLOR4gPD%$hxi^EC9SVm12DNXu*i zlN|DMjXUX3GJdFMi`4SIEPA-=c}{H0zP9g073c~Du(5AeV8CK!zfbCPe!}Dp{@+B( z!Nbt0-DZXJHatl3P)X0vG8h5XUZY7sHznM{Vwmu*;dfk`UV{L^VM73d3r>(E0<+4n zIvjV;7e@yF3riA9H-=+OlpgnaV`oH_phWcd+#qZuK3C-wFid$uy}Pm zepn$s1wKRZw|qcr3Mm#O8p0kKMMpa15cL7Ml8ZlzhD--NDde zQN}+S84wC7cIHnZOC1i{;?=a7HVm@blD*kqCn14l(K>NcoixM`8AJhr88C6JT0?*= zgEBngUSjNkp~=*|9;7(H$@!s#15NQ;T4whEn{tLlR+V1QoEZI769Z-4zJI(ORk`~p zX@G7@sM4= zRxQQMdkNsk@TvBa3Eg`Gl)hPxItN zA@o5DpDahQUiy)YnrAYou~V}@=)VYtaEmA?j^*1U_KPmt1ysgcUcrzzF*s%S-HOgP`{(4zu z;pfxs5HG{yq}eE9d5grGYIAsh1b%kx8tJ`uA*BurV?ot!Av(|VF{fTERT&DXj8r~& zSmfCcdW?uR=Rf&q%AX;UZ)Fd7(@T&*E&SBKH*Mwx=2H6))Xui8YHv4f4RE9_TXhA6vg~2Fka)zRDj7h3^`}( zkp!lU<~Z_UgH0d4<;L;4&bo;99s!Z`+uC12+LgL);dW1(-Whhw#R@^#);)+Q1evER zOqo_L3_L_<>d>~m-VAp7ygE-)s5q|}jstv7nO*IUuF@`T`<6i)JtaM?6(#=%nKvmz zTS3d4MNJHkSr@HnNdsGV0mfT&L=7tH57o{>_Ik#9l`Oi(>mDw4X8bhsqubx@p!HtUFc2gRzHZ^ithf@l)y^^TgM<-oK5=$#2-+s@aKL)xY?2~ zvREuPp1~qpVY8fi&bS1C%E*?z>QSt)Sx+^?A)(oTU9H=hxx0(zC{VlV&tmB`rXw>=jDBP=zYH5Y;G;L1tMBGv04A z|B_XfvC_46k!M<0DTYrN8*xIMP~C?gGr168i4Qk9PU51t;LKG@h`g@azHYcOVkhIk z6FG3E23Nru%$S2m9y%IOqAJB4uGLJXo-s*?4ze4gRh|dcG`9^=RNSi#(*N~`FVfXW|eJY%t_tKjnjjWrRU~ zym>NL&Br(`g?H>o*5URP1rZT`WBEV0d#kuQny*bXgy0(7-GjTkySux)Z8W&M1`AGb zC%C&ya0u@11PGkweZTL_T+DxFe&_Psu<5RBvBk{i2|O?dkaLd2y8M|dkpX-@xUHGeewM&qr(qJg%Rxg8yKA2m!g&8Y>|LxSx* zX2V-jBbZPedlx^#%H2sl->lgcEbAN-6zchfmhq+(3}=i7O>l9!YLGf8xm(1$MA*_%oS2au0C32?h*>`rAj4Mz z01g`f;2;A4&K`w4`k3i={EU`%-@j{>NSN9988_{|uuVma73X$I2Q==3P%dnrwu4|0 zs8eh{EOGm?xO}^ae@UFq1XJAlUy9_;&|OZvgBJm!9}ts4y?~@~k%=SsO7Ee|ngy`r(m@42IsJR3w!!QtE67 z0fOCzFv8*QQQ;}27>Zj%YPCZq>y?KVVdgz(;W(kWP7l;rV$5IyV7kRAw*IWXna^+! z&^!5E1^GkvEWdWPLyvhH7eY90g>M%9*FUb90TYd zF~UCofzoyg#NocF&uwO|v_Xc`6PTc$k^dfI>1L)GH{p-XSd8uz|KXtd;V9V`q`aKYDNSOME8VE5yx_~0YzgNav z(%hoFXK)0@Z{zwsB7QZ(Ao!f9 z9CHP6b~CJvv7OKXWJ7{{5ViRV;zc}X@A_BiNGgupnq)t4X%QKBoSuF`JTs;-qt~UzekiE{&#J>pjwI zV1p*jr2T*xB53t5_CffO_D>2D7{$NXNAL%g|A>9C2JP65y3Jri!oHHi9v!UlVu4k} zoxFjlBR(vYw18wyzkJa2@zU$u6Sn`h2t#_OQ`z z+O=}X|C1yG>-%U3+QOykM`bl#79=l@SKYtS^>M$ZbcC?zkxa8}ED~0FsdRleDjaIv z600sWnJ|jKk}x%y^lM_TqL~2B_Dg}IkBAIITnJJXj8u9Rp?GcuUVr|Y;R)|@h&Ly_X`p1G6fp0m(9F}ZxT3Y_p1$_ z`5}+`a3~nP_9l~XQ@Abc@+o{))$&d|HS99t6871$7%QEoyY8K*{6?+teNRKF=v{O? z0L=z@sj}rfFbse}d-f#NEE z$3F$!k=)JlnkAWe*P@7P1Uv50!0ivHT0G@@UNXJF2^+c2t(?us6t~<6f$JR3b-mJD z?FfxKgAxS*d(w#luxDr~0DI~JuxGz~r4p5Z%{q^&(!a20xWu1y**qyQPN*SM*px5C zNo#P!--Pd&Eyc7=hWQ(qS+A|J@sun1ST(izIN`O~;*M3@#5S1XU~^O~5)9`iPx{1; zRWrE92H6|4Bx&lqJqGr!8$KF4!&FkCdjRH~$Wy*hY#Wi$faJU|qCwX5<}1;L2^UHl zlvPyk-X4Yk+gF?H5YB^15~OZ`P>oSJ5VhV?JU1A|?g^qv)7Z_Nvhd zdt2W$RJW}u@lYVW-L9$f^|FJN2j``LkXr`6(#g%aTD*fBrs%dj$xCiTeVXaYG$gjD zN?4_Cu@(uWzORXF!-j9%xzu60T=6Sea^CqNalWxvHGd#-U1niZyFig~rq!e3SIWQE zJbRJH4}J3F>K|(^eQ>w?AFX*1!7SZGD=U-23B2xPJEuVv66O)HNe+ub5Bpubd0Wu4 zuv4`zLQk`Xj|eRJ=TA+OZPB_5Tx4CMDA+d@F3fe*5tn?Ocn^`p}D z=P6LA+xjr+A(4pN+L?i*X@!V#1^x9nH)L)A(sOuOY-I3oD`>p-W#c)_zBi!U!6i;N zv^ChwMT&hN`xx!Nkqa*7IE(L`HM!H$&W377;U?}Ctra@}r_+D{2 z5opw94g}0RdA<=p$!PCAQf$48S!$DQl(~6XY?Yk!$(#SiJ%L6t91H;W`JE*_H>6@e`W`cT6=(Ut7pMt!v$xE>1aYfE&xU;kmHHaM{tPCHQ3|=sP!U% zTIV+}bm)O8ep@j!0N^RrT#kRx%|hxQa>8&!X%$;L`s7{LPSwFfGbnKeAp#iB=ti7QKk&rq8w7`e#0Lg1=bQnoozV|4&B!9 zsQ1UV0z8B>>Uqavm1{O9_-0lYPDpZ`$t=omNeOaX!56hy52GOs10C1SQLWvs(vYN1 zJT4J?@vA5grjv7{Bg3iCB)6V1P)w`B;ounC`dkqdMutQ455*SrX}Um$TlVcn))}^m zJoxe5S2|S#zLH-N@Rd)^fUis%;u?n=K&G7Y(+v0CBgbJ26wYsnc48Af__NK+2PxDq z)qsn!^DZ+X*Y#;Lv438cP$q|D@&>1XYI_Ip=D^P>F-BYHn;L_zelu*j{&j^T!Ocgb z{t>{N=PLo;ykir~Xrf-HS=A8`8nJ0=Dud^Q0yuO_Rf2r208_nZMdL3*L_o;&5hisO z0tJC?`3-zg14A;_nl<2)OzFo6C6&4u7g@eQL1Q4=RXY`-hbB{(3nO9xfM^~7h)%3u z>o85JWK20MGk!?iYhIv2mi%>&f8t&wWxA!3(Mrd1zN7K#8gVjbO6Be-1h zy#LmSuRd`NR>jRRAh~{lZrT%q@AIX(SXmY!r?j9N)m~<(_`r){QF)3f{vowi4lMn` z6~#to){`$?=1EZ7*aQaYq$0hiZvKd;c27tjq_xl%cT1Upaq!M|VuDtf!_K zubabdLvFY222f|mtb_1oqp~d<Uf8R@4)t^mdP3s$_3NDUbOGNf zZUFdBaRUea!kKqmSy+;RVTKA94Q0am7G0DDr=wu#$ILsZY%IwDEJ~Io%LAKv448Zy zqQx&fW26c^oO~fLg}p!{;_Id3Wjg8w3_p)kXAbfALvT6(=S~}ZdyNv4c*oQm>5Z+e zUQkVx@$a=h08t}w6$Ck;2tRJKxvT<0AImH>Z?7+PgwCT=0r+ls#OaeoO{9ECBYX-W z?n0{elYTyXS!*}Cp~-VY6|qP~mp+4Be7mLN^tEMdXC+7kbp|kV?o z;;qXUMW2VHAKXD2l~x=0^Q}MOdT3Oh@4o|)JJSMg2u|k$Ut;P!#mpB*%MrdLgAkF} zmw(nKXNe_R{`1rxE`=5*_hc$ zR%F3xu|#rK%piA!Jqxb`ER{4Q0M?>*ETlo~6tETsiJfHLTAU@VB+G>ia&G9esu~n^ z)Bp`3ee}|vP)N9*e9jS1+fJE8QZE-NLMer>lXPc%abaz(+t9lB=t(%v2pegbnQ zzr`!jOkr=a2z>?sGDlF*za!V5+uC^xGS!D~x~(YCdE;8lw}I@2f#B&+OaW~ zW2m7IHvH>c8W1pmRFD5@QBwT$`h8JSBx%3hbc&Tgtbrv)ag=lJM=rTeh*hZEz3dLK z*iigg`p5$3?j5#Pft9|OEs$5KOGzls1xDbo;cIsQj=2z1?ZEleZAKsh z9WP_J;NH24WU9`hp<7j)oBd}nhkM#jCgd&|OW9JvkDIRh!uYWC7Wjw*^ofV02^N)e zS8}Dn7teQ+`b#u)iHnV))oF;jJ?&XFSkqAMdYH35@38{*iRRTIReprTUlBiEbzbG^ zM1;9P=m$U5f=G$KTzxoS2#(mudGuq@&)0LQm*=da9WT`7hN?oAIz%-Tt))dlKw$ha zk1=I<()aof<0tnNRIXa@||~OmecZypBH%B5@g^s zMO>bXO}HlN}aI3cTR2{2*k>qQR^~fP(Yf4X0^`a z3R5Iyx%HR`QxctM@JB_wcgHefsJfS$wCF>6%-V+r$d(U?b;=(?^!*#)t=`=2> zUTwi*WX~*iX94a9FZq1Qr*GF4UzzKQUK+04A_?Qu)cx?zmV*iNxaux_sA8A5VqaLD{zHC_DT z2@)eV4QljRix|U&Zcp{pSIJ>l>~AzB9Pqkw^}rIHFCjpqPvPRC01Gy}6I<;sLg1BT zU$j-pVN(=uLLJi;IM=KBUH)U+FyI_NV;haQ;jBHM=+1Xiwi%c8h z#jCHIJl;O>7y{n1@dG@>RZb#c#e=19y_us)BOiuaQF7kp*6Tjzha)C~+SwS8w)uW1 zUn}~e_I#{Y8P@c9H})*br!q&6M1#923Jgc2?IW#+?IQdy$bj$yx9CEMN-ooh)n_tl z&gZzmuYLTo?h*ph*D;Sgz)OVW`xySp_tCt@7LaevQAtjbw$1La@|f&ank@sjHE6KK z53S@NX)OBl#j2Bb(P3ct1F;;)ltc$Oe$;|BVb^%w0(MLtxOhJ8_dQ?yZcid{;4xgK zsQ8O!IPhbezOcDB8&t@dF2{m^to2glR^7T66JYLdf zi+xHV7{EyFwQ2fRY(Oq<#>CYb7d?*#&;bkX5oNHS^Yd9X{$E1C$! zuouC23ar|~i|_hk%ZEhuHHjY#S5(b0#7BUOqF#Jo(uXcRC&yjX1eUPMT7ass;T8Y~ z@v8bKR8oCFiHVvP&exLqnSKa_YkEK((XYFAcrE@|KHn-upWPQ8q5LFOfl#Cmx-E7w zJz4MF)({uArrD}8M^<=QYC8SwEyH$OG}5QKc={)rb7PqK0U{u+@XQeDqiF{sI+W^g zTkCfI{Ph}S<@G)mhU-B$OIt9hYF$Y;T9PnTg=0nGG81aP!q$bXT}SZdL1)Rk0vx(R z?$nhcG5W$*Al#Sn{ihJ@K*dt}-uRzFu*h7X_GE|3onZzMKt$x&0K-52gE7SxA3#Jt zNmVNSfCCVbLYeiK;!_P-@FkO>p zf6EqG*I~Peo!R|whd?be`<9n3mhyT~WXXmP@0^GGkXl?lJY8BiJ@Ja}eFKPu8&LOe z85pYLzhz)n^hkO!atEM8yaloRh^RxjAC9n-BP^{}A-pbDht{5xbJIXB4X~VA2+-sN z-(1Pc+a9g;nB|p!<7wrE%RV5d82KlL<3%{w#p!rq&OC1>b46!g-;;Wm82PV65YHpKBq>w1HhI zNLFEL1~rp=@c3!QRcB2m_+nm?X(j0@HFA7~QG^UUv8`kQo?lC>Se!AMi8R~bP(L=_ zq!*RJZQ_JkgvQF4hVAI&x4MEzc(9jM^_CC~5GUmklmqJxEM0h*?C7D#&jW&UPkBvC zjX%{aMo^w8n88+=;xL;#xF12{q0F@1b< z{DBZ*AYVJRT2T0x8|B1dZi<%kRMGG9+FjneoW3ea%Ch~XIA~y(1X{s?wj@)UTXpC* z?@3NcAJu0yl~ak}AIJQWBSj3^w9UcZYDr=_j#D@LiQKAV*XWYr`R9e$X*?mR<9jRR zHM{W#D=tguFe3AK&!35{Ta%1`NyY-?!;{@b%jJ2T3iZH4%ur+-uosO^JkL!}3wk;u zilu?V7h~mumd19D4@|WU2oxwE7V>5*!~0a^$|YG%z1+ubjw^*YYbEV&b^keSm#CoF zgisjRWPnD+M$X&@6nm)v#a_XtK(W^&Q0%ow1S~8`=e-wu{boAy90!WMctiiI*o%Pl zKNoxL615YU6U4#jx_2~zhO0^@euM1!AXbxuGP(;X+pzwQ&J#fU53rXg)(B~yq|0t5 z9&bS>L$ebrlmg#r8*0^vi8mPzdRydAddLM#F92Evj0uH}V{lP`Ai04Ui+2f;VaC&L zxi1LTsmGUfXXyUx{6hRZuBd3j&w3)q&Xn7A!tsrcD#|H%NQfoFqr{iaK+i>!C$}e@D$*M8X<@Nwp6CHdk|Rp zC3q@}P>uVBfjC{<17r1N(s!X5p&ffa9xC;AR{Om1*<+2+$j{&nPlIJcnz)kjr`8Sq zrFi;-^DtBFvhA~nDif^mx^O`25ynS$y9)$p54aI{cQ}a1wveSnck5#EV~lM^D-q%1 zWBWW@85Iwx2UY3+)*4gP$c77xJ)n(2_?@@-;yf>+HF=BW?#ULRPc9Am{xk>2x*AFS}!+ zc|H-ggUFdO@uuJrs4nL4d*ffOq%=lz$0^|Jtc0|~m=7RLSwffEse%;uUjn|dgfbsA zO5u-YnJjS`O}C_nF(xx1<=F(rTL=UUO1ywy?sS^`FX%2 z>b&ziuyL``voI5JvNF+gG3zl%I6JsG0vr$`Dh#4#?p7vd$`Zm1Dh#U5M)od_@2n3d zAO=;CquIY50cHp}GgB+0{~+vNng}8;E-tozcqx?4TpZk-P0U;X1!A7A5-RVc62Siw zDs1oU6-?~^^pa5F{O5?{{Rq$??qL7UN+Hhl55vX3gdO7lYq|>tabPG1%YP00|Hyp7 z%t*xgU%CP9|B3m6`G3cJ@qU~CkIWY=tgLMRGx0@-u8zYxJBlC2=38#sM}7#}D2{}W zfgf7zIHEqS66v3cOhYX?DT7C3%jp_EUwC*Xc_MPPeMj-TQ(;GL^7KL!O1f`$@$5Ej1?}$ifnLl;G--%$jth{Fi&sQ=<^vXZQVCWCb2$4C=nwro81nO^Oi@;C#9Uk=W;q9j&LEStm+EfM%fm; zZtM&ej=yn*$RX6E?X&pdZ6&t8%G~CBrXY@C#J`$-Q}4j@>{ie7ed>IZfpF`@U1Dk3 zeHC75y?>+wSKT4&e zpxDp2W;EX9*j*&#vv{1hb%!Io=LNDfjEP8Z5#Z3$3)sVGR3P`rXVk3S*Gj(ITxgQd-b%(*kbW{a9%6@Nn7}s#QJN!)+|`v+i|H7bmhoBSwXlp%%+pehsMo(*5itx ztLatD2Mq&~u;-p!tU7v%9%Jh`K@{MvNrf914j$L1QGWf-;C71-5}zm>N2A`NqCQ!J zM}V#KQy`yGAD(|MY>R8P`g;>*Z%x?wc9-7lSR;w{pi~;1Rm8K4hO*1i>`nRIXmC6Kh40mfa?<{Sv@ABAEJWKy zJ6`ZBY9KT!jK|2`)wuTBr}{V%qU7UJ*~*6vK4fT7J`!TlhXpE2YFX;!q58}2tdo)< z%j9cDX=*)ja-U@9A8e}pk^>lpVyY*Vvb0_F6A627m!^Rbexu(79b~@ez&$2)d3o{o zeLr2E6Ct2EKvpF?!Fx2OEuE$&pA>lN*d&px+ zfji-SLL0K~Xr7%nrnUdVJ!Y6K^P~AE@_gXds*iC^9NUm;eEP1R=3ZcHl&Sb8rzse{ z3U;d6F!LNGC!CggNLH6EYnqc1@Oma@oQN{t9ImK#0Z7abvx6iv5^QPX2jjMQT^$`{@UMOW4PMUOm-)b}Lf%J8(jUKn#*_6G8|o{R4m1fKB1A z=X0`ZvMwC7-woZ`Tv);qL&H}Zgzn{yJ^Wl7ckE`1@c3tjU>2I zBGRiWen=(py1=`giaI9c=7f%FZthZ4nbh2=A7a^Jn)+LlXvRHCG6A<(q*T-Stt{~r zKlq8OzgNc+5wVwq{``W37}~}%XZvLh>B}w5%E0x&lh>Kc<7B!}mB#dxWcmkLktn}= z4h6ldR=bpSw;$s7RmT`1XIhyOl3^mQm?mM(^yUu1^!^e3C7WX=-uR;?Zk!*sl@~)! z5XNl~phRr%EW(y@H*j;uFlg!?E>kAFkg{{{B^)!um|Y)DyxT^67zLSJwD-=pCdqzb z%M%L>pYr)M4P#<1qVpCJx!I8*$VyvP* zef4|NAi5$F0K)&*+XiScRAJS3=CTa*~Ky zVeDqJm{VccE~#Q((Mg<%hU>3^T4^fMJEwNhUP*6BkX~Wbw%_zXR!=tkYGOsC5j(kP zf^{f%1Zx7KMK;;&fFlQ$s}ro&g0)Z~y$WN-w8$|Fgh>M4Y^_BH&aBAw=O57-(ltqD zIx~v{ObU|3cTTh<4mGm{0w#CXOF2WF{7MkKD(2?4|1Y5Dr zA<$82p|s;UB#CSQjvi?$IGddVhJxb|>;zN>P%)JnPVRsSm z%g$2DP2EW5Z4>w$1;g1A-&nKYBcu-WskuKUO%(_;*@U1)>3H@JT1iXQ1}G`rJ7UOC zQ`t+&2z?Ct*kOLm9SeEMCN*DCj`3$W8sOrU0Li$@vSmNZ6ppD|VS=c01En4D zRaDpFqYDEAKOuqJeU1vJSw&D(8$jqWOIhO!EaB48mV)`h#T|Hnev)5Ym~zU;F2;W* zJDp+j0R73L|68vA5EcyCd;^P6T%3GA4Q(?^CgNAQK8ezGs^L|Fp84BVg76lksymwN zCJFPeQLwHb{YGZM{P=+BTsh747$W%Zbf)^bL|8=AaZbFSyhbvfiNxj{6<@m+NQ$|K zL8W5$QlDS#+Vy5dIlg$-C_lK5s=qMh!?YsvLh3RkYnfNjy{}TQIr7#OQ(Phfx zXqoyCbeJ5w%G=7Yq^0!-n83Q%r+X)wU=smSjP6xTo?h%vKy4K1%zd4Rb1U(&1tZas z#I!j|4l0Jmrw5c#f?@X1(`u;(hO_wS$Mim!K|@ZVG@<)m?v=WhM&QT>HF=o~{>f6r z!l{XgYEs>zIO1lNFAO!h$1#uwj(CzXXbl#^qy`;!G@8|kU(FPMWiS`9MK=)T07Yst z+YWkP4isE2^xMC!b#)Zk?`r?}{KnDU#pAX5p{HBGM@~^PYuh*e7LQaPdR&pVm z^%xD6y&BM^+eBQHSI{oXk6AxH^Ivh{U+`rYf(%N6P21lHWj$7Gp_osI23(nNy(Cz{Bmx*_Mdm?q-8 z+n{wM@={eA!Lr$8>BFlHBo^$1k+o=C(zsuC%WBdTm?li@NxEdD`Y-2y!#FlNU!MB< z9Q>cRJqY>RU!K}DHh5ol2GTD4UM?^VUQdQJ7+&wM?=pWf2(*J9?guah{O^qZYJBhV z`ZH1f@ZIm}@>#&={?cFI^+yZa$=k%uFMd`efG6_l+z9c^?ug)b*VALc+tbgmpM?Im z+X@EoNY(zpnftA~A;Oq-I@c|u^VCMw^o-RS-iFebpKte968>+Gq%IR(Z_Ep?T`OUl z^N*K%Kfeg0zIFLxJ+JbL$MXk{Cbv67iV+uUmU38otk$VID~SlmdI$s41&C}f(~z1Ba2H_ zj_(&R!@Inn$ar5LlV3r1w2y7tl2fgUJj z6JgYy*U}yjv&wQG5@)z$9v{Iqp7zpC(h6IG(^Du*<12ZYn*cRxPwojNzv1F2?zetv=9w3p9M^Q#&PJ3G&53JEJ53U)V-=VyI$w~yzm zVJT;X8(lgrZ%;=_{D@dvS0yD)F>iO{a;L422-<#)1c$Ah#AZA%Z5j*(e+hH&8w~78 zO-yjAiv4h_UjN*_K!y=rKCfrqxm5y4{bGv~sPKQen)iOR^m+VKichd1 z@T^hbu!B72+Uo z&#Rxl<}-b!B>2gagk?+iRBk8_|cmWTyC1 zO~iX`Kb<^}2)YcyGCZos0@gP|*<0tk8w1e7SbA60D1?8ttQWJV z6B(7}mPg0LPY_*R)83fyW14B<6~V7(73)nT<0<4$g1~%+YA%& z`ShB2z!kNH5B_Q@3^vkDC81gGL69T58kW+KjwQCq+f*xR4Rhz8yQ#f+5ST~SY$ko; zj*eVZjqmL*aYGPSZF_X73rFhn(zg87Nz;g@dH^VBC(iFsDo7#erRoUBIBXzh^=Dt@ zjn@tL=z~ls4;;Ar>b~g1N$hxpWyt<{u2#ri<=LuaQN*4zlN%WOt1czSh*Mz(0> zDdVo#SrLelWeX*slU|p3L!$@TL(vz5ui0%nJf2dq4sIPOyK^NqaU$Xy>hW2=Flw5= zS2*=$8yX+TP;*X05uBQ_nlA#xoi!;#qTF=t6~1@XoF6YBj4wkeO6=3ciilg_Fbf|| zXgKbq*Ln^`*G$@*m-Bq@{AzTn0W*6#sdxWZ#Rz1xlg>1Y+UA`q4jOMsB+Z|p-x;78Xy=x|yXXE*lczhEl_ zU9|}6_6{y@D)qRtA5{&r9|VywHe^ZP>YbjeS9~gFl_09MY7|(qv@P5Z^gW9o{!T2$KPh|WJVi=;Nd5Ei zAyHLXYu1s8?&q9R-JGD@sPY{9IgV**>~s;CrCLVDPL00(+Fw5vVU7XsIVpYn$OlTk zJWm7b0d5JqCG}*HH?|rv=0D{gCtLj-<%+eX=;f@cWx{DVH8~9Fe&i;rRU5onklr_I zhC8iHQ(rs&?jNYFuDyhlJE{lBYJy+MZehYV#Mt_S|LXREd}&&jIyKmhT_ z%Wc3;;$q6d{|T9}!drL4zl-0u#qJL;LY%|z4&P(#3`SPA##F{TE% z{KoNeHK#E6*!A~+5gtcf z${N{+LR&w^%1hbdeOg)v`r&=^(nI zH=wb>c^gu;-qGIV8`|UqEoyH|pDyyGTWZ@kpmN_x1lL~}y&PPd>nFk_Uul*G{A956 zITo1`7YCyr;v_JSYM7eC5YUqB5apx~)WZ;iUC%FR<0suRR=cGS5SQjhBOCcDvokdj z3*GI_zfDi#?+3b9)vqN7)f2i~F51KqBu=exS%==xBwp5W@*bF7ReTi32tx^^on-%L z>f|{&wk-isL5nE%NlUlvQwgm%c{DA3Z2+O^kD%0n0rBpip?04}3x!D?(e{=89Oh0RhD8`^43%<#9<(_?h`RaVYn^UE33Nd|ixHwaJUqZdDK&2bX@Zq(a z{ljx+B^XaqB^Y<4KO%k)3DKBs08bIs>nr4)qTwNRp5@_UB}R}uns6R!ZB1DjGyIL48_3tcVC8rP~>i z`ujAkG4Di3q%q&wAw$hG!MU|UL9HV(l+r(ITCa3RG42Q;%0i-yI1U@M5BD%rnJD}) zrE3|ldDx2#l^kde(dqpS3W>0MJ>TfDt`k1D&2ptiA-|o zrXRK>Ey?`JK&;7$S(4<_lyDO@V+~61^jDEH3f%Zgt#6Q~H1rd_wPkzOoS#N#gKa0q z(&MQe3SpM>(@VkhoSvB+!_Mx*#gtfejDn?vufBHvV!#a&Y^>{CV78J4%SyJSDEYZy~KRS>R=uaQjfnbJMYNWFQ8N=q0J{;M<79%;CU~jM6a_L(evc=^ZO% zIE~L>#T>7E4Xk^Fza=K7ji|TaVZqXr4(I*I8pS)=Ql03;5=aAfg~oo~?o@1Y#V8wP zcfI$c0X7rb1{B#I7+01uz~R|Al?sLNPq98RRxEa~)7I1G`^D4do`!0fTHtEQ394_+W#Ak92&)1Po%%x;bT&OX zLx!l8_`q{Ky{tVAi`mE@;3L{Wn;5(n zh9OW-O)Ey@#oG_u+%j24z|BwT@OB(LDz|gg*OtDmL7J4&h$M&=LJ>p4ocqT(w}l~O zZDitk9Z_%folfVW@#Ez{^oGTm3!JX4abqmd_$_G?P+b8UH6sZDjW2-4P<-_-TAE=W zX6+=D9!bfDT+ZR8Xo&Giwip#}C8t76$h;w5xDr)Gxg|+d>n^(BCH&(hq&~6VqnA;yl+xZc;48 z38NoyG~#=oU?W_)S^gZGfi!nM+7cc(R0JqTlYT-q#?!lO0_CsNhfFgM`Z#}OxWU*B z2lH3&vd*A;A_*~#-r0RxC(9nQ-T>izD<=C;o}HpY#fK5f97TW&(~4;dVJa7Iw)X7b z^=ySO`^K94N#;v6{U*rRf6{yp{cFmclbwiEb$6qXmtCf^_g+Hdl0?IR@oB-GLD+^1 zaePB@JaK%gPFjX?e@3I2;H;3$^Wx3lj<%sWRb0o$Bn)71@AO_%KUfh3t)Wc@qls%! zc?11xKuo}H4}{#36g#aHqTvy%;HqN2<6z^UYboqacLq(x=k-AW%Hs}bCkXalu??QBQ~Z^?XRiiI>*)6H7yXwA@OA-s+!JrtqFDoWUwtX9=9zTYXoj3{UP zmI@KQLGqD_fJ}m_&6Zzbe2|pBOC$BT7`H}9Qw{uU_LOJRXY5hGRwY3n>tH#-xKiRj znO1$KA}Tou{MxS34L4jGPDTWmV(PsTlT0aSOuAZYx5Nu(Od2~O+4}k0{xBQKs=3J$ zr>j&`tO-&CBiS4smq^{&=aqQbmEGeHZz122@l4tp*E{^pA!ey-+uSum{b-|?mZdil$EGM=z=%{QSJGMAY z==}R{K>Ks@MrAQ;)S1#;|!$xAiby9Jfo4B@g4@yQ9|q|jWyk2^1eM-FOF*P?^cc-0_CUh7kP zMNo!r4|i#A#Eqn5ub4j6r`EX>L6e6WKLlZCAgR1W2yoC8%188zjJ6XGCIz?_+q( zM_g7XdZm9W2B;;@N)?NXVb#n^V6J8B517M%mt`lPrCmrlOhF)OsasFi;*Yaap*n;> znq_A5%7hJmnRh+ipD8wDt})bZ(i+G}jTjJ?JA6Ho2zT~QiXl8)mViO7z7alb@L@ZQ z^M?6V1^jR2OzcQfD|AR=EVuM*EH_>4jD5)V8G%QX)|E0f#3;MP=I7d~i#vI8OmBOq zEw}o&5)I`%H8$#4$&mbR3qHeSa-`RGTc~a;ANs~XIO;uh!}y9PwU6rd(?1V_<$vfE zO*UrjjH_^$4zJ*Q4H~oe1VT}pX&@9tfwB~_rFSzBcXms&Ty51*^P|~| zwJy7bb08=eA4fIMA4qDGL}-XC+98@t!W_RG%$<|K%Q~8^rO(P?PVxF?a8jD z-RE1irBbIiRlf~nOgGL|pSCw3i$}%DOcuTmTEyucncs>Ymkiuw2gDq< z)HdZ#qX4x(#TmPB@zm=YYRE@Y{J-O?@Tu#GeVF=st`r2oQuLNN@ z++&B7o1L)Wd*%3s>?I}tZ0=%NtPKkN$-;qD%ghi0(W~JOeTXQNW1G@oRGEchn5iLR z;=U14{AY06pt{EP>0H^@eJyVFzsho9-7=Y}R^WkF-vUQ~X$TEW!Q{uic{2XRIyj6puA55d*Yewo$KPoFM}65W{sr-UN*mxFLH5{-uzhJZa1?ppxp3^4CpJt` zz}%`*yqO)?P2cXxe4q`jpJrg2@@d>Ye@_2&{TM!Upg|SkROju7%+n5rP}{{AXkADQ zgF1^!p!s}EnL5i+(vl*$c*C3B$IkH$yLZj5XdX1Cr{*uWGUvD;BHo=!p+Tvb-ik(L zp+Uo#UYHi z0(l~3cv)%I>ToT$hB1BQq2h4AuFoUGS#ngskmRKa5EI;n4|}*tLO&(kvo|2iNT*CO zTUXGEu>fL10GLM!;W-hj8k*PZkGpCtg~nB~BbO@V#aGW46`7Fyx=`UvDdq!p+oDbn z1fwNnzy#{Juj32=&=S4d(!#ycv$`k(Hr1M_Zj)iDk;1;29S6qkuq<)TzG^WN&#Y(Ji* zUe|6a%j(c9D9e^&X`j+V+w+sn${&e!K!0OfPzGD6NH42Qap5=elZncmmKJ3gB%)*2 z_$D3YN~08GQ?Br!8Xu`M@7D8Hgz>CeSRIiWJtr}y@$&TOA2+1@ z%yp%yZQea09a|oE3uptu(MLaWcM!soQL;PL8C?l;!>}o)0~b9Y^NOGo1et6<35JRS z!BnB>!JXn1K&ifHKv|YynvrM~;p9iIDuP9F40Ok&#>B~Lw$iK4qeI8($sw^OY?0#o zFa`D91^0?%fn1gf+PA<4zM(A3F7?0qdQzCRD93lB ze|>JK9rjKbG5ny>9h>lkLRCsc_@gFGUS6pB&6;3IrGv5cCBxBq?tprWd;RhdI1fVX zfpiNj{iS+f>3ac7e|a8Q`ZWqU>D4Xp5bm`^UN(btRNg}SGGhXF2$!G2wugn0EX8I% zH$Pc8%nqjm>>S=Iab4sZal!V(@f-~+4E8jB8{}PtYqOrPFC-77S@?&`=^l~wNjAf} z9Dv;y^L6&Ax3j=p3BS%2nKm*lG)tLIhx-6?su=c91mxmLkaopbC7gtT|6?gllU&EC zcj5e?67RYTWIi;@Nr*dB8=hg;?zwzRa2%gmV4PnGHB4kWJ-(V*py{KBH$iZQGifGp z?<2_&@&E?w#f9gwlmO#4sfa!6Y>EFMOx2At?>GS^1bCXGoSxinU8?J!v-U-*BT>Er z2S$)SQ~hhHZF2Qj@eLmMoVQjZ$W3vea`3AU4vkl+YWtE=kUvUIVfQZv;V9L1B> zO1oFN$f?&^=V6tLn-Nh>{=Ahns@~x0jW5UdllDKI*6D-XMASlnF57V(fG$lWiTv>$ zoW7c9Bna`ia*ftcu}G2^Txge+y|cBn`F4bSV4CKDzIE5mDV7@-EO9eVh>Vt2s3|2v zfLbkm<*jEhZ$cpR!*U4a-V(D>rEk7vB|{0-giz5# zN-c%LO!Q0B8%ixh!c}oPyq-M!=kckNY_x-vX(x0-X4(jLaH1zH`#u$q6u8U%G-*}* zDfTHwx}cGk@f@LID$fJ=M#{PCXj_fxc^S6O1E%waW`O|t8O}yaNS`j4TXcv*=X7tQ z%=GzqdgYAadD<6rwe)nkJyQEnN|SaE%hALTs5m&#JjzTJ&bmRo4KJE@hSAYSP4&~V zRG3^(%iJdR)1VzEMln@3Ut4>4g7TQg52OS2tb-s!h(|BS?HKZEC4wZ0s4NB8lWZh- zqt$h9dQaaolT3H>-Fd~PE71xu#PUdhTzAP7(3A;6KRpOevCjNT=u_G-taW906mv_6 zrXQDJ{m$VxBioN)B5QXUaK&#IFR)}5*^D{o3D;ZjRvlG5Nw;6(NPCTIB8H|+Tei4R z>f??`D4iWQdrj?*Oy8QQ_l{fN(PHofw9f9LC4xZ0$KY3CNK9dV`zBXqE=>6Nu5a= zlvFjrmk84uKfBxoqqxQ=|ArT*M0`{QYNNp6nw5tU(&3XH&)Wjb<;g;+<)ll0laj23 z@+AJ*D>(0t^~vOx3WB-IY=NLI;(ghsEpZQ&0NMtW2Yd^{xoHc+3I89#JEYhksYZC0 zg9wA@DrHkaiIbt)H^RR8rK@jZ?3x*8n$Qc&J48OjA%BRK#`EPy9LxugjAoosA+tLq z;_wDCGLWaC#~( za|d+wI5rNicg~#*z1X#dYck3x(}Y%&v82Z^p<7e8L)i2T7nvoz2mCKE6{}uHn@L-$ z%q=2Km8%Q%f4{i4sM`+<7!aV@Sx-<(=CWbZ53POSs^)fwSyo}jD4yEXgQ$DKQh^%B z^mEzP9SvPuQu(f2TbB87gWV|NTw63X*=N$-84w}q$ecON_km6$POcZr$UEYADYE3N5a$!9H_xevKrgE9R-z8{m~ zmUm}<5S=99IDh*4nq!4H8FxAv}3D?BAv3Yl|eg7Q()@vI;d>8pkc!*1t3_GntouB*y9|^ zCYm!1!4jr59Z93=G|^>PDl^75OQwQuK+{fQMWvTh;9c9_KDXJo3dOfRW&g|h6(|Oj z9l`VjFbvovVeHh)Vci_da4*am!A3aqb&^98)*njqM?5WS!SLA?xqdGqwH!G-S?y!( z3}W`aO1({I1vetWy@nTZ!M&MYgolJs%khvY&2^!IZ`8w6mg_>~dMT!au^fnhLh$8- zd)aw}d>Q9$BzHJ4tx$dsn-JsC_G$5dv}T?pdx)^DuTRzc0q3ABXx1f(`TMXxtj~C6 zn^K7$!^CygwUB$$50d_?mn;uB9xLq$LAhQd(X&vD%t^32*_Rxnp+mfqSWBStS9V=$D3A zgcU+vX2oshdRhobnkG-M70aQ(SPmB z@||*0sY;OcQnssM=Z%lKWBYoFnIqRleI*~VZgle!zvhV02~4ORgx_)mm@zyto7gp7 z1M*^AdqBN$3<_BXb${XY9?BK&!5=x?=6ONY6XZ?vig%`=ce{Pzx&|r@Y8b1*C0En| zk|kd!+q5&CCR05DrzD^aa7uE_9DRHc7Isj-42Efl^ zPdt$f`7;rOP`JJQHFVVamRyk{Ruj@<17`aV)0A83dS?K7PEfw0XQ{4%QG+-+rx0&i zOU*#VWRoZPB@EM$Y!e0F@cPXS8g_7!HM478-f@kR;p>kq;_Y(ai&H(CCBY#iBjI9k;FB%M5yTdx`q#@U7r9i)VE~*gP=-Z*$V#$ z1VxS6>dNyH+&ih$|0Q^a9=85{-wdd=LN9E261n&cZy4LOGzy%df&^C$**Z& zBS03#ZTzQFh@lROn@AJ$*gXB;yBOL;ylA7M+@LXp* ziP`LiBsOLhiV}wCvY0K7ULe=ivQUrEbI(4PK}pt z!KEA%=x3d6+9sAdeL}TD);VKb$MTruk(>7o0nlj%^@<$U_P$x~vRH%LUDL9c^ z&qQm&11kWUFP^MB-&$94)%%A$6J!QNWhsP)zyuiu^4i%>IQ-h#B}z22#i_Q(S&7_a z2%)K`z!!yN{Q;ESC9;pbC?I!VoT|qqcORB|O311<;Q_d?{21h+eph{39rG1Hk3SXx z(-nIncYxHh>Hbc==GRUeCde3w$uipq12AzC7AyUSW=+kGl~}}YFmb6HPJMY9`NR^T z24LmljHaBLa5zHYdREMs-LcW9wxT}Ey|g~{7UcG6IlX2L+qwGD z5k5x9Kp29hupAJUw4-10a7dafwOr2z!jiCkKs?0dpRgn%5(A*C6{i>MAr><>GWIWn zZshtO7&PTlGfU2Q1)dr$}|RvSI4N7q(ZBkrYE@yi>U=0f>c$I64Y#N zdR#2WctZP)Ekp&3Coip?5I&FJ$dx7{#{^E!FnAcCHT*f$FNlL}#}sV{;Srq;FE+2z zN3m?;icdzwH)9lRA9;U;!Ri#24@oabbyKaz63tLYLH(-0L=LVkU}tJ>O|Z($C$u$U zq#IUp2M3A6Yp3B701hlJ%eW$FYTJP)AB10!XjazF5{?_$Pg&dsxUdrbv<%Y%?YtOs z#}?4#MVe@HJ`GT021{zMC)+4Oz|s}1e(+_r#EoV#>6!j#N&q%6|ZOI}@S+LoRt`$Rz+nhHnNKau>jm?VSLI ztOGD)?W2FgSHon8!eH*v{{IkUSI+-RkY}DoJ5CIIU&Lm_4*3jdVumu5pGI{L_;3oe zUW&HZ_20f1q0teh1Y>Ps6v4stt!JetDPSTj8qg-zD`Ae%RAD1IULShP%uzFelX~a3 zxHUfW4S{Y*7sDa0XaALiI4bBIZZ&@hbJez!QxoS@O}cg>QWGUv4U$8n_sC#CH3 z)Hb;((P1^Zi=@d90ekYlZtFhLqd){vtEVcs9L^q7DH74lCU6Zn)nncDUp z7w2*1%cRn9&GdNci^R}qOWB%I+V;Qfq?+l|fD7%F0qzxoPth9o7U{oUQZ#XDml@Fq zUZ4xbpY@F#=GZ?evhG$I*C4|i%`|-=d8536rv$`@q~6%WtV9?CyD zw8Imbyk&U5JC;{LYa&)-8zGt@-v^MJUnX%zG^kS@ufXXo^Dl4?vvp=o{7!QPVtH17 z_JVm&2W9WzS8->@CP8wq;OJotfa7ToKsX);#~T5Z0|6-45Covys1E$BWjsehzdVfV z4G?|5m=m>^G50LsuDox-9s*caVizSj|Jv#5X2Py71H8zz+Oh1^c9ICT8v5$ zJE>0$JDBRaqgJ@27KB2r6u%@z*LMfwd(1nIRwurBV=mGHq4j_J@ zXkSq(DOm!znma&1SZORfy?QYm2MCG9*HLok;vc1kMBg36O6mpERui{_ht>RhC|~s z+t`cuZ#HaVeTTwcuA2d!5XBayGo#+$rxoaTR|&Y7G|JcR*L;Z;MQ?xq{!_*F9kMYt zkt^`*>UcJ?IQbCmZvcL78(GX=tKDC}-P~H3**MNbc+Ouk_$I=ZK+)spv>9mhQHF4H z_U$KP^1r{Pq9i|^$%Z)@V#4&JIOlnL3g zH*o{1ND%m+x&bB9)PXMcNvxRBF7EEqc5tB@g580fLES8FUo7XSBWE6=$E%)$3X--1 zed;}VN$O87X*3>tNt(|t0r3p|L5lq!9{DGr8zFZ&j_^5znAc#60# zbZw%PiSc!}id|n(U)t{W2JL%PlC@jP$PB1nexH+&&-V39O^sqcj#)|yA|HBw+j9|| z93G5N)07e5G#Y&BW@rt}p=lJ6~i2 zI=o_EEd~_9BlBpn#yjNA53)9k>u;5SMraYr#IJ~tTQMyO>XrrNbDPh&qWIfv5i0t# zB+J^dU_z5Gkp_3nl;E>^#4Kuq@o|a6o&|0NwT|1->`v~ph%XiT=W{!0Q_Cbe*V(n3 zDc%Z}C5U8*>ls|iWraM z_69ECND~ZY&%GcrX<7eD6B`CMiq7VURszOK-Os5#G zeMqE0>j`h>&Pxq%W=?FnWDiu@fO&I4R)t15Umpb}!Q6_{+Ov%d_>IA<0Q|qn0pLFf zPUCy4i%Lqkx;$rDAga$7Rx*P$1%cD;H&N5DsKKkbhWi9wi0LXp)6LeGdq0e8-QPRs<=%i{rUZRW&OUOqGZpGKEmK zaHY!LYx)uBm1lo*NkA;WF}^@a9V9keqO?cIq(=Ww1`^)v)(ySUuSk(2Rly9%Kb}UR ze66JYC;td^Ia&8mU+=FX7(yJKcUZG1NBS#7X3y-OPDOYi#N#dsY4Tum(HNv--N??a z+yg;vXtbXRySW)DBBLETG+=YGAKWU*$GV4=4FP!~Iw$0YkCdUfUITF0+Ptof^|F- z!Aj_RXk$l?iYOB!O~cHQv@RlAR9>)Y4sSa8siW^K8^nn|q)FRM)*@OfRnM#3* zHyf&dD&9=dODWL~k+X{6=DDB--moqFH{Efi}QPwkeYQ?TOKmdC)g}_3>?k>r6dtEJ+D$S{v8C zzIlhz<``@hOfsPORrlr(pwBfm7AK;SMRFmMV0k11Wco-Sy#W#32VsU;PRr(N5%mfZ z7H@V9eqS_%{;}8Xba4C8djz@LHIckx^D}Sgo$is-9a=ggZu_hH^X_G?#bEa6$)e`X z2uc}y3coLq1q4(a19g!;9Ul}>=XD6Z08b4Ow7(CN1`54aT~j0iH^|8JwiBy*hKYi*>AyV*67u{-xXHTb1U$g z?uvi5x|K6!+O_LgkfIw@ig!p#E9EAjkFBauh-?2^c>tyGB{^f|j#s7byPM?~Zh3k$ z<*Kv_CE9Ts`xtEVdSx}YzL0_gTH+&S;TnN(aJf=4;w;hv2S^aiz&GOkEq&Cwu7TXwou_8fm^s$|W5< z*cM=%)ubPf0g3`}#9hd*n^QBeE99m5Aun`jgyx!!sP-{KMOjh2%D?0lhuHO zD@mGT3DiY*MouG#Y@|jd^{KxYBP484aKm8z6%j;2#R!<~!3>z_$?u5ylACBJTY>>RQ?Los@+^8`23sH_s?9HFfWZThq`RTPTauHbm`?szC zZynNtUZ1}|epabtb%bs5$>)4YdfeGpsdIg%o-;A-_G?7=qH;<)u>Wj560dT1Mnv3u zj`P_Pz2V0o`n0djy2F8wKCF-~adZ>qnJInA(%n9nZIxn0_03#mn?epNyk0_}7Za3F zlQv3F;Bdi1J0;ozY(Xcd29yT^gxP}LgbvDASB?(!_*r_w5Q!;8dKsnw;oR%M$oSbra>Vk3>S6SbnIbcV0`fI!0NuwE-5 zjV#IazUV?$+t_nQ0w_ybD;NCHXZElXuBnSz!&{0Rod&PXs|}phYNEmF!7*DPOzcCi zr7b)gHuas8&_ny5fE()8B*-Q~1}tB)G;urkM!gEiHRuP3bedA(cL2w`k~@ap%>g3S z0g2?q5>B3I>E*4jCrIX)75a@Mpf4OON=h=O_7FKKc&it6oh$2xJRmpo)%l zA9@QNpnRqC38*Y6)jc84mf!MR`e25ticw-#D2c^|@2ibYfl7ulUO!iY5d0QZdPw&~ zme+#u+(GAsQ1u6@L$2IAuaR zLzEC+;^)x}?B$y}o5Vl0wTby12-8%#IHXpp+uLbY*h!pZRtWlBr@)V_D;UPdqxnN< zXNz(R%`vMpURFDy5QwGJ&xy)0;di`}DO$seslhpQ+kGJ0$lApQ83D45ni52gap6CL z!*x$oYOYZ`VHFK-Bo!?`PnIu7u{Vxf|1T)Ti&?$|(jZ0-rc|Feeb!yrp z*1D%lgqh8Aw@Ny>&2vZF#pqs70p0>^dJ)43NtVpUhVYY?Jpu{c1xanXKwyT|19Q4b zhTAD}vv|-}59^NyF>Z1~nY>B)r()_o=;k8g(=g)HO&Ev_KgrFRY&{faU>{|OlNcPtb){wXp(r;5soGZ( zdC^Erxls%XjPqfPh^95w*m1I_Ec?jF;M&>g^}u9(Nfow@z>Atss_^&plEtv>5lS!! zmeEkIr{Ef<`^b$J3nCc|p3u_icgd=nG3Ph|EunQ{QDL`-n(AjG8%Rpo9x+nOfhrQI zr;$t;r;Di@cp7zR6o8T~>gh2pOJR9Ge%FP#DfJe;hUFnekV0tuG!)>V4}7puE%khL z(ES0hodz8AFem_QYXGi`3;Pe)?(fBylD^L>V)_r*+MxVbu>H88)R9m^u8gc1)4`__ zXjR066NBps)5JX8gr0PCrtjdY<4%czyGB|imEzJ2Vh&bNK_oLtvXRKj1y<7`#)8RP z^<-Ei3A$IgM!66zelggzN%V5w=_<*rN##CmX^e#NIqV-8cksYjcnpqbQs%O^Z(o|Q0d&JjiN8k8gyr~q5)L!Gur zvLAS61yr;VVEs5MmYCQgg+_x<{JTBYe#nUyDt0B4l>JP>t`!`vV7mO5hFsp-O6zwEZ^UIoZ@NSo~V%xBiw84@fiqqd)ooU2Wq3oiroQ|D-nY`k4P8)g}bF`8oej z(u^NA;%Qrx0w_%W6dIvVxxSXk6LZjB#My-)5J5Vu-9d;eBM)c@1{uhYAE+1htLz8!wggD)S;oQ(jUcH3*z z`*?Buykh*V+t0hp&)56!!_%2@Zve{Q)7krv+gqO=9`+$+pB~Qd-fnn;@^Llkii~D4*uis zd)D)NyvjZTKi%ib{Z{>#uk6z^WRhTeGuO#j@L>|>?^P`%r?${&CzZ^P}M$+0QK!XJ}it9}zH{>uA7ZcoTgL}3mB|A`avrb%a6 z2uZ0E#%A4}dx6J0#ED<-1=+0oOQ094`P0D06OUd!kB)6tp)F_pyi@+znY$cm>!;~2 zujVzt>;RZs0P_Z5J_F3WS;JM%*?UO@nH9hJ^9;^<7L@z;X&Y3UAA0a|FABPM zPwe{JW8GvU2;7Bf_q`PQ^{od#`p&D>(;e#Drxnon^QGU&|9(nXueUr+Q+xjnm<1lr z70@m4oL(D1obmgCdrP-jLtZ~duO1vQbQXQ1_fMr>W#IK$mYNBUY_KvZ3*Ys?^Zj$0 za7E(^dhAEe*x>5)sDf==Y9Nvhl0_6Z`rGbx^F%m{2gXDVtb%J z=Ih`2D-iH!*tc{?p0g)-zVkB}zBe5G)>eOpApZ9BXU6X8UhM3jn@C7vJk9caypv}= zgLC(yzy7(;-6zq64HKQj-?q&ZR!vZ{#12eYU9xRc(B5boH@;K(-M!ECgukdnF7bwg zzj)J)j`nT(5X;p$Z@=4A;eQvgpYF%e|5k*fb8U^|3NJZk2;+bBah^ zNj5t5)tLj1ng09Pcq_X>T&PuiBInP~;TpcNk2;U>^)h4UGUX_W2uzEFqN@IF#*vKj zXczCNtjolX1UO zU7u4czKqPP9NIMh#OS0hostc8n;iW`Q!Djzv^Mu|=gaSXoua>;j|cnqC`hu;`@b7H=KhkMRnlukpDaa$+n82Za>^XxXv{x>yYCV{9?*NJ6Z z-&rhQ&t!)gY3aGLj_WD3-~K6@dHCo2U%^%vn&XY6D~z>{xv4h$ONDyeJ3gg8V0ZB6 zc&_<8Yw)3^bvudz<}xazFxtXCCW#{G=g8og;I9!kx6h8B zM<_k=EJ5k4lcr^-B5ETIGj37aS=#9wzmfNqBh<)Pt$#@2rIXk26XI}Huez+o@T&|^RZ6dbvtcN#n<|<{M{Mw-07O#XU7}l8mHG*CF7R%6?FL%`;tTBD- zzDoHdR&*}j>L)=CgGURzw(04vZzC7>pKH45iFBSx)9y80p}RA@$v~>L`n1DXvN_+z zT?fR;HGEy*Q=UyDl-P0Tkt^)8MtU-nPAkX-c5j8gEdJei%FG8h-qSLGBAmib41c4l z>aZnL@}|iy`KnQ!q!c*(LRj7hpE08@USW?sLK|x$^*CQ`Rj7pB_}EiDjbz~Aclw4I zzyjqGRm}63v0BNl?d7ITpSEHg;eKaVCp~tAP*j3-`Ak++95bub-z9hBUP`Sej;X*2 zSK@9Ub2jsk^eYJTe72Ci3f6s>*o{ku#ERucxhpoT+wwVrnR9qw!7z3~V(R$Ph!`PT zD`-6W9R|pm<->I&3TM>`itR)qSrC(W3)E$f168+The$UIHnc81i=j-mjB^bGk~X6( zd^Q5@0uQ_WVguD&@sek8bVT)tC4v_7FK4Ge_~wfDt#(m`CA?908V@Ue)T%V6gL`Sc zg->&YWzlW(JPUF5v?@46&PWg&jUih(P5sU?PV~2{!pyAHP&aAQv{t-7@Ui%^WV5wn zrKG8=*=kz7q&34vsu85?u8jm)G?k=+>=1r<@fEq zJCk*z^!NUfa;&BhKUJl0mSq&frVywglVSa-A?6)dAb9cnxeoDJx>bt72fvI4zT z41#6+C`Nb)bW}DD*(wjqS}+^2Qaw~6xuCH{q zY!*1K9B41I6A+$33Y8Qa7Q_0+8y?A%n}hF>HTc!xRFE*crq;}RX5}{FrrS?enFtpQL5wTnGy(veYJJU`*>gCw@t;f0&*>Uo& z;n0jP2BSrpBX3#rz^u!*Ki1~}p><9K>_%P}Y*+iTbZzsb6akRFh?o7u9P($w*t|FH zl70~@_wNx^;4-Z;XZNW;e0uYKHK@Ij$G(1Ue8w%@TxUc@ZdL!PIDZc|Q9E)LvjnXy zNP=XL24C3L%9}ZqA!K*tBs$1c@ZeyeqBC_DSIx%UdnANm8jZv9PKtAr@GTZ6YedsG z1=fR_C1Md<(1=st7lwIgp`|^X{YdVr)`?p;y)){PL zu}NzIMIvh|*D5Mh|E^vdSUecoxq*l!34wDI%*XR)ypBXIU)-W}5@M0vL*$ z^W)koL>9O<86W<%AxCs=hrZ40mGXL%;Tex`YYhYzxmCM538`CX-A-_-qMnM849O%u zsxD9C`9x5-NgI<1mAM|q+5H!3hs1t7dvl+m5d3M@_m*=KoSV2!iS?`z&EL!j>s=A7 zo96{)b$7lD3UFBNNSM%4xloxsA=U7cG_E=Xz2D|3EQ3ZhYEn6oPwPkRpHk>YC7O0y z^+B3xNIj(WU)NpMg(}Lj)Ii{b8&rlyBbqeRJ)VxBF@+b8v+Y)CfF}%5XD;5;hKIZK ztcGW{ER5@#DP^+dM6wxT_7mIxf)VxJ#tNr5qj@1KWrB6svqZVHLD|uo#qQI4X|lOS zR>ch>35W4iJh7iQWFcaLkV0khMzZygeo{rs;>UE#BYAYkl#TPbmOgS&lX6BQTmRy( zD*Htj(7{(8ZE;ITeYgLt<`>r6X`SUz?_QcqDQ(#g$$s5UX6Wn+a`8M>LGf_fA6Tsi zqDUkpIYBeUboa+dDOvp~|#twup^e8xwzHlY)k0h(K{EyuVc@P!Qm%>~f46lV7& zG~>Arf7m$M^s7jEBX%7pk58n2as-#{5DUDsD|+Af6YUKD9gI@$hj*x7pRpWWj7{^% zE%QchYD!e>N&E{G$|mELX1^u%hr>xYl07~hcaC;*+@AGriS`I@ZNBSys;za-?=*KZ zBIx%V{pOu;H}m)LB7rK~Ah7V`8~+yj)eNYN87ATx4imet1g&*ikJpdlCv;ZizdsRG zNbZ#K(otaC&ljARNynFl!fFmya{SS#RY&J5{!Fv;7Lx#j;_}@?*7J{64LS2)w~>(- zd&dEcFNbS>2h00ce-}x#14+1Wx2Z^0thrb+G{}d(X0ivA#&$B~4%|EPHQ-{A>4mR6iliFwttS!t?{sfmdGH zpSTdGZihsdi>7R5w{s9&U@Aq^+KAJZovL2G$?{sE30`VoFIPcO{IBmR_y+(t>(h8B zgkzfa%?#-o4-!nLx+;nkBo(w`)sc{CoK`8bOFU5hS(i%y8L4M^Uv|)D#P>Ni)2#Jd z=(cNFQX!#;CYgjmY2@CN@>hukNl&A5C1qTa11QyaVZoavzT7OdGc4z-dZ>5HXlKw~ z3H6zcI4R7Gg6nr`emIkdQg2~MZ%D9eTZ6621}iL!>Vq!E1aR)$pOuUv;tq&uMKxRL z&+T?ssgKp&HsvEF1*nF-2xrL4rgd5C&h#!FiB}|DTTZp8#tYZQBSY)xV!}0 zsvHYeYp`kno!&lhMj(Irpf2lLsSaX^?AdZB3>&NPLGb~U%Wo`l*?YE_sbbw zu%UNVZAKT-T_)`X`gvbmzS@jdjskrmNsiucluSFeeud)*g1`xTH9f@#BH8Te^Q!?L ztFb-pQ%w!F%w*R`G#!fZ0i{7j(?4%YZ1s0au3GLF&MvJX!o@7bI+EH@BdsXI3~kX= z4dM1##67MqyjdM>v4l?3u_~YzRAsEuRoZS5R_aN8&e} zdC>~(*b!tp!T@_RWyxC{rMsj~QG*Z5cljf8Q>|Ta*3lw~l~j1fj=Uxd5e&Xt^%Em( zu@*ideRVstVm%OgR8uaML?_swu{n+x6iwf2|AZInjgQ49`}12m9jkVyhf@<7K@Jtt z2?qFBUHrb*Omz+$j9I|k+z}xGPQm!tjvPL2n7_%sLVmi5q{s6f!&Z%lPJf)0+nF^ukb6G&2Z94G~z*5`WJHv=T=q5 z&$W&pS_&Bh8B#SU#zip5D@P|3n7a~vl^>0_E3c0dcC#mI?+(T z^1M_-(CA9KZRs9OPtF*rQ2?s>2>dW_+|^}GQV!Bw(U1HPttz}SkG3jm{;baH+8JTD zSNhONQHUvL>i|V4+kA%0&RRI7KEmE$#c4%q9p2g~YeBn(E^e^ty>l}eDqwMlBv+Vb z(H$!Aq0^)Yer@OJmay&+shxS`m=Dp<$ZiED=m-y(Aiy>P5=d}tkt9*N^}2FUoZje- z5x-UNejAj{Q=52vpwGXKaltvgVJ+MyMb$U?*u=lLZ4GWR;2;PrCqClhhuG^ z`3Sw2vQ?9}7R)(awfq&0En8={?f7TZi=2sH>%p>uBP*g%g~z~ za8buxr7w*`z`Y*l5{aJkdcc%wr4eywrEk5saiFmT#hrpl%6H(|Blsg8mGhx!bPF#n zQRFX`dV91%@;@iMBVKyvy$B;K zzL9TmrB~|IMT!4ZD1Qr+qgk7Hc0kFy9*?ZiP3G>)uI2of8DWWqT0cHpvo_A!g@VL! zG^FC27x+T8^4lLRv`U?U+kZ!6IPRGD(haZphOuGlS>X#GOQ=~J^_`|p?I%jxh*s@K zU{UBUkyKq(X4ujT8_40rs&y*~>z(+6;8MRIX0Oo^IZ$J?1-_q!@Ni` zpM)cXsN;80M`kcJuVPpEuI*Z8$DiUVwFvAoEyZRGOi?O8P)8MaMSqlpeJ^35T^L8{ zJJb$V@3uhIspKynxk6votmTdR-aMIY-7Ec5-=N$GC{^`+DK;=PjsJtM;&r8LW4dv)PO`gqfneiN#GlK+4TIVlaj%P%uKY;rpfCxr0k>?ROpm3C~Sq)lO`zz9SD-AN27u3oL4d*bwB3(>ly2Qm;z@8X;3@O4_0{k8MQs z92MLVHN^`{wP~8au_%4eP4t7BTewac>RMSGEuLtjG<7w-g%JnTrK~QlcrI-LtbqqJ z;WT=K?5i*lIt9p7fx=g8Tais>yuUt6)$b3T%g6kRexJ3_EafZ+ zkc+!ruc)gQJAV>>d70ceJ(@h0LR)cJkBm6GLNeIWkqtk+5@^l-wNyVfGHkNqAs}=T z`-U@l=mg0@#24QU-PaS?rT8-Gw<~HMBh9mtV`XY=-LU2nRrlu`Q;&;3@Ea~;QjnF- z3VXBPy3LRA2C(nz#SS+f}k#=Dk=m zot*O_8d-&kbulSU8Nep>S$0+eEWX{c7B6o~+!K1tt(;+k$AHeU_XuSt;+uYx8|GAW zk%?A%EbK6}YB!KA*i`E0Dp=Ygk6tq^0tZTB)4+fXHU0g3L!~+e+ z`-b@%M;jgKV0D(!-0!9^Sv3+2HT(*aNe$>hS?LXRq=H>a3F~$U?1A1{Zk9r?`_n^l zA4lLWjWSIG%oJvagzv2dymy%&{J{$A!lc<*@k-wkbV#ev2_}!!QJYtdW$#}duLb^ zB*EXEX6$dutj{C4O*Ote%`;EXI0d*5-2|5KZ?_1hNB0t*S2B(w z1k?-8pfXL+)ybz$wne;H0&_IN{mD{ug|w%A>bEqFj;URJJGPhu-T$0A<-P@GB$TlhNBJ9KMgd^mC+gae*$B4$^L-Z>m`-BpwU1+y~dE=KEYXbu+b ziYT{IG8gI=FG95$-jrWs-NH?b+c~>Zg2J40K53=NN&6!Rc8Si&>0JCGb8!ZWUm2|< z5f_p#|Jm0nU_W-@S|O-q8wnVpT)J}5VQl_yM8Vh`$FE6i<+uGAwqn=M{YkHk1Y}fI z^3StMYi-n}9(cckx^p@B;VNJ3Q|(iRk{8>F#1j$U7t}kZPAJ=5gy(JkStPukb8=qz zpO+htM=#HpM%&CdkN!_CAFI;-Ue2z)nTqW1DUpt$%$&8xMhbdvxFG9LG8nBbOyH{$!EjQ269mVD(~R~ zlqsQMw_)A9zoGT#m7$e$Q4-J^Yu0TMw>9w^joh&6qOYOVa}`50b!~$-mT(Ur8(>qV zZQ%eC?eVQ)h?=ZztRFX#Pn9IRJBjPa6{p|@O;*F;wNe_i#TyVp66*~yb${{MkBr0}`Z6}Q&W|m%g=f`U zB!{#~e4%T@!XPm7FeMT8LGhc z1~gk4M|Nl;(~al=3x2RF$N6fe`iuGtz#i5ny%7lh58A#uE~@t17o?RAB_$-3?(Rk; zrKB6AySqV3kS+lgq!Fd0TWRU;kPhj(du9N6f9E~-ocqW94CCJW$<^z-wllM<`ki#~ z*0^1Uje@uvso{+nK$2HH1a$3V`jrU3Q+~vN#~~?G_DhJ+*c$*?5X9B`m}`y&`&02V zxaT#^Na`k!^~f!|X*(6AZMx`Aqd+@8@im9fn%U>?{Y-%5&N3MR3ji>u#T36C3IKo^ zexb93<^}*5eqj740n)|}`_xaT`;;1~JMX@<|3eAFV?g5hZ3s7OmoNCt9jIcAikE|G zHq^86*1no`br!M3WJZb>QM+4~1SDM{AMIoe%R$wl?0G5IXbIQXOZ?((G zv6rq^D(p{n+@<(xDK6Q=jsKn6Z&xT*K$6m5-F_J91dgB%rtD7^*SeEizAR2m8L;gA z85KJ;lGap5MXQ0f^0_al`QrA&-|Wq!Qyt0elsDMzX(Yn9)&nM+RAx*cAt#p=HPhpg zo22QM`ZZX7JVI3JdPTLwaUx*p)cBrjoqL%+rmV>On_sRa z;e%oo^e=^zkA(noq^e~2?eet*?S~IW;UG)8SbjP}90aB{G0>~k5^G6)PS4x%iv!@- z!`x3wE8{=1roX*gvtV(TuZUOVGY`Tl*l1vuQj+`J6G=B9d+=^;V~6>zGH{8;5NiNj zzHWNyhrv>Kqgx_oRDf)3b&TH*~**VGlrmK?+ zgwt4eXno!pD+-K+LyYojWervo?bIR}jc;PVX8T8#Uq_*wlJyk4Wq21gE4x+jL9@B1 zV&RKY_Uj#|JahUSV9?tR$Ice=VDoQqU=Hy z;4jp~V5EJJ%096%rLRHVpNrOX@iRiU_2V9?W+j%e@sE<^F7zi+)|CCGMGnG%)&1PFb)ZCfnsFE^JEa5Ulda-1m>4ovYlC#7`S0hI2g)~b+WLDIf}~_jY&ilK$PHk zAwl~}2d&@e3qO9uOh`+=!)Jz~;)eFMP;sN75AW76xg|WwD_* zNge+}EwJ9Ifi;%s*Wkb^%ch|T`Vi}>CX0JOZL+wxb`SB zejd6~`zu~Xpcor(QKLGN-X+SiNJlEMq`=Gg%X%3~f8gh?HHjyx*$)PA>E*Rk3IyQA z&et!ZKHzR4q#lg*`#2~G`4}$Lw7p#|@q>EJjg~BG_JHP3HuaM8m(nyT-Xe6{e2ue! zrC-uz-z?1;?0++j4prU*QcY!(VqVFUN~R)`1$@K9$WFzGrC*)7MJM?$lcb}>i`sD3 zL^bwkV391sXb?kXncbU>0viJ;2G&WdUwi`SS-7v9Rr^Gy4F|U5SrN$-d{(FYgN84^ z57eTnx;|08YDHJgwT}pyf+^Wearax_bVqhL zk%o#mU^j~07>$AASJy4yt+rhEIIFYE^WGb1jBx7y>95fk$j}yHx&Rqwb^Sp9S{=QJ z@~5p>T7wYX!K(7bN0(%i*p2AX5#o$pyg~dn&cup1hg&csT~2DOOR65wv4%*_+;*uJ(*dCmq`{I-U; zTYX(-bR0f);;_8Y$m>s-)=y5~#wn5{2{L^%CG?GnQ+%4_Y(-tleczCQLddCiP>IYH zuj61Sy4LS=(5cI?Zf2jFI~=OHGp^*8E=9k*I~+Xq1hW*p-e*hs)}cgTlsJ|vydGUl z^G|A+R@`JIU=r=ly=25{V3aaJHFN#ixSkJA~b4vEBS_7AOH5|1aI@ys9 z^_AvgPfpp#;1PI!UqPR3iYfiu2fsj%mA(G(k??B=dwC-}5o=2uYbzrw2NF&O5o-%; zyO%b421a+Dy(|9O!okRnLEHj(RIaFzfwiF#gQU@G6H^BgCI%@hpv%S@)J0;fXJK!| z@WRN-#KDw=iHYH*jGnzY2`d-)vsW)2^&LPD?Ul0BGckfZzgJC8-^|FsfkE}PAuxgc z?x&p$bOjNhpfI7J|BVICzbyOQTDA_IHUIQ_5+bM6(QzT)2%e7gaWI`i2ihAYpZv3F5~9egfA90$oo)x z#?jMXe*9REzGa6VZ`e3V9~+#>bRqdO#&|oE)3u_nTPT8PGJ0d^naz0W@8vQpn2NG* zGmJjF@80HR-9PPHeKq=s397rV+)^pmyxzipMQ*oL?L8N>oWK(axL6#_R7MjLiU;{w zOV0|zd=yj9?)spoVyBfqBYMp~4*#cM#EH57=ZMcpKeuF} z#T~+g)P9H$D@EqoIbt&xO%V;FC<#g%BT7MfW2a-r7QHj&l;!8k`ds>fr*rwe4h-4n z2(%Q6p?c!S4=pYI`a<(diQm&X4#2$dfD4L>RpM`RvQe_5<_RKXHHI9&I#t9XfhVIf%S{xM?q{A!_U9 zEsE``5U$ZgFFtu3`IwLHa^~F(`$1WDQ`t*aY@!-c??gjqre}5O*i@3z9Jvu0yw53H zvVI?O8U;#(N+5`KEIMdR^07PD6vdxd zV$IyVpoNx3N&ihbcOLilFY!$LwVgc>X<3+WA}c2+6N4=9nN~;;1!Cw+2g|>DGo4P2 zdnGp^i0*UslmDTz>2@<_-aG$yN`23x+2d5a7!3(%DV!D)?_YYF3_B4@W@e(Ld~;qo z^uV*i)e9hy#XQCdkVg7W-t=k|rytXrtsiwOoHSIvL?cF&OM=sW$3QTNCi-j12N;Y_ zTi?jQr3R9U5=`v!Fhu&snjuk1qfm+VaLpVO6Ng00<`1-H+=LMfJ-q_5dBNN|L2GvG z)FU~~cHiDFl+-?GC8IIJp7e8mF_)bF$a#s3A>N@HQ7mmlF6Yso<+*aNaaeADVsVqD zBQk_c!FO+{U0(G6%#mw9c`Vb;AveKYkkeYs{1CCb;dj9~FOd%L%ft5E=_0ncZa_aNfM()-rtm1`{`Qbs=+K%@IBPEehj8vRe1*?2%nM!U;Y$h-geCxW7tC%`G zMqN*U-Kk6xt{sFd0OO(K2Gs41b~`fG@2vz#w)ng2=>M3cAhtYud8tAt3}?*m0LPa( zqL*a7zV^FWS7AB`>*<_v*?sdDcn-Y#$#0b0^tAG7?RXvQekg^!vuDUOvVCo-SfoH( z*EU7r;xQ<^ALHJvMr~AvhejXbdpg&&@^rE?@#@%2% zS{vp_*?Jam!k+eRh%(Lhkm6TF;8HFe7F7q%=T3jlELe{Xdcg^w@cg5v$H-6V=7GT{ z8{T^Rok9kh^D8`1Ef)wRKi>MNmBTDfP3_?;y{LIaO*b77Mu8w-tMZ*MZ!up9sY)*H zA(8UNj1u1ySf2)C49iD#P+5HZj}fuHvpZ3<7V4J{DNn4qP(TSAd5pA|O3iUL-HSlL zcIaCDv~Q4ckM=WDDH{fC4cs%(j<-H&6CsUHY~588vj@7pp(?k&>IX#AY?UZJ zGaR^TVm*sQ2<46LXnBDBX@^TTmnVBD!2q{fUfE1V_(LmLkS;f zD5%Hv82{$c|M%w!LOhz8>BgbiSvUcQ1|Cod!bktrpFQ4nTTL(`x9haZF%G|u{ve1! zqQOVo&Y& z29MCj2WMeuOWtD$S|f|O#T{3gw3!YLWVwA~kEu8FMu&nfeZD~FhgFIaoWW~tAh$u4 zm-5y6F2taJRd_cw-RS<+m-joeku!}cVfxd~M+8r^nXm=*2BN>y=CKO4tu~sY4L@#M8pLxPf**5Y}h7N~bHe<>8!RW^~&^({ZQ?$yps-Ksnl-Ef=vQTYE zFh3EV6`s|He}whzQMWehS(359>#)A2>~}mN=Ola0FT5%dDf8Y?t~RF5kp#PA|9QG< z8}yiJSSgWP-j(Vb^FvG z8{~pq`>u?vf~Mi8hYmL(6=#kd!wN5=l7#q3xu9*YbD=k?pe zp3}t%KhRchwU%7_8q&HTxp5+aB(Zvb0h38ua3humo?N*n0flA9ZyQSlPbZY8LSRdL~+sFynE$Q!H?P zev+f(b+o_ITP#&iY>swuy6=6t*PC&*emNj;zTBz9f7OY0b*YY!PIa+We|fPVJaf6X zKjU?E+BM^Gve#McbO$7v*qIJBUd`?s6XEndB2P(?sn*yw`O0c(>`uB z|K{?pcxk@hmF`hg(TLsd=}(>YRvMiL9ja^Qtu7yHfaM&@^)dlx?L{q4y|;e9nAr{i@pmq1*9{%5Wt z!~3c;xc=%Sf%s}0jYHe}l-T=pZl&kycwnWso;RbBf%tN+o%r&2AIM^4~!*IK~a z%j>)|L7@EVDoWsD&TFZc*z4kaC1Xo&cE49gXLa}N>Leq>`&i^6a0=dowrGHc zacH8Sg+hWYfkr@<7xZDv90?#tZ-6Ic6oiHzZmITRv6(h=Z@;;oARDsvNzJwUHR}U? zAF+fo?*%&{iEm;qCoArIA1L!C2Jli;)FddNUf_TrN#cWYEDHBQ$cIe<`t|LmBs3)3 zxjwAGWGHsfS{=ZUxjSS4V?i@Hb$#yLD+pCbp8*;WbzxA!+X&OozEBdx2Tw#SfuFZ@ z{{^DThxK~6nFRrAv>=pw*1caKsoP04atA^l>t^6zO!>*s5SJnjr)?# z(3sbof%XBdMPSna1qZ7((>#BAd3>-dSNte;izwZzf(WoDoo$oTk$fp{4_D8PW@~}- zZNQxD>uvr-d7qq*jL?wxN-Ih4lxv)yVxC=XQ}B;Z5L8qM{HVJqjY|&V&cKNe0ItP@DM8jn$UG+2FZXe2>ZfBAo9B8GkaK1ys)`;tN}|+sL~m# zQaFE z8}d3>!PcHdHUP0Vu}=V5uxeO1N$`+^Uv2HtkwI-T#=#dhgBb;ua)<^pat~|4a{u-W zY|R&ZJ&qXHVyaUcu%V2(F;r%ZmgLb#V4?fSaq59A7wNkX%whm0*wL^7wh>EiovqKe zx_gEc&_V~;3l2pwA&Zg$#%)1%;}!u}<^aXlYd(dnSp}@wLUwP|2L>b${Emul*Jjci zBTbVO20ZO8*wZ#bWgs4bRPV#0CkpX*>}Vv4YjFWie}$UCukQKrWMX%dtbanZ@J+ts z*ukLI5h@Kx#xCF225mtm@=4bpyjgPYa={!F*PQ5$Ltw$L!d*MD3}Pn8*^YYP}miPHTf;7DYE{@FCGrv`_*x z6Ml`~HTYUOuxx}RRAz;*uXU50Tf>?fs{RW9Mp?NnT+r0 zqc$RN*aYd0SwR(NTEYF}wJ;b3smx3Ufw=n}kk@tm&T^{?VpFKqybfBUqK;N5fQZ*7 zuVoRsHh>S<9!f!&Hh74f67ZD(a9F)*7>uihhXI+V(jU;A7lV#9H-6p^(#v36FgQkm z{1=#$lu4Pbj3SZ>gNxg#~#*J`*4 zwlD`%fst&xu!Vg)Cm{zdQBE5D)P^P2jxJ_37aoHg{ zwB)R$W%XAhYj(}axz&>pw}oMs*CAR3N%wY0O73(nC?SHR3(_K09)}qy`Cd0{AlZYn z4HgbyaOCJS*<0jw#72bcd>0&m9$n}jL((dzF4i|C)`HM+xm(h>6{N+QZ-WpFJ8mNV^WuBJ#ZJrjSaYHcyZ4SxtAVlD{o$FM1SFBpsA^<`>NJQU(><0-HPf4)8 z8M#SVCPB;?$iEjLB~E>T}vjLf?w&=|-z zcJHmmoWUst*l#e-KZpgGA#xkfaB7{EB!>QGe5@gbYf)Vzo@}!lJp(yuE%&}c#Rku9 z@O4?wA>+KKJ1 z`NHaxU4tD!f+z?bNN6`uC<`QW*1u*72w3gby?|g+Z8US&6+`a0VrVVpIfNEKwrPw2 zEw^+Bfaq4cPGvCc=tDhhVC6yV?pXAjJp|u@iS^-A*wpj~hj9q?b?p-Z?dN|=FF!7y z0nh!={%WiYfiTd+4MkgdK>kp$&uzR`I0Fc!=w~g<-zZHRJRtV-tEcp7GL2yV#Hr2|p zfHQ!j!dLI-U9$i^u7icFz~CQo7VWl4S5$bx0wWJ z00OXMMCJ_?x{v{bxZA{Wc>|&#Yy;chVUipj>$YLWVB`@lH)=GN^;t^fO#-j+VZr!Y zd6X6-30&tiP$;;?6=2I6zCjs4snFnRzJfnJUKM$(QAHm%j2ml(Uu}7)D|37^UMBH6 zYk{*2KPd!40zc~q4u3Ew!#$25W6y=O9Ex)PBl^`|S4EJ(%%pcmWdN?bEt){xFn|}_ z4I@D;Z~yY9(C^;P|Cc$>U^!xErEbgHNcp}_y-z;F8H{})b~Cs#^*0g%^d(RHy~I+s zpHX0|xHebhzR!~t8PsY8bA_TM2<35 ze>pK*0SYp$mv?e0FrH2CM!D>uPy_h)Uq|E_0ePk%B=UetP0P<9v~vw*0M^E<{>d88 z$aU=sj-;W$hIc|Mkgck2T?~Hh428%ft6T}?20sF;PJ`5Zjif=_@LY!k5CFs)>Z#2J zhTjBWS)dniF=n+*d`JJt!Vo>wsZxCO+4a)%jfmta` zce;fh9WAf0TyFuCYygzGzRoRx!lG|T1|b_Tc`5SXvIgv!K zkk3{6fc?`WOC<;>CIfEB1n{W|fKQQXZ@R0?z=W)WnReG5`Pm0?!Es7Z^h(T)%e=`I zePDE|3iDW_|-x!BOcy8d5U&hd~Z=Jp{h4`@;I$Cwg8_nmlEr8Lu*9Wl*^Ht?rzLfC#xkLU3Xv0wFDs zQ>5f_4T7R4_w;pQ1O|YCtYZyWKvY2a4!&iR1!Qr+9I${i4FT#$l@%-?uhyS0jC8)f zZ&L#lwxYK|wUlA@h09-08)eJ9)e~SoRg}XwIsxo@w&pyZxbyTOBu2z|K8W}|zgE-DfNw8^uGvA{EYR{gmk%ugj!2c)#D0UC zl@b8ZK$ttRM|2Y=fFY@&c_n`X<)G{Wk+R-hNJedO>qGz~3-pvw9=%Njpv3_*qr1VX zhkSLOFuy1I+xlm=^gPe(S}TexYHAgi-h+xJF3?RWi1EFe0mAFj-@A%g#-0F>i_5un zPGe6{woplj?BpS6cFF-xgx5o;fXNUI!xcj8^|s-<+9~AyXSEaek3 z5CrZtn9+gbDmcMG5$u4v?#7|4;Vdw7D1%3++@N6Xe$#S$%SL_hA4zfC^h)68rnX5; zDsuDA=RbJiGXiIHufO48{E(C`Pev@16cjc^;&kWL8M8cdjagf*yN4W}uW5NS@{JTx zmeCJ0Kpx%xx22@8NY}+|5D8}^;&XIip{|b=q!{)Bm6@1+v#?K|3L(Og*#D*jjS$Zb zxHE|H$e#fJ?;s|$ae|mW#5iJK}478_Wow_`#>ZkYqCS@$k~0h$5V zN&v=_EIVyQoRo!tB=;NKn-^+5D5je%8dmwB}@m2c5O}uT@wS55+-QK zwRHu^L+vNv5-dAeiCkM3Sm40rU!9?zA8Re6-E+E86379d_7R|Y?%J($LzBmS>suQY z>(bB@5$ej>xzVIkQ@i)@_Emhw3}aOB`}V6pXDs@cp5785^My$I@eT*Meo+d_jlm_h zp8$3Wm9%aw07)i%gpaEg9snJDVLkpm}rA}D$C zzVT%S2L+U0(}+xVhkUpP-`~eE<>FEKX_ijJQ#^DZB^NR%n`^igXv*36+f-(tRm0OW zn2(~K3GJ9GghSnD=X7pl2wMHR!KB^m_mnOFD=<}pL;wLl$4WWeoKt00u*Tox;L8W& zD@FAH{|6mkwm|+Rxevau51^nY(z7>Duyf3IO${>fVq$IVxa?Oqwz>d&*|H;U)GO$7BJvx*2YG5fIoUelT|MM&jJ69NGt`E)IrdQd=c4??D*xCvvN!lYmasQaeqVjm z&QR}hw!XbYAyDV(9g)%Md3G5!a&fghVLemleKv7*dC^`mb9vtDeRa8_b9vHU?{#rt z9s+!2GbSqdm}ZM~WP$Wxs4i%dV?CSnqYy|2p&zoyH>V zWw7$@S>?mnJD)!cj*6hz1&&lP5n`ZY`@4ux7cbkhvd%V9-ulW5Ut=9CCNGUsi|+V@ zPQKNX*3Bq>V&|6qHxn7bUZAyY&qRK0hdu?ZX?N-=@owc&g@CL9Z3O6OVDJJol4FaB zavqrZ{p2_~qyy-%-d(7Bvga>h_uF~OQv$RNqx|OMKfv}_!V&I$z?3MIgY=MfV2(*B zcYGVrfQD-cUQ3P$a*QI|G$*4?ze-WRa1lLo5%uDocQZOUJ*rq?nTitseDoeT_DcT- zAJG(EZ432Q2wxb+xuUt%9iE1L2bj}w_uSPy5?$Q?HZs!aC@0FV<9-oew-uV(n^QwP zSL9B%w*PE9gGO;HDRY+E9Sqt6=mH zu~Az@1Dk37m2laVSr_JtFO`yczfY@A9i;Mxk0(Dq)cN)&vMmfRSlhy8GK{BP!NYD+ z+MF=z*TeQQQJb3Q7Lgo`xZCRDtu7jP{ss&KoK{A%k=e8>l?mTC9~*H*nvA6^C>Ow^ zq(Be-+F=n1DI^o+P)E;3Q&%rt{tC+-8?Q}^PX|K;uVqsD_^Zz(2VF`O;sZ7IxqjqD zE>mb%JUWtMsRtbsuc2KT)WvtlO_NqF)KzRBsI!at2ma(TaH8osV|8}GEfX2l?Lsy3 zXL=dglSs4(dN+dKp8IS{wJ>dy;SBx{bH=~2{*;uKf1-Z;HM|OiACoRt;nx>jXu1@6 zHJAFf#OCAd)?I_H{^#rAT!LHSN$LJf2pynzY&euF^YZ8m9JS+#@GAcrJo_WeIHsc@ zRD&%Aw?L@y_o^R^*RvgJw5HLCrn8EFrTIFO6R;Hc4#^<~{n7a9@*Czk3Ae*zIubd% z9rDTm?|ZJK7!y#gEIZJ9(~B0L7`6fvgGgVFi;_LD?%QRq*?UI79W^3~*Ck{;J)1T` zXatM-p*yrk*Cek0ttf-`}(4TDN^OF%^w997SGz%wEy< z+H(@~`TVz63FItuZDOJ^1px%A$xo!DpN1Ni+mgRVqIkQ@9!XA@N&YD?0^D3>ups#h z^SQpCUN@f=5(Sm2sni!Nt7t=NX|tw6djS`R{eYOnKkQND>GGIw(h8r1QoUP@tc?UN z?QBhWVqAo!3hK+>Q6Nz$P>w3bldI4xVU2!_)X-mQiudV0?eE5Xp2c43NnRQdlY-Ou zwgtHSB}8hgEhsECDDsppa$@s2cNk^yPfWSW%=p}&G4VDc&t9_GlFhX}Uz1dHZbFF} zecNKC`b%N6>X|e!*-kLd8Q}2CF`JQ;u++l@C(z0{_xP+TiZy$fhbVqXR_;ETlT^fd z{$=*yiImLKA9l7~UeTA#>mu(v|atJd@mNPWn}hyxs1xFmQ-zR|KxqsvgS~ zu-anMJo+^)ckt6cOk>I=-k0Wa6tgVPpzJs4P5#YXGnvACOS4vjd6eBC7m*s$X>98- zj@FcUncYt=FKeEGE-P9z=IM6hU8HL$rZKHUL6?@h=L92}IP;(X6uD^bR?hFzq?=!+p4puyKWrLtp7HcJ`rUl7 zjV9MMrM{8>yY6VZw-D>&Qd-uZnt`V*+h2e7@a$TgdrOv9Jj|^9c0bcVwY^yOJGZUl z=@6c(iFTT!BmG`=$2wW@o0>Z(uM*O|IyjCph^M{I&)*5BC**i7>Gx_~6+2k$9XFB#>rz1;a?;r~9paNMRBW_Gs!`=^9c)nuZ`*^n=2P7sK^Dc`EN3z9^%7=2~o zXwlP?(0u6IXE*BIYab^8qqRminNvC7)f>6VDfL6GkRz$~cZ*=eX+uXuD&up5Fa?4r z`7%nvY>wSNVi}~pR2eO%BI6br6>D}MjlopkSCfQ6hEfEC+2u?=I>XC{6BDVK0^>0a zz2)UI4=$g2tP?fehkhJ`4_n#6XAJ9y0c%N)%>v&jvLpU{cf@BFS&y9=xQAYz2#iE;zK|`DTkXQBIe%R80#Uw=l9H}w-Q%Yad(WEBV<+hq` zlA@a5Bqd}aWLYg3@J7}JrG$?oQ1X@F%Pd)R57oZ-jN$O^Ah|-L`L#6*L+yvd-A~ME zM^1bc$ecLB?vL!uS!APH-Tc%86Snl3J{_yD;2%6ErMIYz!qJrXc=9A2l!C}mvL=w9 z3#zXAjO|EgC)NP7rx*=%A9sip$h5IHD>#=JVa9z#XMGOe^^k3W)a3(j0LE`*QsHpy z&tiWRKHw)UcetPH2J0^>N0XuWAdiK;d~&{~*9#qC8r^@xA>$HjZhc&ep#6%8yUBn3P+gfb940|dQHZY5&rS9w$SFFLeza~ z!xoG$V*cW##Fa-1BBOdDeXr`d*@?I}xn=Uu3-9r6!DFzSq&9!+L0|c1Hm^aJ>eNJ4)i-?_TYN*m_ zAx=5Cn|hI3h^!Sh?OrAF4y^^EiY2^D@DS#Q-D5t{(*ok?9_mGx}2$4VUD*3_07maL9+^u-6+=3CyJp@j#i{~RFH$1)<04SP+Y%^YMw0!IS)(AU8bM&o$L=A@twH0eK+Af^*r#Cn4M-;DUXh$ zGc=M`AB#~b{}8vkdNlNASwbc4hd``1!l)VG)smTg>&5kx#Bz2a9clRgyMd+h3{rp|cqSve-r z$ZgQ7HeyIamTFoz@MfeGu8uRW{IJEJ%6t;$CSl?nW-hrYb5cne=WHNm=C{_Rzt zkOt~hq)G?dp{coif~Dn}@r0BX+j?44psr%oD~!B#A|V;r-2P^a_mbYzgx&h#CP?hu zt)V2((z|~>6<f4aE@ z2|H>`8KYeXNT4*~Y(?M5`ZJ;T>FSz^`yW5ZZp?is>tD(!k00LsLpZ$Jpl_BDmX)&x zPP)UlOUnN#1tkiqVLB^kbd{+M$$plQVU(D^fxRk;tl>0k;;?v*P-M-3t~i0Xf9P8t z6l1dYLPbV>y80u2@K|R|ri>gF#q|Y*-Akg&9~wiuV&SQnAEDSKg~6NH^*&n$KFUjL z^|ZCOJKM!RiG-dW3nkw65FN_~zhE|(guXngj(Y5g*(kj?#|aF4NX)b)}L?UtnNtasOkvpKzS=2u`eR9 z&~v^K!&BcYMlWg=q8T=cUG}L{Z#{Y9?jbN`L zp8Yal0{^2b^eR%jXLc_apD(QS^;R?0hk@3)Zd#1*u#89v_Ua+nPjUT`Hp3wX;ka^* z%mhCn*lXIwd$-_v-v#4GTv%L>s-i1BPWavVb?Z|14+=)?YtwlvAI-YP}@bwE3UA5 z*cRBk#2@BL@ZcXulGO3^^oOz>gjYSar?~gSkjTFGML8n*cxBWNb5znWK{h`|x5G#h zY7>pjTv`vZke|1!1Oiz64^=eIPA;SYh>>dn<^gTsRb0pnhMO*s(X!zJWv~Y~lc5}`rv}d!@ z#g4Lb*7Tt->T=Q#_TxoyOJZ7Ek|x$sJ9k%9r_jaG5Rs~0h53R?%{k7pG=j%E!ECV$ zU3-QBFmF>Lcy&8}Zn&nt^{~<){Nbyt>2z+d;uf}8gBjVJFgZVo#I^hJWC3^*AfE&s z#ZN;5Zf8n&SXXV|$Rgh25`u0zbL6QCefOs;u1FHmD>zEOf9!`@`@MZpmznxQ;niME zQ>>Y`Zfdaldn)|6O=D_m_lMz~DhcOEXxVWBTo|U8qVp_oMd6Cs_s6p%3Qc#1ROMza z(QR4~wx^=xtPP5-<_0Eo<_WF(o#kfgT~9B!1^9VAk9K?Oy)KWti;2D55AJhYt;tF! z9QjCAO~Di$=*H!>mo8)sot+*XdCxpc%7~|ZOB`>0U>w=n2+6?%zvL3JwkCu3Eh-}~@%g=nih&`Pa8qwmfu`2q!abi$QC@HLAN29 z6>M<7VDRN_*zz(ys&^>fUi0e$%gFLy;^4ssHg=+oX5Dt1w2x54u>UFm=u>7}E6Fr_(PId*3arnJz z%+pnEz)8K&Pn542HSe9`>O2w}4;|?HTB)%>SGj~{_P#8fqAz<|Dl>_Z;7^}-(9d8L z;Xfct;zf^ZlzzgZhtY(uM7F`3Wo|I?>4ZvvE~+)M=6fEY8xR9J3@(7v0qZ` z2~LElk#4;2D|qA0&HX2rq*SQ5M6}%U4$-Sn{ky}Bw|{Bw7mZmkVhEwA=tP9vj1FSn zpqJ$#f(z;v;VAIaOM)vdP&|(tA`wa!pf`FMwjQseO%i_P(zP#H7VKt9(mYTqdK%cOfP`%K~BZvWU(=x?P^Gx+l&YPw5%)ifo*i) z>ySP0j+u9i!s=TdzinixI4%&=|q3{M(YRM^}*w2I~x*w8JcI!aXnD{i}iNc zw)k@HtnSOwtnnK1r%`)(zYg2u*|Flz$60A6Y#L+zR!Iw7zHql*ayXsaF5Ezz*b;qo z6=XuQTB^5x47Xj#4Phs$OqbMc$Z^yA5{(JBU2WQ}gZa4B*ero|+n2?&(zjjBMf$_a z;niVpg;k5|eHfs1?$yD9_J2_x)~LcXLJg1f5m>1q;id~|`Bft)O`> z+pd=dx*<4SD1KE!ADpl1k?4o7=v?fbo6{NofIU?9Wjo08R9$0GC?Qj+GEeIJY9a0Wa9k`z*n1Pkvf+AHl@UFl(%FQb@k@m&ap zCy$UvG2H|oYBY_+YaS&s#Au!DHF!4ac+@SusXPUt-_Ls9m;aJK+3)-s%>O!n-noCx z_&?rYNCfU*a{>9Y)!L@en?P6v57BUdyq3V2Ex>}AF~E??IwM;Vi$36SQ4Mw64%K&A zDe45i!^Gwh!sW_75`9hAXa-FqMw%jSmnB95GOnKB4Z=qvZ0&`5FKwopk&g%rkd9J< zObEkKdff3aT#F5)rYF>BwmmJn&v1Dbw%AOKXKPE}e}1wYFoy*n-?7M8B902%)}^CMF#k*oKk&yA~dW z(HJM{nIwDPgoPH(1N}Ni?vv8!&|niWv+=pSW*zXa5Ql$79%Lg+`XER|gjNhz4qaY` z{C(yx^j6+XWEckC9lsWvM`0c1_KalTmvlvC#bClDUEI)J6@a&q;EV87Uj(#gJUX$v zeMw}A4WqyNGhOr;k;P?w3zT}EA%6~P_bJuo9EK@W&NL;VQ+lfcT{^fk=_{cqf*JJW zOAex1tntr)CwA};0{X;$3oR}IZ%;VUMWUUSu9_f(tO?EEb9(Q{0zeDvrM?V6iA^OV zgpbEV)N@IvSwR_y;;^fr9>?0&gD(^~mU^Ok$9g)>z-BaDXCziGShabqM^^u`;Q z32GT%>q?sUH&yxyVYNnXXT6Qv&=ARVKIW)MeQUth9vR19_U z?Kn>L&_#P`WjTC7BoejCwXNH;qfmq%l}lhAnb^?-DW;RCW8rn^xE_6h!t8M+es2># zT;xSqKQ(YU+KcO|7jZA={CS<^uctPKpA^2uPCd0DPXvy&_-c#owIwdNohZY_to`Ed z=qEZ`LtnA^7gwWGObEBZymXw9nn^Il zQclFjJ?#5leZLnzsQZ{+%9Mj~W6fDgINw)cYx{wFO^@T!jG&b8bi-an7CEW;7Vu+t zvKvKdl20Nc(73o4m+^AWqBVjw3GKW(#xQb@gBz^Z<8<;OzKU)Z9 z+a;YyT}nUVUayEGjTERm`87o-+u?)w-~@_L$D;>>s}GKH+y*<^&tBG|I(z4h%ny@3 z(%Q-a?tMbb*iiplXafCg)b+1C{eKEgy?GRD=xsU_);2Mx#JI*ENh+&2ovDfpZL&$2 z%XT&|@&6()a;yN|sS$nL&T) z>=>QKELVtLgT3xl>8vXY<@Z@v17%;lz8Arr2!%;$FhRyE5$`h%`U2)wUzqo?iICxP ziMZsL2Zh|zVj(AT=#HK}NhXD=HkRD+fSfnmb3X`L*|G3lL1D#BcSiN~oc{q0lfuq2 zAHv8WhRnn`(A5Lo{AItbO&^XFD=53HpwZ7(7!jVGKL8=$@By#6Ra!&YM-g9>jIn#Y z=@S9n3*jn=yusOU7cK^InL9Q1h#yH=g5`sJQ|~WE(jw#LF-F7r7GSr)!7E0nI*AvR z8m&Yuc9Q7wVn~>1h+sn_(n_%cOv?aoIwE}D?*Q{A+_3kk$Czl#IQ?~ZYKZ6(D|!g; zea~eH7Hs-0YzpJOE}V{_k`(|IurA*dVeg+gHWsYU$9NAu)$@4g__AH8mr&sRj|*Oq zT7yT;xgVR>a8CO=N7RUb_tp9FpQWf`0q>K;k=}aGa~J#Z#ScGh-(Xo(t-hdt@T0ye z!MT){(zZmop(IluAq6hH%t32Z`Cdk=3guMeylXg%s+?prcCSIwA1ZPyxEC+U5C-lA zMeh({y5jSk?9O!5dmW)h;~ZtwB=@c;$8S7-B-4|U%Eo1B_iM58hr%0?6Y*kc9@j8| zw0O<~8+4)q5*xw{VF{k^BsQt?kR#zL)< zl`uH8;H9#P&05d7$;AT zh%l*jU0g?=dNfn+_?R`oWC5@m+PUYY-w*yP=|IqdpP<1R@*Jwg;4ek;wSa8_{ z3lQ8PXz-1@y95Xl+})kv?gV!a?k>UI;cs&8x!<|}IOCn~-8bHtP{nGg?ygPGT~%w= zs;Df=S~Y_8{5AI~vdZw-8wZ!Fj*+;id%X5LBmb-~{9M*m9h$A_DWEwWT5VXdNAdtqU@0hOiKQX-|zzu;6=tU8~VI=;K<2Q6dpn(w`}nZH7o)Cu!DcL zl~$`k`Qn>`CF~+u?6r`V;_xubmS2;ge|;cPpQS7=LCcDV3@@Qy>`qzj{T(&^CGy*U zM@{ViFzOKB7O2VbyVb;4p*M^6wMdQ14n1*ST$#e|rvPB9}_uA_02f1 zQ^1xTrJ*e7KiHAaHt=-zl{rbTdb>Of^(wT2sp(*`qcC$|@u;YwC@OL>CVDgF%_Nm# zDn?<2-6W@CD#k>GhvN@}NzSl@Bg5*1N$=C0Og_!mf4lrdvG3?f2-rO zkqyo<19vfWpm;#OwQSfMma&iWQo+OnY)lT_>0%Wu!shajTpgcgI7esDLpocfL%q|j zU#r^A=(gt=b-EFf*n%Mwcz}|mP>&5oaGpz~(?ed;ePe4j;gc_y-3eLFo!?_mw+aOG ziqn>+=mrmU4TnMt9rMK6#1kkWg?T}5;T;AF>z?xOF91V{YhtmqWWD=su*{Y~!5l)Z z1Oi&Z;hZ3Jc4io%ndB~{xU`#o_8B=T_GBrlJP;0YOAwG zW$m_pKa>LAI4WHqE)I9V`OLK-a3KYE)WFXpA!co;#q)((*J;3iM%uTE#56!cj4bjepKB%Qa}j06 zpDCn(kIG{z;o0FgD}AE9+0C=GxoccNS>Cvh{2Z68VdK&_Bq3b_I^=g$SGVr2c8c+> zShc19rG(Y*H&V}~qDqC&+rtk2ZI){#{NB5Hc^;m z?_y%4v+CGI<@7}yk2T$H>U)uu64DIy&V7A^hR%J!TJj~J4yOL>Ch!Qpx-}j%^-(-W zS;zEvyV9$U&(^VyK+96gdw?q!$?TM(p==weWafa4I8yYL54l{V5j&$O8pSt<5rjDv z>`Q!4Q!uYZfb&2cpMH3e}NQ#|q36 z=O&>g&V4IaUeh{~53#5XQ6wv(2T32bm{P||lGcrQBqmaD8iGXR#XTp(ddQF=*ctYY z{%Xh=_xFc!SQquLOT;B>SvTlpXkeMRttjlnHw*}bpt#+$7dO&PT({<_WZB30rrxz) zr2);Rr!cGfzvHIA1U~%VauX*IOzO`7qfCtdG$NYN_MMOe(eJrOXC@YF2CK>@yR$W} zr`$l3k%T2KhUI+sIDTE@wGkbG)n~LdXgK?{bLHe#doVSx**x^E!w7s$U7g`E9MU_I z6LE86Ht10j^72q$O2t}TihaFq4AEn`*_eYsM4{_KY6$wUhiB`+%s2=pw6b{fDg)^a z!NL7!^YdNo8pmF%DK1iquu(BQYot6q>yUZvKvQp{uIgDo5(HAAswOE*lm2tqyt(z3 z1D`HWLP28o2{LVieN+oo92U}K7faMPJy<73?13fr+7pIlQ%0bv9)avsY@fHJZ%N*c z*?0?+8N3a6ZT=S4I|$^JBvxZcwh_;wvLSn<)*~yHr7wU?MvVH#zpHmlLv5d|{n*%i zq^-9+FD#(m8nL>PWc(Tv#X+{rsj8z%zoxr0H4ZzIuv7SD0Qxw-#LnASV|EZ>;dwzn zp*VA$W!|9Ec9r&K47k#0@}d%7F7c<$7a55GHLtIfzv z?t%G{NgShm^gMPf+A8dQASn`rJ`F~vu%5J$CG#wtP$;gVH#2(3cF-E;;u1D1344k! zlb(>2zF(C_bbhtH z%-ejozMf{eOf)zk{_1B+t89h>y%_}~##%N)yR;CLh;SZ$56A0{Bpx8Hse6HZ}`PPFfqa4TEoFl7{4Qp2zPSwGx>+v~b=sUW?E_ znKgvzv{2UHSBgORcwV25NJ~=3?*}l5Dd_@>Il>(!AV^43KU%CyM8?F+-?R0_kxSUx zzB(FQ`0%89@48}}H=gg^3>&HerHolcldou{#82(DVaf`R-ZgjP;ngmb?Jwc9I2}sv zFA={uo$=9MqK;>(>S4{L{ji*ux8eNjvU@R4C_Rsklab8&&NzAytdS^?M-{?qCL{>7 zFyHq_=bn@HHo}+C7%9pYt`vF8L)Al~EeNiIzM+TuBjgjmwQfII{Gk>W1zL3~aws5v zE7yLaQYp_Top~2Ztm3k^cWV{9a%^1_MxPCbOl*3$Bf!#Degs2s_^8In%lY&UXJ8O# z?g`sXGt*YNO%bXX-UKsQQT98DGXHlkmBBD~0=6SAPilsqROd);pN_tT9FM&R`Zw3bO z7n6ut36V8_sjLETb*KX9+pS{4x2n2+a-hD@D75(q!Buh|Y4LrL+cat*lpX~;xqrKu zOLFu~1c8%23Qq%h4Y~i57k?Q2)g}28s`d+=O#k`6 zYEi=KkLyqJAETikjRiUa`_os2Tt@?RV@=h{nT*fZQm?7xLb^LW7M!NWvwwzoalAoQywA1sG?Iz<|wj|N+l*q#D~VvwixEmJYd zs7x4*kj4e=)s&Vn zWK+xY!egdr>kl@B1u<EO@kH_TS zM2B4^?yY1Q5|Zfis%(3sU9<^c*PR=mPpyEFg+pIty?+qsbc(f!LvyoMQIm~a$ib(( zBsM999REP8og>g3VI7P2sQ>dG(7vICDF2Py*PQ%XIG zt&Hmfrjize#-R+}()V8!0}uQ@cWq4{3zC$H7jYR*hMdNVEB5oWxuDiD&J{+b`FWr= zF^WV;EPQR*B9@8i>t=^01w1^fRvg%sU)?;kdAm-kKdfK%z*~rbFT$3IY3kO4B|`4V zpg3Zz3#>iU5vkYZ*B?QyI;sOF0Y1Xl|Ig1E0B8|$Ke5cODE~s4jn-RRlwy4Lvs$~ z!BJhkT9mW!ruHIMfb7=h?yJyf_A4Yu)9AgsE=2>MDck-s5E?z8R<( z_IsZT0X_P<@NWpzDSf`Nym>)#Digk##*1BanY^n-LVeo_#XDAR^0*rl`}*-Hsp>^N z+SKgeve-T*r)b&0N|(uFkvy%Z!*C9;xbf$fxqgJ2T=JdlUF*Xj@<#2#+QysYq%hPAO$ z1ySnEIz_y6zw#WJEoDdjJ=!|_JVAjE2h|8qoA6O83)R;Fg_iJ4g1)Z%Otn@c@R)~8m|CuV(3rT}s&)Pf1-_gW2vLJ;Utfo6*+N8B zTvL?21*0Z(s*2cvu{s%%A(#eHuys_qJJM=MCsAOj`3ulzsOq`Fsy5C_ z)WEMV{0Qg~$Uk*$;`(f!27_ti3_m5Pr^4tOIqH)5sksH=kV!N7^#&{w2j~z~l5__r zBX`EDOeJyD5_<$geBbPlsm;rraqgY}St_cNA6C2VSi23VN*dhn@2BI^fWfNyyyfK< zDOqWLUZ^{2(dV~o?~TzJMitp>5y?V@v81OEp2aMyL^HVtnN{^)nR;pMaN9yByuNA~ zLKo)nIiv|lb9tj=%=qSMrxum@4Kf*)#b%waoWla&N)n;C4DtNeuzR{Hiq9_~5Q>NK4vGs*$2Bghr3*K>6>*v)(kfyziO-Q_$2+VyY1(S%(N@(ya z#t!;NCL9W-U_%oIx|^~!>m#wRgHT09&C~$>4Gw?M5XozAC`*|c4wNdRL#k4aNjdii zAvauJX%WS0qRNT!+x#xOhk5ZrFjO<^yjS#+8J7p ziZ3_s1>SCIe&4_@rd1;@f|M_2tuF3mn5rQ)RWTEyx1J3wS{+EPx@WheR-3{p%r063 zUr4A;#oLz-Smu?|4T+bU({ht7rwKchTORZpDVtWF`)}W;U#SExiO02MX*LXuUoLnB zsK{BgEhM-e^0R%Gvk*w)lGteJb=lz!+$k9|MAho1AePX*_>_%_ThDKPkU7<2k}a83 zidWCpkVK|iU)W$0fL&c~B6?_du1HqAJ2OICKW%T`YT{61H#w?gRvsfKQ!)2FLw?X~ zQda8yl(0l@?VCd3nwhON+LXAeCJsw-?i!OFI(pm5UJ^JeWS{6+*^QxI2i$60l&&gO+e%zB-Wy>nZSQ59>2y~m60R_ITEtC~j6L7?; z4R$ka{(4c|i&xW34zcQLIBs!$=&lzsvlvo@YAd1&-XDx$+ghqM6B~Spj>yZpjA4+& zwKo%r9nUMV_js4wC; zXvM@qEY^8WOMI#+#}AT)L&jf zOgmp*K}2Kg?F7WXOIoC40HQ~Kx*EC1+uWC5lKhy!=8%?l<2F!z(*N;Y=Zcor?>f{ zsZ#;TB62ZE^gRG*0K#4T&&X+Tr2Yq{ zD#p*qQ^Fv}{1;*p)D!xi6IZ)bO@H{vKhZB)GPv=a@ZjZ5XLx7-3FatTmU zY#=#|05u~+k^c!_Idz;aUuzK@$4-=^bpQ5WJ%QUl94=6Z?v|rRJlnR{Rd9R6`IP3$ z<-=lZiuQZ@9dcPed-j&1WO&lKU46ptGE;}zMtCogqSbKXZSi2O%AnDdZd$MxH+-~r z3g7RwGd_#Zupcyz?am+PE_X}Huv5Vxu61j^D42d0bpuH=vXfC=}0E9GI>V7wW_dWPu%+&eo_aGzapC*F-MMz`*a1A4%1cx}7E9SzX zhuLmspbgtc3Mgr8HL~BFTWv}SrRuB9)j)oCQ%3kq;zvWB3=8G;+o|TDa>S zS`Tv^?qu}Vp5ST~Zc0Pr<8ocLWDhAc&1}4Hn%O5Bb6+OKBs(i3RLX>dqtrgKdBi{m zRR&-%At;5v4BAX0ff{y1z1|6dbUT-Z;Pngt62>H2B&wzouSsdBbgkmX7n2!tlm{Pl ziuZeEV058g95g-b$aIaP zP7&#^Oa78Ls*v?sMKZOmXKm2x8$l1 zcy|ogd#eQjOqM%X$j3m{_ilD2Xv1V^=to>uAdhzUbEall%u$0=Hpu53Q zA$^Suwx}Ki z78aCssC)AZqE-QZmqQnj*b&u3&fcaG5ks@<1Q>&Yhk-RhkU?Q;>Yv6mcX86O+9)+51b+~_gIn)_Z;{}JT_ zxNFMTHtg!f=W^S^q)Nyhjg>9dHXV`rk~&fEjzc>QYhyTMu0{K<%@ZPR(C+MVo-yhp2sml`UjK7d0`O#G~nxWfi= zoLxv9|5(~~1Gn8eMB#!o%nwqqpdT|8PX1b2M-JE&puK0?%B8#hX1K5a5^>}__)-2Q zwP4tyC;PeIQUk6?jcf_+bCwKciL3>=oA#s6h2dwkux-K}^c=`9C!T)2bXKVTZ5Av4 zHrJttfWoVYYpp%HC^8=EX3q$*CH7g?Vn-d->6%B%BuC;IVk{GWB|mo)epgs1P+`yg zhKJzb+mGhUru5c5I2_CQV?)5l;O8fGxJ5MnCpAZ%>h;S*l)NI}JJqk;?_h*h${7R<0ayI^d28u+q3H9Q@j2kR~8r{uH~< zwWVUSC42S*P}o?kbcEt_2XrFg+O;dg*n;L)(7TC9S8e@~^T@9zyOcaK?3SsQ}p>#%rTi^NV4pVGo!(r@*?uwQEvkW`81xWORhzI&B|IG~*K z(_f9Bs)$hL;U!cMj!Qd=)&Uc|t{Jg7c5*F)5VkIXR?w|%&vqsPQ%R{XHt!*l0E`qI zAAXeq_hK1Q7Qu!sl&g;U+p-U9@d)o!df+m>pg8$wUXH-hnR%JK4$xuZ6F>}#fMaqP zL=hYdy+PGYjwdGT{&vHpt3Fao`b{(jeXwj04s@1DQZ};pm6$ydlxm?8CWri;M5)iQ ztdoXGBQ`#$s12_WqjOXxhs3XoCPKG{5KDI-NA)#$83&33WQ9&5S(Zqk{Entf_e#;iza)7>Jt|;Lx5{H#-Xb8wLxjD z(N{qs4uODGsG#8UDDM)r!0+67L`rJW`|_j&y}v0L$d^8b$&{qKH~Hx6YYx*}^$zqm z5x6D>VPElK3dSt)pFeHPzt5edG>lWPl}cr=pUOT_pv81I}ga`mEHLfT+UU(KsS z_0m8y7YlT8W?>`GlUF2O8Zq5$p!i))DJfYa(lUwL+@@B{G-{4AM}&D8$4x`*aZPdM{z}Ir(9lcaM~Rb_9Rk6r4KsrsP-#H+X@?EpnKJ>K<{a-H zYa_+^P4Q*0>Mri3+D)Z=3VUPr61(%mZ&3|l>n|P7sZ*%-qyC%<#b{vUcqN2h^{is!|mIT^O5}uTq)i4)ssPHh)#L>Q`FNhb;y793eVLYCFZ9B=b(zl>QtHH0&3!`G#ks+^iGamuKO zlO?%Qm?ELoUq3pZs3xBR{n|gt>PyuTrl_5_T6<*G^JNyOtAdhqF{Mt^vybi?Mzi=XyRB@TsNm--Q!i<2*6(z zfXHhg{8hfqfMQk3RTwgEj)l~RUigrgax|jxD9c!U@K~ApYN$Q~U7}fXuaB+QFhM*qn=HbM9y!&9u!?o%D8%FNM>dEQ#_0jZ57|QbF<93)O zpuo8qxVuW~Xn`{iwX~%cLKF*+=s0Q%`_Uxim+UF}c+SolCdNm35I+Hy4;AC3+>IwN zBY2_+F1L-VL< z8T+BKCVVqAuhroKu=yNRs_C3zGEyc!vNGLYD{fyw9OWSSi;232oH)u(G89~q7U85I zFk~(@=6-;VT(?l0YlH=A8YwQOK85gi?5JiFQd&7qt*^-yMNn^&(R8jab#GTivdm6e zhwyJ2q-FTD!pf^{R^m21Dn2qg-9IgE|NW14UtbS7Vbps3eqMGFOXS)f(CmuzzO+Wp zt!JZvI&gJ6ntir;S_sXh#Q5)!rEaDGS~}_t(sHIYS{89zpHt_*^J}_}iIZCi$8J0w zM_3lTw}%NAKeD=Gx^am4*9fv$&jyI{j@o!HKG~35)op!ou0jBX(P*HirfBpP;#@`X zJAlJ|Ys^dwkBcLY!^s!tXxvQ6xpzcMn=o8n5GiE?b;a`ngXE9Fi zR^)=l?jK~Ox^Zw9*DdJBt^knLlLa4iwiE4U&oC>Y+|{>ErM zreW%%!fevzCn71H7(*86%}KMb$gpuvRr$_qLGz>Ou~oBz&c;c`?y8@o`uPsk)NNHh#V|rr=5v6(&cx2rnc_$;6G2@8}@WR;MGApE*7k(jnupq%sQ*hJ}j~ z1B$fWP?%AfR@4S>w&+AvOS~2iAIGlCh;FnTj|Q8>RvPaQcUQ8%kkEeKhI-EiHyJKr_b<5a zQK>bZRLSCs2<=R^(GWc=L`t!sE63NM{aC% zbqCFEm&Ey))8$r8PxnvYleJqpuzLQm(@jd`vwKDi@K;dW0lg_E&SBBeC`c_=nqje# z>F-_N3~YUu!qAcTw&0tI^C-54FkSd$G~I!XBMJ-e7@qgNSv-~Bac713naXC03EJ?z zEK;p}&yvr~ve9x@AfH0|2mM?sL{2kthV@xX-s1M*Sk+Cbn^_3$(Q;+|7SeG*g2AdTrX&Sh4GNiKq54dqvb9UfVcR#A4_N1M zPo(R-f1mNj^VB*9@0sT=73BZC5RRlxeShTmW^Jw4t;(l?37)rsW9{l3f6b$4;U#_dlIT@_b;AWFCN2r@< zDh(Ef64N5W3SEx>s5N)OsIz#2o@{_@#pRms*eNm43zS(+EB!lu`Y$F~{J-RIf%U5#+%L za`Hn*;tftV;>`zg1IP9_9z*UJ0Yz^@U$qctc+=)CcvL7R9cS@i8k<3BSs%>uR@8D3 z|BP4f_m^3sg{W>HHIZJ0Twq-X4C1wkWKY5J(&@IHmb**aUB`F8?VFauA}RUjw0xk; z<$y=H3pQ(H6VD?$!@#P6i;Y>zX=IZ_i6EeR8M6vmJMNqOA+RwX9g)~4Mf)0uCAHmO zyzCft9*js#d4hEv{|@%KL^^1pZAiwFUyy zpL2Wdp<4Hmcqi{@nR33i55+QyO=2p6@|~1PB7w2|IC)-QD*1`Nnfpa-8pp8dlni-O zJpxiIHa@Dwp}?#As2NAgAq1pj6!?RsL~Oj3G|*fk3j^zmx5>hvZMS@(ubIBoYz+b@ z^dW3_51l~yH&q#G(zoDxjNYmluM69{+_B#{*k2`580U&fME&crj4R%XEznr8e8&5L zow(k!UBl*2&)S2MXl{zEVH8U2KmY69kJV&bkDrx8fUSl5YgnRjl;8*9R7#vf2B!y9 zJ{QA*y6yeATADFu96|n$8|9|Dm4kC%$Y`%=MnqC%Y$Ap8e_U=`^oe-T;w^6+t{c*} z1tl+b!fgLSapyJ~xN>k&>_J`Is<`?&*R*1)P6_d#r>~Ql8y4n^!&-nhH_S>yKsa=` z9E4t`fn28g+Hz>yQqaZpGdo92DvC@>JaL0{_9ywK=)$4B<2dNZeqrp7{6NU@ZJ%?g zDQyFn*sv?1;`hd=jizZiL$IMBV8$>zumfiK^m; znA8G&)&0@b?lD89!_b9JBFY9f?x)!9XI7g2Cvk%zQT)PU>l+bMZ?UBrH)@-*pYnRh zVL82T+9V=4NyXc4_~YcQws6`oi=T#Xqc{zYF!h~9n@LBEreIXXbhH9f6|-}2aD{$I zkz6h^kpBy0z1Uk&x9RuNNxEmKw<^T)aLp z$TV$hv=!f+%B(DBtSDbyFqlYzEg%&~Iz5|pYM@iCY@K_lZd2IwUM;rjS6(G<>9#1e zWaid@h$v})ff!3|zv&zud|5(}t{{!SGsJpKM`HK{AChF{xb?ZTVA<3ggFqWff1@VOy7rcmg9bwkMm zgy3Rr(IDThVBjXznVKbz9+#4TgnOJ&wxTI`sFW~Yu zKfY5o6S7QOYIbqC+AT$qvE+Mv7%3(G@$}F^%%COEXV_0e{7%(As#L%9sKBPYM{080 zKISdtXSR|;)}(Qzi@ooik~K8+h43>PA?mdQ-_5e~{WO#}DFxWh8)$0DzQ2i6EM)W8 zTCYD|M7fGte~KwR1YAvjbxHU2h`(2uS}k*&XlmKsi=X8((Of>;Yn}VP=h_n5(wwz* z!K3BBvm|$Rn>w>YCZ5_gK)cCkKFaP^-YhE=IhGQNV#C-AjE0AGQPF@YWyUlyMgG3}^U zN-rshBvu#*5D6V?iY6MYC|Wo<2{4!V3%NaLXZ|IUKr5`Yi~&RvBs-iL+8^f-C_w;N zn}Ppp5qehIR@y2?T+QUK|19987#isHGd?LJ%NV4hJ6?RN{qpJ$+PeUJQ+K zDT)SD5Yz5{!aY;r42^k^G*%_qyGx39qHns3lH<+3c+i);e$}AK_h6C2lU}G*a~a2+ zfwJ=}Z|k8;viDU(kwiMZn?@W@D};RpjGb!S!`b#B8MZy}$EzKSk8yUNSHjMN8MF>s za++keC;Vfc;2B>qtbfq@yRW$aX2Q;26jY4=Jf7KRqQUvcgq?R16=qZ#)v`O3RkKKy zc>QJu>Cp~MmV7_#F%o6vORB`|IB)4BVxPdob2XnWtCTGphCNL_p5bIg^fA>T5%q+# z*W8(at+!{h8!Ooo4l5HQ`R1euVVG`YljhWWoWl%kk~ui$dz>Xc{~DfSuRk+$y(Kf9 z@CRSd#<`jgqLKwKtp@$*X>WpI{^FZ~OWmrg5)VnI-7Za4bN~shXwBCdznDha-6YJ9 znAMSb6Hn;<8XO|{TDQm^Rv>uDpQN7IE9W{(x;4SgL$AzDFWL|>jo4g;_s2`@%Nr!` z%`^OKYMTHr%u$bkmxd|QB;5qkD{ZV-f{0+xz%+*tZ=8Y3PEzd~005R7tb#(t^dp#-|f9DK}!5GAR`U) zyr$nf_?cDGUPFRniSLYQH7Ff z3CV2o(vIKNS8g%goMHsAf5A#0Zg1Gxp@gC@%o5VpMXZz|=s}CXA=^jfHJn5GH;7Jj zY3VuI$kIjR2NeUh)kN36#jqAKAJ^72l-vFB`@SD1r+HfW-hC=C-P z@TlFEbX#igxotg1bS=vv<3?X3qgm;}(`UQ{S;Jnfpy7S_85E4EF7V0*8Uya2dlY`KJvPR623Y$M~xkiVx67z^L&J%B7@*ygPpS!KIX-OPn51P(HfM>302IT1KF`+ z1rc>A>wZM8;-IlYc>2reV91^oT^TqE(EDW!??%s~v-esgx-uuyR@pGWuc*2w?d=0$?HIycN*{o~Jx8XnF9x&eW+_=Q4l}6ge^(j&oOAa#^=*#z$Pm6Xh zrYP?hCyc&WXq(lw9Qq19bMp(w)s&L8wXBxzGM19{MaVFgs{}gU7X$sE1|xx2qgLEm z^ogS{Sdm8ZgG{{77#iEefQxM@Xn-X$6wl?eeRyBt%D(Z@RFpOj^Kub^Zrpk5Y;O0QO4R%Ly zJ`OMJy%qu2W6Gxxi^dD~+h0;~PdUP@i#Q>Y3oGnSbzV2R7f*QRQ<-M)>;u1H(FLvIo9YF>1-)%| zD=Rz9SbRqZ#3ByT8NzuRqSsjpKVX=_i%$)MK-}Q{C5)QC)!*6d>*Zd!!DRQ0u#y+Lxs@5Y1C8x2WzN% zU?0rA^~rd$^(J7*z#62RAPvi=q(y&uQn%UiSU6&?%ua1H?boAFLeW&j7h*bcKT#*Y zy|DlIv0IAMzza5pjPz$N8mf-MCo)nNm2xcY_o!oyjx!wCK?og zlPe{$EKKL+^k@86({Qlrd~v`HXfi+nJPY|Oo1I<_lb8maG~ zs5&yFB$hh(diij_nN^T7+LE^E##)U&*VFvv<~%WFl=l#4FmHPQ>!trPMM;w=Fi6oI zgYA(RL_5ldS;^cC-nWbjE3_+OHrBU^6?+#YPgySs&?6gKt@gx{#%B*x&lZD>Vrv&< z3YQn%ryw4GG@chn_>y~8--teVY^V84oWE#-VM=L|&4gJ=3Eb_M0CLgpm`AJRmGC%^ zO$uwR&ar^2tPZ)$RNVwkGE3JGeZaN+CqV&KM=6q!jn}uh+!vNh4#-#XRy|m|My?XQ z8sV<8s5Rk+=Vn9{%;2Qk2&GOWtq>14eA(J=9K&cCfMd$p>u4Fi-E}iRX*<+K9N@D2 zWZC+>IU;EeoZM_C|wNn^|<^+?hBLZmKD{_jZYznY!%*C~Ymq)7*~cm(Xfoi1flar%P2 z1-=3d8GXg)p9C1*MMo0dUOq^yd*zhr=L~#|nv|)~6T6J>8;SQZ9?_wF%;E2RbDUl+ z7~WR&W(AyAf)w#dQ&5`bPF8A@$1L~Mt67%UmQLKOTik~v`4t~CckuXFIomz~zG3bu zUXT1NjFk8RQlG+ub_j&KAHA=Ps0v4+-&bD=oK@;@Qkw2aQEE7!sz?=|;HWPs^J1+% zk>t`}iP5lRQe)wGFA-@OeOG))u0a@=u)LvfbzZeZwN5)nTG1^;&Y*~dBl9ZlFg=o- zcs+fMR>Fxlhz=$k4Q7rtt;g~Ui;)wiQ5Nn4oUasuvpi4m#9S>ED|^EMki61rUe4Jx zu&AQAs95yTK^Xfin`+@`tHGiK^1|f!is=Q8en$K6_kbd!{Zzh=%&0J-2&{rP)mGG} z08yVhaG!j@eb$h#tZ&?60Hq0|*>BwjlWg9m7e()}cmcnJ{R!5U8IiamiJz3v{&+2@%D6k<(}drr5G zQ3i%IS%>QZ0={OqTO>H?-LnB;rq$E^&Bf+f?Q;n2`KuqE59{ka140_b1I}K8A@t3_ z*k68ES6tRH7;-}*$!VEMYXY@>>sYQP-L3bpMd* zoG_X2CMKb+luL^SnCfEm;s(IoI9Z)xoMx83eW7gNKlc=6 zIh|;d6wTge9ytd@ga9JMSVS$6%PsGOh#ZLNK&MN~t;f+0zEHP2@p-WE#bsP4T)B+J zFnB?qTvr0z`70~q&X_ZsqqLXSCmq!%HkGZM4u@O5GF~iJ91Kl>yQ+GjsZ9BZ`cnei z-bGP{xFQ3f)uF7Hk_QAeQH7Zx6@gDk1z+=W6pL5t6%t zHa4?cGx9DEsMjH|Ei-^eFbGL=5^M&l3Us>0!Jrn;7TR<@6mItcody}20QWs8;)Fm-YWx&VWPgo%fDl(|Bo|g7&-n? zG29lY$OJT{axATqD2)|fE5myy@h^U(Mdg4eU2m_wlCk*u5|?w=fYR!eO=^y>_5jDU zcB#8;$?g{D^L2!b871Ne^Q}QYs$83Zk+)}^dh#Ye`T)^jc=6XcTU?VmQaGx21%r9! z&>WW*iW*tE8IcUlliHnYn%fQ8ev!4{7TvwTx5fB^mNm<;r&1DM{mkakCEqjr!2(*hgAym7dg(K=@$P$}tonB~1OZTZE% zl9Fxu`8o(dP3hHEiP60P2O%&plu$k;=X-3egypCaKHkWI_c8qN6|eA$|JM z-j>yW@$<#W1ypyr$AZDly4<~)w!sh@cDB0w)-!NBhDD~)3%r> z;I>JtV0jc$^EUe8z(+JYS-ajvyv9F$uyd`mEMHn$Bx=c=&}sg`v%q`*c(Qr^U?q<%crw;AmL;^2CLm8ET(Tlp1i7wYRvZB=M{sX1w_GA=fz^y$@L)d{{XJ*DjU zbBsjYd!A070pf|>_;|A*@yB0_ z0F)~$AfKNuHolrZmGnq}0?*WHBP+sw*H`nE&Z=xOupjY9oSueD#F%u5nG+b;RY#77;!@W9cNmr! zeVBmdA}$r;efi*?Zm1#5fA=^wT1lUk?(SK;qZ%g%GQ7qY9ce&(w_v{Y6Pb~=89e^f zx9zwKC|eEzxy~Qe7AD3?c@up8wmx-yeDB?h>DrX`@jawgEjR@w7mdd{&I61Xb!@&v zJ}wH1>HkC9TR_E;MO~u_0fKvQ39fSSiV`PQ5D&s+bjx6YzY-P_goR#n68L!G_%$%#}S8Zqm0SleLKQ$ucGbX%ffC?cH| zwOZP@VlO2@4F}zqz^b59el%sctgbLIL{t}~oD~2dNRW&_)kR{ge)Qs#-*>H16O8;C;ah;-uXe_E#gBe8*nllk8> zFn?6IvQ{c2kxAsaB!)%8@ zlGu4FbNx{vgNM(=zu2WcM-IAvS-%9^vZ5#CQDiLi-D;Lecz0F)&AM7>6jQ2VF?fAm z(pa0X;T%078_CAZ43Bk2^(($}U@CsmbF%QQDzpZQf)`O=#mByXyny?rPC{%$x?N8f z^aUmg8v}U;ffmMx&`cP~Yxm`s&bwe3sr)7$(oNiHc#6CXn-|=<1XQ01C-qX|mHUs@ z1O(1Kl7IeI_`|+hngWpMvu2g zgsLNX1$W02fEkt~W8+(3T_W?6TgAb*;kBH`i?`bhU^mMO6sE?DdMT!%S3y1|(9DQZ zyMEU3dp}^f*)%#)XO4;c8x)E~A~GJDeF<4p-xaqHs|K2xeLrG&=J3MmqY=8&tZyY+ zDB-n|m`Mj>9J*Eq#@7s(GVwzvWl^~Rm3IYLTBhPyS{d2Z{wlBEs5|=)D4~>vjp3}l z&??~x2tv&6QWC~;V%{vrX0V-ugW`5I5w|X0?JlS&piiavLo1j^`yY|}3<2X)2`0TOY2?9L1{2#z0^ zoA?d4Ws{aodA(C?+A}9wLceTAv$makA$IJVl`~JaDu906OmZ4e-~e>iCjx`>$uJ~a zYV5isTTX=6%HHTY%h?;Yz6}AxyTL^J80p}hBZK-%8Ws)xsTaBQm1Jrk)zEuDAHoyHNqqb%B{nI_| z>%s6^!I#DvZ2DdTm(j}mvf}QkueQH^Iv+g*+eZ^xMt4fv)=Qvp_ODTKFP($k)t-@0 zn8k0Prg?#Htr;TY-US+tvEt$tzvVH9jTIjBW_2F_GND!E!lg4UACiM5MH?^AkaHe8 zp&%(s%b#Q{#?UO3mFD-4SFu63v#>u{=*k0hR@H7uf z#z`9>f6JTE7i24hN7f$ zrUB*ejVuiRi*v;>1>w=w!?VA=5RwZe4fE>+8qF`>52TFUf}ER+7D9Ug?)6DtV7UI@ zp^gWM*{sp!@X@7p^latb3;Hb+TYGz^W87$y0Q{378`-eug$8sYLEVSrm^fmvq z(Ee9K2FJhRng>IOe@ihRFE(C7krqM28bP#}D-m=#SOG2OsJhW8Nm2YasI?qKTTEW@ zKVl;W4Wlb0Ur|(Hr(9ammjuHoE*#Tq1U15339eCM^lfY~NFv#@I7+w|Ku4*Y?b!1g9xSzjebH9EQ9(MAPp3Fe#bE8C~ zC{3~jMoC!Tp=41k)iAv1)P0>6C^}LEg=mCK+&B%D`?fltw6}b5I)G4ro@?ntlGz#i zrmCY?$lfBpj7f&1jE;4ROxPRgAC8Q)ShV7R9m-!aoVmC1g|Vxs<{e~pQ?S#O5@$B$SV@JzLq zOl4RysM%->@a>z0YA>Q@kt+N(6-0Y0%|l?(ZKNGYZKau2r`QkrGD>M1)f#cfqq5vQ zoIkKk!EYu`13%w;NqfoKLI};T8IDB_^=%M$S;)occk#$Spz#1Y)Il1Pq%foX@S>Zy z!m9auD$mJgQ74OnueXOcM%$LgYTU2So!=Y{;y|jraDRHT9lFKDP1+c!F>5 z&+4uo-EXcA)Ts&N+3|6H5y-a29-Uej(tltsTB6VN8o7T5$>vcZ?7|B$W(zc*%w)qJI z>F7&6>8Ro5BzC?UlxC}=Rs7VC&zI}2T##i;o*gYNrw8QC_*_|}$#p82uYkYkeJ|YS zUAYvfqXM^ztNm0qSh;vtZpr^+?<2F!41(+4wavt6_Ah9Ugk;Ps=^2K3Wl%CVhD9wS z^?a&x-A4JdB>H@hHhpm}@eg3jUKDe)4`8j{gz?Sv%a#buh34tGE1p`F4Q2h6pK}!9 z>fs(``bDg7!W(5&f;=nV^hu>%#b{wk#3WPEO4qWfRZ*0&aZhgcMa}I;SYsTy5v3`R zCwBn@;wYn1pR~@N1kZL#G#@#*GhF_9Sv&e3GV*sBP2Ytp9sz&$sdSIBjjWF%$e=v> z&#A>|_c@~%**Ls;f1G>)z4Qnh_k_V{6rE_NMB|Y|PUafL_p8R4-)_!F7IOADKkb9KS-Im$I^KM)gS5lPYct3BwTQE z{TqfEsIfv>hYYE4I+pGE4&ik(9L7r_j%SNaFGF7v8(@+PuQJ?SW=!2C`%ohi>P9iR28$?w9b$)BeDSYRf#dE}wZD_I2AqaUt2o>*+8`>q`?)?J(%a~KiD9A5CpqL%5yyR5#&_0ND_U4l1`<`O@(s@Z zC@Rfz6=53PQPeG8Vp3G8D7&@D9CFzh_rhT^$2Oc6+*mDK&ox$lmbzo%+$;G?W!{64E%YZjkJih$QN;1i>HcwvsHwz)wc zhkl8i`d%ZxdXJ7~v|5rKh|!LE$GQunKIL2Ae2bFEM32e=a5t!K@qtcwvEoj)Bn@rf6s%-^cdQetD<-E$C_+o|9M z$M&5XStqm<1y}tXVG%2AVQp{;UUqaY{Qmt@L|yIl`x^QrtRuIT%GgMc1Q%TQxxxg3 zRr6;**5_Z(%_Ovp8Do4@Ldz}q0radG-nYu}+lMOa4CEseQll79FtG#_Vm|R3{ zyZd>zcqRA<7W4w&pgvyTP1dcnHbujGInBF&uaViY>Hb-|SxA)7b|`szUcYasLd?zo zz5JxooWS)BSiKX~>#p3Zvg~2*1{|4ku~0B8(_mjJeq6#@n&Np-ZN5`)_rtZJ88d;Y zE`fV^c8Xh~s^xG1XBqIVhabyEHYO4@_vuU(9C_JgpWn*m{(aHp6 zE8%<3ZYQ&+PkyQ$yz=y*aew$3Ns?Br`QS0bMTT|;_u?}dT_!1y-pl-AMP)krxPLN& zxW8M{V{MfAGyGTg-vzzywmPM`5OYj|B5>hEAmarw20ikN&n8|gfsO>iGARIrI(#g& zBow7jbb9paC)p5JJkcGAbi0>GYe7O^gx*cPfR_bv(7)_ZxhV|7{{KTR;0+Y1 z&ljQH(rXK>x&N`)-5{UWT@HU~0erzC_latMrxOtbjQE#wKnnCPJG^uu_){GKh9U>J z9Ka^NQ`O1oDEyCorg?)!8lojuaQ5=+uiFZ_&ScKpWZ$tx8ZoHf<5RrGz=cnSE)8-e z$cah+%XGc~HuinoGV8U9^mbvt2K(0{D!XZeQqYi6OoJJV%J7U;*6VPY-0^-kp08rm zle-4^DetplOzm01Wm?>yPkVR$w!~leFUY4HxD32MO$LiP1hYGMeO6A0jOdADC}3wsazR!GNx+w)&@hCz!t9b9%C{V7=Saxa`FoF)aZd!E0^ zTcpjWjP8#ZJMOSH%`Q59@yY(v5aB;Vzk$kVvIV2C{3TCOy}AgKOQ=72xFo{N%Pi{0*q@*UTlr?ghzR372(_p^4k@!ed0mN}Xo zaXcuVm1%JtD4E=@f&As~Xn1|bKTD={yWcF)xCbyWCFTu8s0`ftG=hpX)h*^vD^M# z8KB$S=F#%$AHHR|{xehPU-{UBg?}RP8Gagx^yT}%q0ZhN%=qGn!SRlJRyZ)#9f9a_4u(gs-!?grFU-z2g2>ng*lcqP z_rimd(>L}h?2G$p*G7j@`g_TSHOo6PDNrav?`M!mo>#!hJ1^j1OI`QlkfpN*y%uJN z-+evcu!b?3=jnADLTS3?8iL+X_3pRti07eqf=9gQdd5x$qD#65&7hT7auf`Lr;c*(^rNu$p zC-WhqFtTQqLDRBK*dUR@zj5gU3F|1Rxd=>?CiBu`#Gko`gvIfZEYU{qOtQW`bAQKQ zab7PRnA5vP*zesa9B6!w%;PAwlCE!jZez_IshJL(--iO$61FLrEj2WjoazbFT}gTm zVM+RwK-&QHkT1CnGJzpoj5N=tt0#z}w>-ym-<5J&K{8iGpCZycU0ee9g?#_046Ry%8Zo#v%D~}H+k#$zu5@s<#wLb`<`kcd*U!J^>5!KoYxfM(m zh;-t>?UEY$>CA;2AWG9MCaA-p;F&pc(^(&fw%i(Gb6t0rYM+w1MT_KQnK0HNYA7yV zgn}oRhGWZ~U9AOLZK-N7JZ>doRkAYXF+ws-{l5sv%Ty)OW|4|ZTD!;aJ%nfOrJ1>k zj4JsaONE6%qG_QQIh=P7;w{Q5nSk!##p6qmLcYg)(t1%y`#l>j3geag0evoc+@g7e zk{hgwE3B8+jYhvrE(dqhCXmIdld$?tbBHff8)O(4tK%=B)SeduNq6W`w%o*(KQZlxS6#-KMW=+?GZ^n z%6jrjIXFrH1swjG24GVc=XzU{SS7yv~48T&;gH?^!!N$J?XCNR_h;OYJD}+_noQ*l5%9Z zfhRo~)H zLZghyewe8#YdrUbggD(jkJ7N+;S9m(bkeKG1pIMpKLTk75qv3zjz?v_N~!_NFe={s z`6;~rFD>MDu^MTqHw>+w2LAW;xu?h^$GQwh^62_KO*DE#kR8$Z z5M16$#jd$+Y+@7CQL*w|H(}j4GGR>B!Fy6XL*#ED$$bLC-4=2rqM`~bXU*w3&c)sJ zUHa_+OpEOVSn#;?xyhX&uXP!DM zTArN|{ud{gw`-TTqiJbYfMUeORhhQu_5B$M1pN~$Q5uy`TG;#a7Wx+7-6gd1cw!oL z7L(A?sFWAy*|8c*6JPI|vhP{Mc;_&HM;ubX*}s`2Y(#2t<&v__AFTh834j;zR5UkD z50`204q%%fu9YKibRNojA0qFLIT|3ypDX|fImJS27(GZa{qBO6?+|oq*M8RW1M}X* zjJo$t)8Gz<@G5hJ-afLuT5> zvs?(2G9j^(*n>>5$q6oE4CW=<{yd?SkeY%=&dS=8bt<0A8~C>?P?~W3ssUVvgc1*^ z5;*zsDNi;-;N&aw?@b0U7JB_7-T3}yr{3S$OJojOV4vUjOS;i$vj~8~~{Z6n5?~jbXFUNsRMd-CiG((db_l z6E@JeKJtjcT=PXrHn6i~)K1%!THv%0Z0zkJv_B$Lzdyn^k0M};*Wz?W3nqBL)W6b+ z=-`>tJH{hpzDB8d{b}FY#BSGiVrFc^PnghAuxCSq|aHUNv)VJY@*jVpPHBAJ?f-u>PY;ifWMVCUmrhqu-n#)pMVYNnb8Mw2@bQ>3Fip%FZXy^Il=t45KW` zlFf*^uoRW&v)`jANdv^MATdAW0CayPC_0KjJdYFGnn{%H2=lm zYK?C@Ul}Ge6^N#XNR=~HtJpUW$M1#Ox^{e@{LCuR5g9anB_M9ohe2B|7VnE2_zf~3 z40GvcoUZadd9==2ut*_GOL;9$aU$pE*qx9$B>HWOL9`H;MK`!n+`MwO)Y}jb*N*78 zKHJ6iL0%uy$_-5{X12;MTdZ(~7tAsS!PT21&G_zG;?{*?5MLqY-^t?V|uY&)@xovt?-|5Q$vO!c5V!?-@S#xJE zmuB6GHQk6bVyiY?(6`%jXE*nUol&MpS?xz4oGJstsjbLJl9*0+4e1C(LU1yrI1I|q zO?lg&4k#9gq7s(a^&3U|{RJ<$wDZ((hPHna{;;iNR7EYbeM)ohwJz{@j7;{CpvOJw z?r<@?TEa4Bib^FZS$d)_nbBo&b1w>sC?ii`mJokt(ENq#Y7D4Sb2Xh-T3Rh*Hr==~ zH@A4qeCjG{D)xmdvMcvx8YD{&hT;f^csHb@;=xzv`1>kz%rQ;VsU2~t!bfqVFJ7V7 z0kL0^^ax`^u{1;+Cj0VTPebsPf`X@~heydRcVslZ$;zmm8fQD=%CUx>##rkLJ2!hb%)!R;Kr(3E_p<*euYi`(ByGJk3D9+@PhvIH%m4|lK2-_&_;oWN86jky#0O%;nx|;q)Dp>$81q4aw?|Q}qRLsn9 zs@v|=6(K&d3Z`soiqV9`7+R~KKyyss(p9T~mez#CjbpSp6stN?O7NE#ym!-{5k+u% ztI_IWq-mhy)>C{Q2G+W%s^mG^kM3RAw1~-*HUm&a@(UDB5+-K3xdDt39@+p*wd(g2~ zY^DVeK&-l*j@7&#d?u8hBYgkN(WI+PY0vsBr#iF&+$!&GGVo$!f~@|Cj;exgwj#C24uZ3r)$fZsB+Uik zTYkdtFFMp0mYBsBE1eB2o<}?`ljqOp+l6VBe|ub3&9aVJ=4H74?C(%jsIFRn?o3xM z<|IWx+s)i=oTUe0M{m3{fI2iHHD6*^ zWk_&E!&ENrwu7H6K{n@Edx`)Fskl4d1@+wG@}@IaQBUZ3Ad!&I^d2)qc35Wu3!F=V zkqa=PNX&Ujk1K|Q-;v#*qTk`3U}1h3BAYV~q2U*bpfUUwQqy-z2dBq59yCE@`nF)I zi-rNIHc@R&zkGC^fSpXzKXOl`alPY*aC>j%%VT}d#JUaXWzngx(~CQWA(12 zLAFDB2=tk3=5*+ko=U+rxOB?ol3eoPG!|JQG5;R)=)a>C zRkYYTZg}?xLYIcSf1avz7r#GBzkl3png#d`#$O2m-1TpCH&uZc%kmoE8+Ds+O>F=g zx?@yB7LeF_Wv#`l0l=M;zty57>^|i>TRpa`e~a3F6MV3lL+$!xMDLS|766yt;i;u( ziU!0iT28;gqqvL%P-6bPq4#A`2`xrO5HNHy1f@*>2f`cBpe*B>S^}aYSLD_V)yQ0~ zaq|z(#o`LdyX-W??ry|@$lr%2*IaxWnX@|3gZ+rqz&~Vd191s&%TBCx8&0El*&j5A zRkXMkS;caV=cKkG-#aY)uOJeLUdZQ;O5nK91!T)v>O0TF5}ftefC?F9wYyw|M#~L6%rfumPUmgJv$UvAkVlz zyqbo1kL1|~5^2LjT${sfPqw&v{cL3Ei>!h!BJ!IRw97ag2_WzqK&0k+OlptAk+g$mHWZ{@33mKR3Jh9Yn`gyBmszOuU{v<9xk<4 zlH`09JHfbpxU<`gg3KCoDxpS!P)0IXnX{3mwZm9*-e^{_<&_hJ#Q8C*!18>;)lNie z@soKDJwaqcbZ^SD&Co3o3LsY4slGFmI<<}U; z%-xG?2}5hzFap?a=+~;m#65BbZtlJ|gWIZIl0}kwvD?pl*>&-Pl|B|#b1+;k6^>S1 zO+d$s(^^j{wzLJj7(0Llv9SW)pgD7PIL)%plxiegpU5{bA?HyO(QO?H6U802Q z>%I=F)KBr3b96Vk8>223MI^bMJ`)pAJn9ZC3X{*VKYNQ|rI#v^dCXjI8RGR73D{|{ z6wnR*nR{FTySUbg?dcymtW`|5hnoY>AZA)ZL!>LJ%Pa|w9CjUn9WBW&>TCwfL+Qg4(#2;_! zE#Fz4X_t3}_P{e_v6nvVck@(XMigf$>Zmba^a~4oTc}=rCOG?MUWljF)d76QPoE#( zCa^?Y%ID+Zb{+O2>*Db8di(PFs!q1fNw5_t%eiroAgit2=1B&TbJ#bn%#n})Oa5bd6xoc+8mQTSJL=tP2Mi7JIj>}!$q?<(P`?PMMqM)GOD`~bHT>+s$ExW zd$ReRH|vTxipn#MtMKdfdbO27p!aJ+!{N3}z`YY0$)htZr$-VvE{XrkbgPmPAb-FQ zB!Fp6D~8gm{#Q7BIw{KH2f^gsFz5 zMogwf!5PCpi`koOhOUNv4wdWxX(y*zTQ;)kALScW2N|93#I2Cc&$CNk0$K9x?0yjC zqD%~s4kp~ob533<)3ESa=na43+f-{T@_qo4pAcv9wSy~3@Lere

r>4BTNIV9EgnB3RCIn|}Y8}^#sjsHyVDe^H6 z*mb-6aQ2DUU77L6{fCY9RKqk0W<+B79}#fFXL&=92%$J28JM%IBl%d=evL->db6_l%E(soJtI6vhrsm#xvAuG_uywx zBT&`Pv&3rZR&iQdr|LrNwQCIeW5!bx=(%<-D6@CCPdSqtl<{pCXL|UV)bu6H*nBit zlT21+Xu8(nrC(voehR2?majq&rLGfhP+h>qGf7GgEfGFyFmaB>-?0xT#khycmfSDp zHOxfxoeECD&;GE#GDSrW>XX~1Y;RF}pb>M5UyD=XZ;u&=o8SNA27(tggnmOV*Plr7~bA<%&Mhd+w zb495z;1AR*JtO2fWlZg)fgjZ+hkJzQk|%MAVD>xSYx>22Ir@*45B!TCtE z7Ii}+Lxw#{VMHF%n})+>KCmkHBQ!SpLVuK0P4H3>#Hlly0qhXq?r8G$_T7q-22iYV z8~s3RQ1C-Lz8nN0xEctDte>m51xwpDSq(E?~zfeF%Q9T3;SO0F!&XlSXC`Umu<8 zd==uJ`6}d+)&vvBe=%0DV;%R)7;R7t41rV z9*8@_4fxg4s!e9QYB^j?F9p=vTMh{de|z<+-#)1s@LS99x>xVvT=(pn@^A{$qPhM) z!TSlkJ!9b(9@>$cCL(H^IrXX5+52mH^U_tozkFq0+TJ=#8BqzDjO5Tz>Dgt=VHtdL z;Zv~I6%LBlw6{kY7%!~|A8g#}F6wfK+F~sK?$PViQTCLNsuzHM{}NG#sEbjgMmE{iI2DLY_N9NVjZ{%2yih#nrHWJa^Tb}qA$wqCM#zr+&P66 zM>p566{hC|!CTa+qHFwTlnEMbj>STBV+h5*avd5zmk8;;2^P1vDuVpWv3i1icf@wR z`K%DFz=B`GTz_d4rbL|_*nL&Ml19^(OK5QL61wGn7XQl!KaFoN^b+dfTsO3wC;4(x z$zHD<(J-Vou#c4|zB+$6 zMBhHO=7Ty_{&6BzJsdJ-NxmbdysJY-juZ3vpbiJ~K%&4XLlt-HfCh*2bmbH*6P;qe z7*hZ~hkMPNE)GxlsdJl;LEVoF8Kn}i6AH%0qy;hzG*Veg6lEIHqyZ6@2+Xef3PIy} z^j)~?8)*7EbTnOwKcMv(PH)ikk*Sr}7Q)gI*u!7i!}&0(EH zwbkb4pR%VU`cK=Dc6}(S%z!>rHq=*#0rpz>re5g1Py33lkCNn%uI~~ThHF0W9wu6} z4(<8D0ZK}0nVvqtVi@iEqZ7^JbWcqH$)H!a&WRc*K36LTS+1;-RP0LQQ$>@C>7uc7 zobt>u9l%ww^Cz7&#_m!z10?hdv~p+^>u$zWJ5H1EKeSrD6LA-3Qv-Gqg+OIV^5_*F zh6Hc3!P@HR7i#4fZ(Afq!w!|8Vh&s6e_iOt0(uDUq{`Erfx=QWeV472P~}P+qSpM@ z*)dhhvP$|`m0-QtmH~kfjxvk_(=$3S9bGEPr*yplbH7zqZG>tChlP3{-0$?gw&vP^ z5W{htuyyPBPMBm1aG7rwRzo~U)+OJ5X4~#@vIHnqn`e?Q}*iPaIQSL zA3okxU%D79J4=3)a5$2gfzY^SrU9K}<1LnBqh$uEYY@6#z#QJ(UL%bEss{dQ>K86g7Etw~l&&R|_?}jaQ|}3@y}Wt6d05TeIJ#C%rI}Rp zT%+#FPji)L^>{nIvB9N1gQ*d0+i*=~Y{k~ZG|OxqiRs3>;L$J=l|*<;HjdLUY~d|4 zg5>Eakdlm7J+b*7(Ac_UD*)h(Kya2!4qrw@k&t(JcDAkMpOVzz~X=EFvIZ{R3tcmHO9Xwp>Ii3Jst}`dFG)^+lGZy3L zW?iT{``Lf^2@;3RPiE%=@$)MPER#^;lQwj1-h$7SO~=dS)OBFg!Z*$Q-OrbMMIxNt zLQtC{pT8Kt#3FGfK_$rijw5g^Ft3uZI|v-Viz%wT@HDXX!?{1|XjlbsF&?%LWqox{ zdH;I~HZ?nn`Pt@1eo6rA$>itYCJA6awefyl#u7TOw5rY=&~hKQdfXQ;D%h@o>ygWL z2RwE*1e!9buRJ0N_Cg|-ocI}|>2HPejJx@`>3ga+cKS;R`GNlfVu5Ix0s^08m%5B2 zKk$07C~@Dqao|M^@hdhZX%N3?!~M(8QYSQ|OaZV>DKP`O!k^jQ}ul$$9jzUVdKWTc>@@P0LzNbp%=Jpvp3s<7|#X@y6}r^LFyHBc`@HS+3gq@QMdbFU1s-4yxj`tR^Keg z(w&ooW+hUO2%_wMgFSAxZu)LKKVanIMZR<)lIV|bjP&G|Rbvxpb^$l!ptUPK_@zA% zW#&wEf;Jg?g=%R=(H>1a?!)*C{afm`@<)E=q=iNtNF!QMgHPiCD&rfq_Psw z4xNRWI^|9wO=yFXdua%i2uDu?o#c!8bbTd42F&^0okA`FM~)w60t(YgXOV&rO@<_` zuA1DB+Be${IU4jgAGu58>`V6R23kwwJWHy1w}u9b4dw}m!0ct+B|K#}^z zq@AI_hEBXWr8a$UO>}A8y)ySq%|uz8V^LV`qa5bOokjumj&e#G{rt_5ondks{f)-L z&H$I7%IR9oXq=5_=@h1A(a30=I}#be&W@x2y%Wdooks9;x`R(&1l`{Bu~K*4RgY}p ziA%RCN0?J;(t}Ine@{>{#cOz8T1_u8V$SbnJs(H0Q&g60jdF-JYk8^zB}zqE8F(mq4+(9 z$ST|nilYqKOXx?!v>WpUFO%h#5VDtOXmD`Q&`?lMJD>sEcrxm3B?k-lr{O{)LBT#H zZ%Sh;md&(B`)z-|gS08Fc{}Y*FlQIXk}WWNZQSe+IJgd>b~xw`c7y@@jQ2SIug%xx zOvrqgf4BJ*$50lb_Ln+nui<`A=;s}!d8rR5j}+Gd64P`%gV zXT6o?9yZLfz4PRnbRZ`YWCxE13F~QyMppZugLFpAynKmkt zbwWo%{pBvi`Yd-Kga7ry*bpuVPlQ$9#As*>8|L?+zur^r9e_PH28I7oXmXLaZ}qJo zCbA40*Z8kH?&B@=MYEyB4++u(dC9_C=eNCV+PFlKSC!ZOb7GzkzwMSCfuW#0`&%@E z6dgmsZrO|bn#}KV)x1CIoWA_g33)X{C3sya)5HnuAmYcF)0j5!Km#s>;LAUKDgEDY zg}7h;6^*m7v;14is3Sy+6DZyS$co1^^mBYJ{zzkw8NDy5LTNwwhITL0YK2@gG`E^o z-y(qZ?y4%npx^F(^b3$O5>d8dt3@>9OF*=IGudrYxcvrX;gDg0Y@=&2x~9iLrl(Sb zPT#PgTG_PFT7UZ^37@~nG62-NKpbv=O{bpjh_=v20cXzUh6d2C;kr}_flxd9bv1bp z@ec&%+Oo_P0;jK~V*1}uX?!MLRx@YQ`+)##jh~mQ?0 zInVK#|T7t<1GD!wTmGzm^<5Y6C4?*Boom zJQ_o)`UiS}?0x>u5B{E0(k+5o~XOA7`!20C$hYM9h5z+V=0=ji* zC{hLLFamepr|&5%**aq1#+%6T5u}j?h-#B6rHsP9>~U8X4ts$o4PmDf&k*5BTh4SM z!Vb9_urYgM;dOxI_8+Q^2%93sKk*eY&}1KP4-Z}mB6Y%^UlJ39-;yxPzeAALr8NqP z(Vpl{m4BPm;hvl1Rib{^AZ4B;NwQ#=*q+C-fW#! zn&&sJ@L^g~_BlV%x&7Fr@b4X=J@3lKE>ZejUt@Sp&^P%ZEc$L6?+6KDTCVQ=j}_H= zrri@EIWMH>?QepN6Z4f3ZhvB?q->?Qmi8YmH{Iy4=y-NBU$6$8K-l-*cc4RP~O>J=pX>}8|TaF+-*q$C3 zk*N-B(g1Qi5G5OlruU^R+~(PBQ>%u2?PphKaV?Ub$XrX^`(P#A%TCRqR&Cx-M2C8p z8wmP=O^F_DC~7lXdYAWRhH43+^H=7el*V%pU=r6Kr_JKulkr^bjQSE{$~eE%W&s*T z*(~!#n{$S?as6skC1O1)sIEq48bhtOvsT8rJ>B~oWS@D*))8AHb{MIT7ux^T$9tz;YC&v;99`8r(3za;lFMbr2|B% z%oq?GDqx?8q$RYK9o+-Qckd8(fDFg&!@6yaQzdv;G|sBv$_#dfV)cUb-|0G%$N=** z9S`I&+5-LXz4Ui$jE6zaQ9b6@Yg&(~Tz3eFT3CC)3E2Q?J0}c@U2AlS9^eM54oWr1lnQCs3zm^3!_lRm)TB%R<&wCLq+u zd&ctopH|iXNOb!DpvW;CLiC$~X>D;oAMiy9%I6bE;^>WX#@AsaBvQ4Z#nGrzL=Y*m z%7S81!!3o>rOkXdkJHa^hl|{8FL46DrF4!@4ISa{mcEG5yVo!WKGpLd{Y2(dmdl^a zx$ctuJt>O!X#7*-SuV$X3TIuzcf81)wPK5_o*;{J-Zq`#RgRv%(tAZkT7e3D>=kvW!DsKi;B1HTC!Vv_^B z+h$Nau5y*?TaL}dA9Al>s>$V$_Oe6<27W?-;&vQL@@Me%W^^4Qh>wg&tm6jB7tld=ai^@$XZL>b0Df4!efgoD|326h z_2(dj;(jE^RL2DHcWxifHnf?%+Pu8Dx_>U|Qju$`@d-p59h!%aDu`=}$%P+X4G8JUG-2^nye=aN!HE?0&}+tu7S79hChM8glt1ajsAx#9}30A}dm{M;X7;mR#Dwe`ar@cLCp z5s>b`vvj%ek8$f+0>;;-eRSGfEK*PbQvLq}DtI4(Pn-DwbJ)7gmf_)(yJ;ecv4CSD z836%6HW$AA?JYn50z_U~3Fa{YnfO|dwIU_}FWH9OdK+C&{!Qfi2cqFsSlm48w)s}s z(2wLl7NFl>7IIW>;aJUX{t>whz>p$<$5_FJIeL=;B;M;pI}AVWn$VqC$XSzO^MEAX z)v+|p3^hC?Oh|AP@Km%h7Dyh3Z+}RwM+CWLgcUKNreHo|>O9dSPy6@}%M|y2Wr}dH z{Y&r%$eX1AH5-6Dy!EGhRUr7ofHPpFn2#%!+|Bhzixxc;D6_wdlF%K9;$Q_;5D!+~ z4?GM_I{pmb`60b=Ws=3jnIF#meN~LY@*VjdP5?)|wHO%1*gSKs85Ci?EIph8=vyrr zM{aAjryKcLS=Od3OvDFN)e?=L9PxL~za~aFf*JhgQOAs1GQ-Po{v2_GYP6jPc4Rr& zAz+JJHG$)^?*~=-p!onvw4e-LxUNKeXuUb>HXmG$76$;9tTpy}#@6v=j}i5k%Q@!w zjPOQiW`c0y&mACPhM^reK!EXtRCs;&D{L_?i5z+G3A(b7p1U<^_zAk+5IVHpdqgPa zFu&i}Zj39DX9tHRVYs}mx;p%o1_3YBZo49I5%p8V4ff#W4fCqx0Qud9J&nto%b})YjWDJg^yAKzA!BNVmcg zH+#vc>uuPJp8>G*6_%LHmnedLnda4Ra7bUX(pbKY=K#qY1RE-bRN!)M^#MtJLNyRa zTptEw$V*E#h455lW-5-KMJjbyUUx2T-z3v3>QL+Q+A5ZHJ(@jSoxtZCgFB18R@!Zk z7Y7G|X^$TFJV9UZ-LF!7&_bN&t^vh-vo`CJjgkUpND6%9u=A zU=lnE&%P~}w6zxJuJ!5bUM{B(+bF#NOem3$kdkYv$76W#oppW{7?kk9wG%j1M#PF) z(}~*nNC`~xCwv)*ky<1#0gctDw;7$mMCmI<#LI4jqgS4Q@atV^IZ7V9%zcDS{aa-3 zLzn(F4E86t-8F~S!T8=kxh+KlrKX->x!0O&v9Pxv>E~_lr>xE~nFhMu4RP_lXRQfH zo5dgAH=Fs5^^OB%1>NGZfvMsMAAIaqHe&PH>-|KqfI;w=c5Kp#8Rg86Exbp^Iw{SD z&yR8x%xQp*;csW4gtsLfSE!@rS{OC3EAqv&%@k(Ht%ItgKoOV{yyybFTL8W|uTS^a z8u5o_ELpIqE2T1{#tyz>c+BY0X4)Gpc79DFJ^cByf5kpB*9d@;KV#NB16I33miNY5z~ZJ(nXfQ&y#iA>xT8-TRH zuKZjIxt6r5=Nhd@ocSDYMTDOgO^n;QOgGAp6FGsf+2wkqLtV@Sd8Wb`kHb;A-lMo7 z1XWe5lXIpok#765|Ba6B_iR=`7uGntyL@OOy5e)l2UWR^PYheG2qd?Bi0+A4h$N{M z-M*-!HC?`ueY<)c;s(wYtNO<7z{X9D$7E&*_r2XLgMf)CI&+ZnaGkCi1{-Uy#F%fK zDMF?&nFN}nkTC|FkD@stK&#F>)*Y>C4^)X&MRO6AI7Y7lG#T@0@B|!1zk+$_C5=>- zWlx;sD#JXqUdYJ^jaG3LhXkE?(~~Xd2ZqqpDVe>hge9hmA~g}EIM$WlIG%On_eU*L z>q_N(g6;nKg-=`44B2so-PN-s238zmpqMB|qL8u-{y@2z2c1a1kuuS@8i8z?`kB0Z z)q;zReNi)y#y}H8!o_e`nQyC|m8?+x=w;slIL?9xgM6mr$||`THdgX}$i%9?O00E3 z)r{V5sFK|6kg~+L*$;&@%mvX2-69P}VwiOG)%N*{u|Q=$4$1n?!XI5?1sU}M?#|bj z;2%xgt>CpabY5RmT|vHw&mK%aCp#xqP-TJO>1J&*Va4tSo7SEQ$vY6Em` zK2a*sLNPwroY{`m?d2P3WjinH$Yp80n?xCy1zT4cgIc#dDhwWD3`{~sarsKk)Jl+? zdr8QMuVFURAL`~OqP5*0y4cj9K>H}OImv0|GJw;)!d{Ed9?z7dZo3?9ryXM>eamh- zo2?aND~>V3;5><)xD$OfL%4P)!iyq~jI!fr5vYzFarVi&etz}zy^X6`TicZlS-;5E zT4o0+lTEb|WR`W4;ab?h=B{y2iRN%3(eUbQiXiWF|5<#thjb77-fXsJjH~njd%qLK zT8i|^l7b6?vr~y{>P_U#hpa39BUEwo{BbZ>LNrN@92=RT&|&Qt`b}9xJdbJaO_GLxzZU6Jb_rmz2uVj* zDSUiyFys8*D^rsvha(1gb@drf>jPs_m)8SeS7l^fT|)`*({EmFZTb`7d&g7oyQ~Gk zrkA_}h=9N?jY?={8wsVcicV<$aF(n$K928I!aiPLwm55`5#uSnz+Nz$tr6ocJwYV# zg)@3mVP*_}7o&fV*4za7+<)^tmZKV$N7&s}lHjACC$#{74syxbovr6-CUQytQI-2I zZ`E=aoe(gy>7?)4kLbkS$qPEUU0nByvQpXkX%#9xQ6|wubpeVsk6zq_fEgXUvi_<3 zG53F^hy1Jh;#Yvl_FHxT!^|)aoZ7I^%OtA3@2`tU4Pu0Fqr00uJPX|4v5KHlzH0m^ zeN**GqAkMXuKC3UB)6UG)vcak^e&6XRcI#RNsB8f2+6ZYyHB0C2kO+I*4}e`W)|FfD zos_hns&PC}Tv!}fmK&jEMcJSo>(awrDwEYEClwJG&4=W%@hk$g4be9My zD&38gFf<}1J%9oVQX?T90s^8SozmUi-AH%We-C=c^Ly^K?)843^{(w)d#*j>bq%9y zbMAc}=kXb5IF4SL#)Goj6H*pJdE#au&8$e2!ZhMTrB*npTnAJPSz74)^>UA1XjP>K z-^lZaLA;C3b(We)3OKo+Pijk`bpTUrTr0z4B3gi_B13|95FkNW?Zjv16S>~N$a#LW zQ>@*2L$J12qmrfg!7Sk51c?kc3YCS1ors38;n2;t?r}!qVfH}7gDoAd5hKF4Fx(%n zmT8?bftxkkYG$w=Gc;?&gpSuKb6mEQt#p8bhqN|U6saf!{|E1zA`j8ea--h4>Ee$t zv~XD-H!`E-J%4%#7ha#;_I+mTRnzRRJ)>*3ZV#aJdUKC8vw+GmKo9HKzh?6$rLdEb zE+HP_t6qp{1Wb8g@H5ygdtyi;sV8s2pscBC_;f0r?}sK5SPe$Sy-q7&;<(vU2yjZ+^$-*F2HOL ztj;9OOM#1ZbCKf6oukxDYt)yg7IU_-GqzQua4`Id&{6;p2k-86&;B%I54l&(+{9h! zvwRhvqsasV*3~NQpc0Qg9PWSrS&tUg8Dq@Z`XuvoHn!3F?a+Pj*?Wda;8xWWpUhWg z@kDC2i~_OYlI_R6<#S=6NAIn;?)ztAZ9xr~e|yDT-yO1(!Tqj-1d$B$^x>cF`l&Hr zhyJUOjc#^IVh=3bDv|HrBau`E;%jqXUJyJ1Cu@N;J6`(t`abUL!61s-C)qoq)6~VQ zY?@1Gp9SxCcFkvDf3FYm57e_;8BL^)N#xRJHsBr<%K9_b1f_Dt?F(N+jTdZ)w)o6Y zH&}QIpn-c%+~9*2$Dcijgk?ZW~0=2M@+oyH`m>C5JTT>Fz(SbVAZ zX?$%=VxB&863<{+;jabmU%OTkVaHdjV0E}fgxW10mYUf-#dQh1cODq06#r91^}p7J z@c(PUZ719n0KU<0n=N+r@V{LF^!hYr#NB^ee?X41W4U|>u&K;;XQdQ(kIdOh$zK^B3Pnn zoOU6X7}p*nhJw0zL^R|BB-X{344u;d15n}I7UCCvQ{I~P$T;{1G8c&|wh>LfOZg`= zY$sY0QLMDQ58ZXX=J#tSv_?^z(98!=s7L8;FXR#+*+1Y*#qhLz_xyYyh@(ZZ)0^zC zN3>dE>@7SoKJ=j&*4wODst*$UC33a!&-+t@@9`d(4ECs@_S%c*1rZ(?y5(*7(lqx_ zeVEVG4*lDs#D*`a(H@;9#Z2Xi)^Ubu(oE)P?lu{afRe=;g=hMvzeB-`B`FSgmmXqa zem_@TE`jJc_lpfxvl1h;6;KBShRL|F9uqdIE@<(Xg7TN=q4g!gG{u1HPy zEfGg;cuxfSWsw>fi-?K#9$B1q#yu-C)w0S{`PA9r;Ph#&D7Z&Ie1Ds6JDv z@H)Qa$h-%$wUx@UJhJF?{D5oV8y#oG)r#7hS61|nQ~I_Ix(0)SHtd4=*=ngtC4?1@ z@LqtB%s}&N@3M(su17!h{>Sbs7}TAE8NRBjlxe#zKZTdU3`$j4cf1OVcPHOs<4K@f z)^8qfmSb!!8{Wa<>X)|PbgV%A^>WS&+QAuzoOyY>&m>SV>=2^n(_I+?S(4&AKEyCw zOMe_RENUR&Zl@HpeqBThhyY*>3QBi_ee-D(jF-*C(n#Dk9jirU`3Bg(^9@;5cgHE@{TyEyceg)azFrXi zaq*Z48fp1{<-2#^&1oh`C%8}9WP`J)x1LuCA?2ma`*HiP1{$AIW3hx;2GMq3vDDlc z{1#gEPt(%>r4$4d)c&Cc6yW@~EvT6G5DGq=>-^*QA8b!qaipYPq|gaBAcXp3-uA7d zu~Gc!MahjLv3kgm*}Bh^^!>8!`=&W;)U99CjVHT0Q<;*$mUbEKGnebFv4$+~bDz)N z=gXhaQi!|JBnr-{eMWVG|Ci2wxr+*V4qQv^xD&yj!k##mo)wtgndiA^@i>Z=J9h1B zum1~^=-|?*z$u=5ZDo?Xa{+y2r5bd>g%xJsgP>~0Y~fk=hKaDBe&=Fwn7kjg7-S0h z?oP8BY+~`AL`Od!SHLN|L;H4!I&NQ6xRqW$!(CCv%!-Rts|}sY5Ny{+dj? zFJpZNN#x`uCOPcX4JIR<{?dI$8h+dsRB!WP|A=L>0t}&$rnf#^dQU8q?K>UjUv{n!*SX5 z+f*5T8}U=7-8XLZEmAzOYxk|X%01UQ7enc}chkt<0GSNS_Gi-XD2F zj$`637en07v?p|amdnC|hV&Rj4cleg>W1}}=1~otV?^-tHo5JCw+R+WASNNYkf7j) z9gb0b1=R}T7rD0)F% z+|G8ot35A|H*zRF&sM+rF_XZu^VgW$O-Gn3zqd8@W{0(ZEy7%+hgqAWgaBm#k^{R4aKN<%hvOzRFtnYa0Xqz2>!un`Oi_#`09U zBg!6eiy7~^-B}2&{ZU4VZ=kx!R1$aAi!`j}st<~+_Ivo$6Dod??UgfkZ|en1q8O+w za^?o^{JfG)ncyo~I^B%UXc^L-CUqE}id_>**FWTVkd@@a z+oExqt-I&~9Es#1;=*Vf_X<;c{{EyrnILZbjXVIyAtMO>wC$PwRR2iQ@kin_RKeSz z`ES%nfQt~lp;AI}vTS_*yBRkA(O>`|hZu%Thbcw!f%g|cuF*$BtO()P2$jXdzMivp zQv&-{$w$HSJpl-RzPk_$g&ZpvLgFO121nkhyF@ zydHtn*ZMc`hK;lbsCjBsnZM9`>Vit}rZ#+*;b(6+ZX(k$#*ks&K3vWf@c0> z)CkV4vwi;Mdjf^uf585ptKq#N=n$cSfAAa9H^UIyNLgYJDY#I#y8~6e z+j;2RIEirAG4lSjfS}FK&zGcDYfYGXLndB&6M9hjsQ%y$>>zj2(l71h`+9ftNC9+D zQg1*1CHl{zF`3Hb<3&+4Wda#lPEp4u8!^*D+! z*t$4<1p!YwNz2XeJ1dTsCKn8BB<7bUhYxI&M^E=CuR7_iyKPxrRG&W4+keNt#;tU> z?1$ODuzQos)X4=_LU*;rq*_y6AMB%3)&L}JLgSLH=En4z%f&zaX8a#ZjW`AV-Nq|` z{x?uND~^M+!xElDmIFCt!xn}&I1GVcUty(GyuRnLbf75PJueOEA&&7hUgtG=iv!d4 zD^*&Om$s>`FQp(Ml4C?(oLTRYd1Kd!9>hJv(C>7^nCg6oJynSbuvlZ!m*x&}a|4n5 z&OyD!2-8FSjWfN6{3|51?aX~{@PVQP^VsP?~;-47)}Vi zofrLd7V;#*HsmcTD7mZ%tZNRqM*tvM@6$ezE3Y1^IJD~>MvvZ(jKY`Pc@n|U?dF}f ze3N@f&1e$ZXZ94-b3-Pf%Dh9J{9i}V<3w{^ zSs}$7*6zTWICDw}b&Yx~8YNn0F6k_^yH5FXa(M=kZ3doV7FoVOA!WOCU=Q{c^v&Q! z+0-0+peTD;DelX5{f4amU7D>lhhIJ zMXcBgNzG39d2_11xpzom|MduVNU;-$=%=`U^`a*5lI)tJ2Y~PN^JbOT7^s`Z-mV<^ zUeV*B;L%;VYwy)9NKnjO`EL3!_G6}H;(wH8bB_joJ{{f4WD@h4&QUj)X@)Q4m-WdO zz-9uU;N$rqx6&s$wXV8Fl%Po4wpjDJ8hdVe4N$7|eT4n4i?nMmo-Vebo47Z1>|=O* zJCDg!Apd(#_>h_Dhm5$Y{k1EO?=O>_Ls5&AjmWjG1pCaM2R zG0*>x$kDHAztA(B)_tGZ{8?_*c0T=$o+;nnxCpX4 zQ-0tQh+H~8@xO|z4K|PEisSR44jv`7nx7BWjO!W`tDVyhA*TC~ktp!%B(X{q98QjU$C9Z5F@8>;_@hyn%pI?O?mb1MAUk zblKqO)VyOY2B<&V1I1${ZUoimlL|G>vEZ@0BY!+H#p8K=e9QnPqfGiFeYDg1dU3v> z1`Afo$qFkS5yfL%c$V*KjcnkNN51yWCOHlWxa4=V$M74>GQp=K91m#+Px7FV{GT=o z)Q(412|YuOvf9Jmut)WILO}M$cmsXw~Z1itzz_!H1 zE?rK*&gXKsPr=C6j9{%Hc?kfChFE9&kfLIpS*hAycw*T%3(uu6)>5;x%y|!1Bo$nc z+x0pMEZ;!dpq!cf#&|o5ztA-ny2C5femx6;hIUis@B{t4a?nL# zHoK#cHshqhBbZ9OFSsWZF56%d23P1+%7mygz!R!~Av!4aC4{W-^x(2GAU=#(m*%K( z^)VWI=$QtJ3^u$|?IH(**`f(vb73tW-yF>v(irWhSC@$GR^H#A|61$wqq=Kb<$Nn7 zImk)wQtV`(JwXl3tn2DwiZS4)xHi?Iy-;Wg)rs%9ap>#|IH=E^)k7xce356S0uO8H zd2cwI>o$7Jn%@}J6Pgo8#jKg6C^-dhyHVTxhGGKjq@q97y{F7EXWmdt5^uZ~5!y@Q zk;O+_@a^NTpQVi{9IiD4Gr8sGj}rH?zKbxTW)mMq5(v?wW^#YQr4{q5l<}r~sb;(ov99yP(FFGh zI7{}=d$cWNg&w-pi`X;oq+4KfzM{#%vxz-)5@);~u%Y@r5c!DFezi)Va~fo7P`Khr z|7o)N9}93e1^-p+{C8E}wcLd$TAru%WecbwH+uRaFB6D?CI3To(sDYD># zmj#|7Zhlq=gqwKbcX*$(G0xn+DfDRM=KBLfN-2n`H;j0V7JxlPy|Dui44Lz_C~KQ{ zU!d1F@4f;D4MrSM=joS*@Ax3`ycGC~dEK<8k6z2+(vxQSv6&93w-Rim0IVR1TaHg^Oz+g(&gz>8gK@+0*SNy zK^~e0Zjj@38Jy5Waimz1;a*dD;pl!EkaByi9_aFRj$j-m*xh1Y9-f|88|_CWHrRe7 z&(>@sXOv)86fYSB2M)vPSL$_dK-RBr0Jn&@{)BJ1a>BRt8QnwoHPq?<1OdYlrKnqi z&tByS`Jc}|U#v@nlVX5T47gh5MEUG zJaE;HojIR$UVKWiG`Dzab8VD!d9|G zTW*-)#qVuiJLcF(0U;h3peKvHcFb{}H3ktAb`5dJ{x8QIpU;~5bRhh*UwnH9KvFgJ z@3|}FT|4D8ajSR2XNtdJN>zgCcDAZgnH2U(pzfh$@^&f1pP*79>Gyy^4#Kgi2;3lt zbVu109+PR{BmqR}@Ub(;uU>%Hz!l_Vt|&5CIO4C#q5EmOX6g4GKLR73KiHvQzWoxq za3ubUHw|?|bz*l?2&i7RzWsy?^|Xs6@if>127~^JTqr@X!dsy0LC~S z2G|4UuQe*{+lZsql-f|zZs`Ij`WU+#$An4s>3>GRvIMpK?41MGbmE4FF!DY7Rl z+W8@EPJtbhZg;dRS9Y&5abrkRd+`MT%l)Mksc@4e9a;eM=B1esee z=ZwOE>y**9A#Uhw zZIC|(SfDP1>vG-off3-IcyIc*m_B~nB-oPDyh{2C7oi`uQ8{az?r!j%iPkPTY4V*Z#B^{f%BPvZA~B!~wI1^z5qEPqS=gatEvg zlLa`0zcQ!ax4)~d>=WmfnFP&wZ$)B*VZ$4`jh47c~1e|uytl9)rpl$lbx*-zO;)%5%7V0rr+F3j|+B!ez*8kJmL z8svC08$h}lECy+Iu8mZ2;aO+kYDN#wLidQCqJ#MdbpyNF84fZQ-B*}jc60B|L&dTf1P7b z!HQWy%1ogWK9Sz2PTFGRhz0K-o>tV~zoeM);{VCW=62;|*IlfrG7uIQQNEGE4Br|9Z`ta;$({@4AgPWXP+b%OaKgR-78@Buc! zBye;fLi~mu$vsMGk-Rj(+`x~F<62@w~TWqM(8A;LwMg-Y-s*8Uy1suoef4q*4+2PZ3|JRtT z=1*KWsqt`;6d=xavkYXue)BwXLYSnp3~88f=b zn27{qv&aocnWutZ00k;Alo*)U6ha)s|yE z#0U;?Vv0=3*$3FB+X}s!r&YtPShdby!KIUK;SZXh>6hGbS4-V+_ZW*21s`TU)l7nK z>@ucX%tC({#b5=0;4%qX!H}64=J2O04S6_lsqv$$VyjnnnBF^%PMZBvw&nVR@U~>9 zNB8)x$AXsY?o;2H>y#nWdn30b)gbHc6lWv;mO~58n#! zA#WT>GAW~tZG{{^KsT)xn8P9HsOXue(}@E{u`jH{vgPxOEQyK_ZUa;CU{5(iu5+xQ?Yhzkes|69%23uJKE(XRo zM0c1lw*2#+Jf?06P_J;97kv=H%W(dNL@Cyn{~d;jQlhT_p@NaP>(@b-g|>lYjV$pm zVG@xcpGV!YB>fEuk*MD};E@c#^cO6)lH=`G}Su+tO>--1r2Go zZnHN(YSVm>GHo3)Hjb2f^lmYu;Jr$|e{xJH)w@MzZ=y(IR3jHt-|P=D#D*}F^t(`P z4O2S*JZ{=r6un*dpHWr2s=6xQxqH;f&Xz)Xb#M?dX;w^TRE&;1KEbwO$+kkKct82c zrDs(7r~MP5Srrs<-kXmw6uow8<-7ujcrKVOv$9HQn%V+VN5=S2tz^p1O4ZsXhesnE zj(Vxu$^s7FEnyHYsKE^0G;LJ>9AvHSgP{)CoMurfv zFfdZ95SP@#UNBF9&RV+JHRQb+QStX;T(y1o}O-S z7$aO85x=g6=|0;j z%YI_;!jQhAfi*Atc$NMOQdDWN(PB;8n~#VrC>mH5WG+J6_TZbFc$OKtZz-Mg>+p&V zBx~7fWpNH}Y0wxv}jfJuQXZ-$0L}nBE=B*BjcUvV5OOiQPy@g)*UhKYbnDVowX1R^&ZbtW_X4>T?EK@NG zd<*N%=ZEvj;ZO&Z0>zUL6=go7Fh9eua@vln3}x z-Cw+%gA(J(A?IQzPElB83@5Rlt@5YC^1rvb!Ug2cbj|2rs?21ux?V$Lis1c?i6Fb_ z0{ZTxoA?}~Ly2s&h+Q=sqj>jckW0VHip>b>pNk0Uqv%#}PB_jkci#xO8}Bgu_TqJc zi+Y)maHS$KqgimJs8y4+X56*Dns3xbT5ouvg5e^zP&jPcB-TA$4cm=?hwn&kMR0~w z)uB6rBAzcKW>-Yj&34G;e7Po(Nkq_!%yH*yd#(2Tm%y#^AfJLJ<-604#3*LL$?U~z z+~@lpAHsPcRf$lcm9ExdI=%3V$bCooE~{Uf>kztnxzR)>v1pI;pC2}2c6~;hu~B{v zkX;(Pr=MqzUdaOfX^T6L*gsCE|8w=ozisqIcLxBiV-sBK$hMY4Z9FJW6-V6)>}AD) zy=)lk>EX%edGyDIb$J5L4P;lW+Cv!-O1q?Nft{c7Y*#9@Bo;vugci1>kNZCGr+}sN zcgZ0a!bSPQrYHUAN%A5n-BT|XW~4i5P`Z0{?Y9>QMNkwi4EeOiKa)VL-9&aJF6Iz5 z@C9&FpF{VtSZMu2O8r6#aRiT~0u5t6(+3;lC+AkMT76D!s`ZoTM4)7NTH|MC`)GTX zSPut^ME{0f#RU(EGCZ8>IJ)4rb*gM|0sog_RX@j0ycR|RVZ%jc#AM9xTFA9+>Plr{G1j-~EL90W?sRy3$qXApkDQ+NT1 zx{-E#90t0mc;IW8^wSzi^(Xg`ofX7UHRwVEliLFA>m`O&pVNAY7qzP63NdMZ$0uMZ zLMPr-$GxxINMP_XLgNxcG$>pu3r!G1v?AZoUY&zg&+rMmqlN;esOciU*q9`4&r@}~ znzWRA{VD019a^74+L9bpzn_=Yd_6DYul!1smNCZ{C;*-gKeG$*E|Nz<$U=ukZRk znBuhn!A_g(2yzso@5iVfP&zSdroX^n!W`t}*6A{7Wu5`SxDUJtrT3zPAbl`tVK~*D zCv4j?!_I=aJGR7%zz>t8sx(;NXCAw&H*g#{R%?+|z|T`s;qRCz5yHn(xP-qj0!{fC zRn=>?`%008!y|QgLH><~e);BMP*p$ALecJ-f}@NWoH1=DclxLIBC)h9BrT0;s>gH6 z^Q;fw#$3#%&%+`>pfIUqw~CjKzc5MQ{8w*)e%jVvn&T1gx7^lNnsa{Yo%iLeygBBT zC=U&335k1}N0P8!{b_e=$(rgi7jg4v%5bMYqR085hPTG-@+%%2^Ut`VQueEM?S%Z( z?v>@ZlkGs5WH!H1pd4rggq_7UdvI#-FH|k{ra?>|Z(2>Ip74+!@of#A#{{1(i$^VW zzX9mX-Fb&T+A+iYVMU=t~(@>1!&HEijdpCN*G}k7c8` zhL#lezA%Bzf1{u3EzUPAIc>uRRsr7%Vz>WsvicwEM+Er)b*HZ##C|wWy&Ao2*A}Dj zxgI_eH^O^l>W}+G?jaQt;$>p~87n=F?yIrz&-XX9N%S;^Q4m{8IuNRN?x@nG4rxSGbs9ajm}t5j3Uq4;ph=bcpv*?% z$nxy+;bcI3>S1<^P^`_XsIB%7YZ&@op$UbCLgD|`CNlA*y zKuL-jL5UbS@j-TU;|l`&SYzJEy29wQ5Z2T({74oYM_4=km-1chF6HqyBO%EGaOJU) zfV@ac7JK0Pdali{agn}E<}l2`SW>pOtgrh578o>iU$NV9C_xDGq`u&2u9#(kHdW6o zskQ!DZ%pH1@fBO)aSLU5C_SAuQ=P07yS{|b2y`*JLw4HomBr; zPZrmA4sWZ*XrwIP%f?Pm~RfvYHqQAy~Ov$aC4kq{GSlYW^hxPjT zWw*+gq*zZ!zKs>_3k{Q<6ujG9b>gTWi={QGca$s>rYKrv6X@uQr<5c#eVQ5+OYge3 zv>3OwCpmah-~MBQZAH1Qgk#H7;kncPWc!b(Bd@E=*~K4XSI2A3V%4XM^*IL69VHXj z)3n|3uWaTP3)9|52GuDeI)cp=-=SyaKsa@lmru^Jmd73P(KD+Ml9tFc%#e*ex0_Ph zxiYqiJs5qY?rQrpjif|x^%iOQTd9$(9e>9sYwRFb2k z)BF3G?7r5UGAv+*b}hbN4KPMXg>YP6z)?E3aPGl$GV%FJ^ZB zp@QjJjF{OS&vLm^rjkTG^8frW6fBE!F=mze!mXQ0ENg~aW71Any4tYdVTJs&xmi#@tPTZ{eoRkZvBu;pGBP6Wo=-ZDM6 z@7GdAYbv$s{#To5`G?jz(K;cvsdgdtxxk|8d?TaUU@d(u^`PtWqPHyPA!<+!s`n>6 zUT=l%9Vz`Sd{KwJjc*$FvHr82QblKIF#lIu%_C@jGhbsjBWOz|h((4Hf@qffSRwl! z7CuSO5j)__JhY`!(_9}wlS2O8B&x|8a1iJ@5rB3x z?B?&LoY$9o-9oZo8~@ReunDf(bl;6!p%i>pS)_BR_FFI7HU zWBXi?^Q%>c^N0HMzZ$v*5{oy1P?1rt#a}J;4u-c?vUQ@qA9C0qZOFCi~ak& zBY(BR8ky&BtD3;Qc32w=aMtyA&KeV5cjcS%0u| zsWJ=aWLUm~!*nXRDVo%uO{A4Z! zY|1aT%pr0h;ZOh4mX<-_b8iUOnARLF^5G}VJD8S012__^K>4Clez%r?Y(jM83)^9B zlePAPu;M|cepA|}4pV1nQ7@B(jh65`(xH0;h4m*?=QVZZsJJzCb;Q&)Mp`UQ(ug>U z1cat<_{Nn`2}K7$F=Zxz&8#Xs7lFt#B12!;BT$D_#uIHD0x>1Xju$G!4h)HTjXWT= z0SCd8{ze}4Akojs#3lR)F;eK!fK&r&9hN!FZUiA=2Vc~*17Vq$R>m7fpgiZNk@a>4 zA{l`}DV$<_oa>LrK6(c^(6F(CHMn_Oo9OHTjm(R?cg~;{&$V%Wa9QEJbMx1&#ch8j zE&-uu{BT=?BZqyPODM6fIY=7`XeXJr^Jry2fu~h1Vlj{d)YHh6Mo=iPzAma0-wBG= zCXPH|4Nyt;S1CfpPU^ObFvIzx_1O2E93s-R#(#U!b zeH3>Q`Z;7S!&QJHb@_?oWgBkV-P?V$k^BUx z2v?Tt3NOY)il+dHFob5thqAWjNgiY`#X6Y) ztGpH6a={hrqX{F26@y?zT0#Y@yzM=sAGO%>(X?NuquM zq5<)xHU{=zeu0#u^@iZCOa2D8+8M^NblYiE!@wul)CGjet#Km z^YwQ>5UEpoa!Pp%@iWhp7D?6E9#O1PU~>`MQ)OV?+Z(}9xTWcIEg?9gC)WeU8A<07 zn{A*>(^FnfQ$KOI>a=mKbeB6{1Y+XW1cx%JEzeIHh5i1Dez}0?Ml!&?cM3lIBUO-# z^Z!!$^!E(E0O!A$@5HoQTL02_=UVGQ-+WNU#=nm$Z<>~h*R_BzBV^W7vc+M|b~_@1 zP2LGfHp!&*vS^)PW36zi(B@q3On8jQ7`ce6gm}Wg0mGtjQj@emxVx!2LGzBC*_qw4 z&(3=9iglQ>Sz*~am;d7NY;lOtyxBKlE8+SCGhvF0EdKjtNAHRzFP?`Wl=K2rS6y92 zYtw6I(uopn466X`zIPw)pjioVjVn1JaJ>?KL!=u2FvudDG`d?$boXJ9b$>tvy@? z4(ZW}^xpmZtf*X(X77{D*-CIAXDvZQ?&J4@h?)zYoKE}*ZpN@8sqGtKKt*4BP@$p4 z&fsKJdtc$jI)Ytwzt)REYh^7cK5_71!4qmN5!pvUD-Mrr6BE;@ns!-lfr~Qv=QXl5 z2p)yv&X2q!8H;<>t%AZju7XI98%GDAiEHV73stmgak)99#ihA9abqF$N8`oL7b_Mi zqG&2O2ds=na@}~fCMUWKMy%aAFWshb(b?D6iVHK3%SThbY<(+wo+7eVu^w0k0{RzPxnWH4^}pY z$J;euu$AcBaFmpIUAk3QdS0D1Q%+Yy-LLjegakRHZCPqhB5wmR(p^d0Q^Da%AtXlB zu4k?4UaXhJ8r=B=scmY!H;j+|n0?o2)9c^MynrFgk7^rwvbT0qJ1 zgSpI#&W+H&XUMezWrRgW!F;U)$&cMlTu1T_;CY~0lS|wF++-|tq}aOYP3yh>jXh!} zy^_?M6t!!L9ozyq9y$$}Bq0rNSQAdnZv~AQ#;)+~=M9@nNPqrAFb?+#5>kkn;8U^X z4|N=lNC>5z`X&fzc~%QF0bOYMyg(D6?Q}Xn1N7ZnFSTjm5`p*1OX>i!mDj&qu?nOC zPGJd}dZ3(Jp^;~`PqElcD&4F_a#7aQIp9|%`d>22L8%|l+c4lWjZ=Sr4?bg|O^F2N z^(o@uuT$+`r#wU7*iknECtv530|^mJxzxa0yk(3QWx7@I6$fN9x2E$i(605a)<1-x ztG|Sez^L&Pd7v-AcX<@5h4z362UdKK436;{tx|dmAKs^*y&k@#fewP1Z69^^OCVh# zb|v~#J!3|}fww8_`S~I~+#(P!HBl3%<#bS13RDei5v{;{2w0W@rKtx6A(}jW6&D)2 zhj?;kgMh>t%3CF19u}-@dlH5l>$Xlh4^K)>`Np6BWAyaD7N7_T{L2Id5Y6$wObnHZ z*&{Kjzab%;_RHm?7m$eaqx$w-n;3c$@XFnfs93qDewh{Mp;qiT^0IP8>zL+D*DdC{C*Tq`jYZN^0At@a-`}KkM@hz{fK0rYnb+}g?95l{#$A86sEsF18=_@iv&;Ja zOXw3YL49Ze6BM&yZF5izs_0UXHi&Fw<(`^yQ9@aryk{ZSj6|YN0|A+KlnR{ny9W$( z^*%;qLqhz>h6w3agn)T!gu*EqSwSk>;BBi-BTF32mydtk(*jCY?4jtC{YPl1P%UF$ zv5N27fB+~Fo#<>#2LdVD4SBbQ6hsYUUt{AZ5^eJLG$_xM?`aqmp*FLQ%+=++3?L80 zo&<3Y;bc`{!b3Ev`uC`m{U0CQmg+d-mj}Tdc7J<73?rzKv8ihg0ebOu|8Deg+A5%! z{NnP3miguUGl@$6$5~Z&sv&~{=K^XHKrd;!gU_4K3qErB-g_i|0c(j44 zFq2tQ{Zi2&x2W#a)*V<{9GxwX`z=$7UAcN*9qg5q*o5E7S!nFkn}OaEEK{FRTHy*S zXcnS_6)C?G)?kF?1n#0D%B`Cfm22t6L+rMmWG&@c>NDF`xdrU)Xk?z+PD3W0 z2z~~c369#Qf`0KXlWR2C4rTRjX~RA3`u!~AK22Nzk&_2&bp(hUAs9SMA7m_Mlq0L^ zIRu5~h^xwmry`)pvnjm97c{rLhNfl^7K2xpJmVkhv99%@S0ZOH6=%tE?32WIjO4Rd z_E^~-8nu_dVmri`{Fq415pl(`doam#5wYMQ_Z`v)^8df~IFmw4wP&3^!U3mtAxkmv zK4W@GMO7CVaw(N!>yr@_!jRi|_?`j~YI<|5V={Q(MLi~e8R!vBI?I)2b# z3+{Sf+!XR;a%^IGf$YE#&ZQYdUi%2iHT3$W!!id>?x?t zT8HnDc0|N7S6Fki@5p6l){Uo&sRNKJnoV3#J1;D&9r|S$&X@`3NMicOx$A$fOZnG? z`rlW61z_&NM;pbEc1rt(S8kCUVcc7?#TblDjwV26;UF0`4}z=HR~tMs4kc3&grXf+ zA^gZ?kF2$bCj5>3d1Ko#tvk3zNNnsN{Jlg$%e2Tg9m_t>HWH#PFw=J6%cBbISmJjE zD?fzkF(>S{v0|bJ<3DFTIkb4**<^)sCA#}9ik3kp>6QoyyYwcEv$#DTk~<~1G;X%#?ueF*8=a)RFO97INNy*ApbL&@cekB zYCMRJ#$hMIu#uG&b4RFsWEof4h*;|>oGjXku8yO;`;rxxzWC$QdXiv1({~O-D}Ttl z+kw108r1n^QGiDaLHe=?SgdaR=pKvPAMqg1H988#Bj$oMveR9E&Tih&g9#eK!Yhzp3I9salJnOSJKkF{_^YnwxgMqZ53(m0RO z()h4TtXC;=8XYY^RBmPs*LOq?Gysb6>ZWJu{FpI$jNx?xexQC^p)r^n|TTU*s0XDhHAuPWfdI_)7sHoZiKlaqOc zXyEB7?i<9lBy=(>^q)SZCiVkTQ4FU)tvY9y=RC7h#)Ed+vOSV~Y zf8*!fF)=tG^~T#D^|PBtH>#Cp(Copg^+S~FVwzbuQ`idMdGWAR`d8P;zwoEmu}3KH z1p<`!DX5xL73oZ6lG!Jjz%i$gR|X5h;zv&K7a*SD4`Ne5Sa#vP-X;siCEf}*!OQXP zGEI2ESB#}Aq57`Gqlv)vCfVj=cg(8VUuAID;SHeBSHGsZHaz5;+J_4>KY!eZOS>g4 zrLLEY4Nrbm;aSsxn!zzY>@c{ZQno@~Sa&X-x+PH8b>;n!PU!f}d;P-c7tv7tG}S*` zh~Tl`HHALRcAHLgEFVbRXG4$8+ky5S<>6c^8(1`x&H2NM@wP}>r=|8liJV?)H8VYc ztAcqlJ^t4!+7U?8MS$@2)o#lBy_73~*9!WtOuCuoHF8cgLBjgucp}k1PFMebuS|*V z{;K;cVa+*YFpiUN`RPL^ec6vbb<{~-9GU!<@uTpj$M5)6CG?GHHg~%7jXmxkauI(! zFy-FinfJ1MLIJqVB=2|$u^yA=kXgy|qPX`b`besF*B@_wepsRi$L!pE$sUAlQ zp;K&k+`A>JA@SbhW1(SrtDk$XGcq7MD6wZnfbQwYp+LwP!|c`TPrO^g3zF#+k81Z zwD!l*WoJ?;-zPjMF~=hdZmgBrVCgAEls0kS8|J?E-YGjBcChDXHsBFeD5n4NngX4RZ-~ONDqoW~o{4zd|;ku2? zLE%J-c%wVtYGa;N3Drf(kWLzmx56q$9%bmzJ+cFQ=Dz?F)J zsw&{yf@2Ipp4*IW_EN5jFAc<9>PEmTt9Epehx0nyLy>pgZk*m)x$a*nmKQC)rMPhs_QF~_8RelLoiK+6@JMS3U$4+g zMv;QrOuOdQ>EWVSh9%r(iN9-ikD+Su>9=M4oc-7{n?U&2cW_bCNCSdfaH<$~b(`~s zEYl~=f1IrT*U}Wee@j?L*TU5`@2=G~viUD=YZu|Pm`a&y=A$LY5z55C4#0B}5uqFQut1@)QiUq2uT)Md;9<7=)tbNH-}pF1(N^)2l#XN<$YCW$KwH z5ZC}TyTv1Oi=xJIEURNrsmJdO&FpVa*FV<{%uIc!sC%q`c*$75Y0*;Pa+w&g!f;)=Lv z^+z|qI@~^j9+Y6*1&gjoP7QqZ?AAXFEqxzUQ#!kx< zB@a8+*S2N*0Gp<@{_}PJ3Sc9bI_zTW@IB*!T}@+tlSJmUGbDtnwU?B+`dDxEldzV_ zddKc3^M!uwNfhpbJ9_5a*}1})2dKdVts)ld+eP!YD21b5d{G7|rgqtq(tu$z#2&7j zC(0d^AD`ft}DxtJ-h-nOdS zex2$3#cZj4@U^k?7gKea(_2~nGpw0OUa{1+5Fo(DS5yk#sDUqa>G7+}91+o+jPKuxNNnYf158BTcHQ`wn z+EObXC97jI@lh_?JKS0qu}F~JzwQP)TPE%dydcL9Ryt1!yPIYXzg^tPN^uAV0r2r= zs>Yn|R4NV`sl+vihh9#1BE=oiRw3W~WYeM#qv&?a#vPR{t<(hvvu9gPzDNIRooHO9 zgZ9a#%bW{hQB_BJG0Y)&imcX_+n?yU)#_^)E?`3je@)dOKJPCgI#|) z4Po>mphF-T7UTGjN$Fp*Pq;Y$S2aDce}Di$(Ev&5@T#tmA>&agA+HCI#-W%S1NiOkdo)OyY+*v#Cu9qoRuJX=QyG%FXc^ zjgnA%x6YNl4gnfbdzwK_bCmVABDMTDDRYi@&W1aqkv+k5sv6T~oBE+GZbvL+Y4pUx zWZo`gtU3O41#wOHWo|NVFV@FR75HeiQWcEyBMU_okG{P3fG=eqZ|G!m|`!U=Hk3N^=QC>*(g_G`Say#L049<<$?}AUws=FE%e?5jzoZ7zcsM(e&A^`Bw2l zu!rf<^<8Y;bEU^ABGj&yj<=?}4;QjpK~Z&KTHoqN*5#=U`{$@>5Gc3VB;8*bT;e3Q zv$!M1nrv!(jy)@g&@GBz*6+j9LZKav6OP)5?RY-fR2r&H!&r2#PgPR%O$)9>zaXl* zB(8Riu z$Np?Zsl3T(TYBI)F$cxU&``m)#%LS6<5yx1x%Ig5RR=cn;(a}qgY4qn>G2G9_Tbc6 z?~ZoLcutGg)pAih@xsH^`TC8s*WF!jW0}{-o0}r#-tG9-u<|hQ#G&@=jxkeUjb*&1 zGtaqU<7s8@a;bge+Bf>R6{oPBQkAjU@v=tukLh@O-{^17D>ct5d+VZwIC=~xH^{tt zI=JKr%#&{8^W9VOYsOP~!4*}+uV*W&h+g+ruo3gFa=NXZ&bRKyvX_-PwhqQNM{S(d z>~qajDvva^OsvK=KSstqM_|9h;!fS>HSY!f`niVodP}p_;2Foh=v1n^2dHN1IbE>( z6vo2+?FOy4q2mKLv84hU(lFXHQaDi@Ju8Lnh7tRmO{u}yRC<18x6)G$$U@ep*kD*H zK0lY6)#=<;!!WSG`Ji1($4Bb2hKWHH+QtvNsBuFSw(cxbB{p#Th8<8CP`zYA&%2S|w z@%Mo@Zn@45FM;)ifkgF9TAF$ybJAWBqBIAO7nXG zwi_`@RU(~29^FK=`mc+wUvwZtetuXk>yrWGWw;b<5*uPZkHc}6I}GY^q$(mr25;Ys%#dH1l}KG2E&gGvCV(r z3iv$!TuY34BUv8ty8YZ1EXorGl?3~r!5PFFL?#lsO7mYxOu1)JE^i(V-=O`w5{D{lC|KwW-;f*bRL0=DuL-Y5$GG5jBYz4Dqo z&3{A1m{ChXhCnz}68wKgk8r`Ud?8B>El)0RhkipGW9mO+ zm1o8!oHI3R4|p5@9l?-4Ccf_8ZBoHEihmB?7ms6nFVJ}-Fw3L!=vI0@Vo)s29`vwc zyH%kSp0YYM9g(s(r5cg4K9zuya^xhpr@Nbmr!COx{WG=I!>N5z&vyaTyi8w_WR<3I zab+K7?J>(`b-Ch!@3_t7zSF#TUW4Cq2J3M13u)0!smWu#(mGnt`8+g&cn`GcE}Pd= zVNdY-rlN}Q^-e_sfTVv~;GY3b)NWT=VF4b-&jBk!pnom~=-!ShHLhkcj*3&=# z)4x=f|1YGZzcr};CyKteFog?I404}e+=xV)g$1ADM^!bV@FJyJUW#=Ks7b8IpbPcH zQEvuWGVka~wpyM{=_8-`3(!A|k{n~W$eX~ks&K;)Hkp?q4JYmj8_R@eXhk2fO|J1X z*dfEk6U?wT9rly67clDgCpS43kF;1?6m|nGmNgvq1|w#PqFn2#uT&k$U+jjzmM4wo ze-EZGegD=w#;9XVutyXp`@J6uD=ieS1@==yE73RN@&oO}@Pi6I;qQx39f}>8;dq^{ zvCEU3riD0N%+NqzjnJNU2dntH##NJ!_wccGHo(8kK4nc0dT-C)iM%BXr8HFxw`D^I z#mg7`Df|mrI{Alw-|!rs;HO$O!EeA!%xEGB>p5`Ql`sQvvGG10xyOp`aPjfzU!1~9 zN%cCc)`VT5?M2Nob4WiB2{x#>W)Cf|M+ybTGr|)p5RvLs_K^FBV{)MIa!%4X?5e@g zIZm|T3eHI4pyX6`7|=}aw+k9F{|JD`^!AITfx;~^B<2)78}0d+AM1fk_~D$#!DTuy zhrI_B7@i+Q-r(^5Cn4_y@LrwvTEOM1jR!biYi`27rK?dAW*@WCgiw9fi0O^{qN}Kt z+n}fwfHZo{`U+P%51Q};y>bodGN8D5bv0R-&f|Htw~pl5kt^uwdh*<^JR1Ttb#c8o zSUk{P@VwkyJs|eHJ-O2^(-x5ULu|iH@*CAAW5YQ|1C!*tOj<9f$-1Sa1KWHvjP~WG zHd1m!!T~&jO7&ZtnWaj_Q=5?`RBYFu{%M;-3Nl2t8L-%@vk*%L+vS(>*D3&NTg{*3U=BIesK(iT`e&H2!s~0P4JICi=8QJ1slS7E8XLsxGiw2W30f2d& z8NOzt1FOMu*}*T&^ozXHw2$5k5Pr)^+?t0>sW~f?`7#C2r6 zNoJYZCd_@1^AwPl`SUWe_s#7zAa}9b^X7M=m%TO1tZ+?!w31mrsIe2cG>nk(TP;AleT^f@_N~^K zMF-INq@Ui+aG1&MOIMT@|up6 z(5vI*JWIGu&8Z=C%qe+EEKUpPr(Oa6%pje1W7K*UJ|#{aeFfBKoD)()GrQZwb6?4o zi2@X^xtjVD?!)|njn{U`_x;`q2Gg4s(d7N0if1FfpN?n~p)I!hT+1`!oORnv-|LWH z{GhgQ5tHPvWrp(!i&fBLJqwM3%LrW-$U%?;sf$oG3K zx;ZKzAmsr6ndB0Ud}?Uw$|lHRop0(@cVqeTBwhJ3F6EEBSOr##;!_x^2ICl3;HN8| zM1(5lAMLuvvjk^4M0UoYk(%V1W4>cB7Ma4>2$lGt-yQTRBh^=aYA94fx1E*DKdeZ1 ziQ?ma%a4Ffy03lo7cwQ12a-#bdCb8rU9k4;>p@ty_%cSPLE!aJJm)N`n0rxg`BIA! zztL7W!4UypB*_QFc=(5f=0=Ze+MCikVy~9wC1nGI)!E*%{5ArQmPdf!9XKBF;`0LZ z%_jkg;NzQ{i=

|L|PISjG2Td`N>IV1UADKH5aTg12xpi?tON_ZZV)f7m9^DVzPG z2D42U!d}yw{<=p4G9se;%Hy~lQo?*J znEtN*K?vb&QAd16-`waIu4&ms`|S^lc|L)Ji#&R0)X{n(^pn0GeMd+mnnP45vE_6 z24RMK0^RN3?O-uhgJkeTqUsQy1j|AZa2C8S+KUp7s&tMaK>~7Mo=9}?pe)y+`b#xD zU3$)0D*&52S$bliw;U>vZD7U~S8d5gOYJqYaBw1vvMAeH=}D_7s8n`4kD}~9WTeLu zG`VRQx2-k@c<=(`nmp(%cSK`jJF&>$(fnP~oxGl#?i4hjxz?DMKXk(_5P8rfpK)P} zOt$EnA#||HCtQ0Xq`0*5u?MJ1+tgNkggFd$Qh5Mf)k``4^;+JJKuX-Kr*V4=BR;U{ zr(I6grh?DpK?aR=+38Pdo{r3`D-J!eAm83+q&4}p;XK%n$^L|gVjd{g!jfQTTe~hp z86V|1*}nsRVXnQs#VvU%qUQUpW}YGL8sit*93g))k_;bF$wYx!S^t={{w3k(|3KLF zzx7i~$v6O&T=QR4GM1DimdDNg$Qh|{Zw$Gm6+6#8gY*RRO>#qg&BDgQ{VLF#4)`W$ z$zbb?Z;Kcy_L``_Q^?9hAHj?xfd$7a49CK<5T$k@#=Sf&xA!@Iji|1TI!lJ+>`HyV z5kIUs+nK9H&9HdrLiqJ1&-RT0G%>HwCzP-nRCfkI*JlD~d;^9K^4)Am2q1{iawb?Q4Ul>zJtSo{t-ha#v{x*M@i+`hd#c77qv5t0hkJUy?(iaT*fbn z1ZfzMpfKqp>ABIT1-~j+yp-_koAU5S37Z!u?G9GO06@-wcp|wJ(18a)&J{t5%K*q3 zXiZD`Gkt4VZwvkE8pcWc%WOH2tf#}$ZY&m?UR<+eI`?PGRW2XB9-~Ty^}a@hH8F_K z^Ok39W>&71PwTLi25~APeo@|6*Tb#J^TGuX_8E+j(*}CfJMjlz54T`&1U7&}Go#R- zbdmbB;C+wO($p&&OIW(N*_3GHWjFlfz%Kvobl~iZf!Dc2R+QXpqOw}$n->ksgx5AF zpo@3M%MhI}_jP}3`#i;a{HYz3gYmCi8`d1TpMRZhXaUk?V-TgRKd^LR1_CLU1+=Zt z=K$H&;0TDFWpW~59S3-!$m(oByid|@v-uM%0Wlpm9p2_n!0nUKcN+q-#c6X`UvD|b zts~B*XLd*mq3^E?PDoe~ym{!pD2n;;x3eVda-i3#%~_<)9IId6C7$6QZS#;1KRb;3 zE)0MAaV>F#&f&L$13jDF3( z;EX(3b%D`+isw3OPN6hj*^?ayXr=u&iGVbrBmLOYc1?mA6^dNi>#}GUUWDK6-9rGC z%HCPDEsN$R`1M(|sV|USry;s%G7pH3+z?=O%dyb!HL+U2ZqIm2ecc`q3+i2Ch*qR( z0920vLssQ(Q;w)OubS71i7)n;AD~>=IbP0a4~_9c=Bt`%6T@R~O}vmE6kP!YB1~7+ z#};=vpmIb}U3MRP1|XkPy`iW95u_G~9MNuFPu^R{{lC8TsNSBn(nvp8aW{6y1N>D1 z0R5Msp2_-;S?b?%C%FDsmnWe=*oXu5(Sfhv0XjgH7S0OK*l9%ymJ6P2^+)4{j3Wo9 zNw4y>yQa-?HeIY6Jx`t`n8+;?MS)6(pM4(MS ze_9<SC}Q- z(14SQ@Y2)0P=AZVF$(ur{S;7foAv(gilF&&J1mAT{wTfB=7c`3I)Z^ZyPx)jNi-lW zX?Lop#QT!p#SPrQ2Co_#U8>*`d%769LlM7T6-GBSawjXlMa>irivA8#qVNtgk|fjF zBdC*yNtC-l?N>!DH7Qjz4O*we1Tp9O;`cee`(G+A;kRjQ`74~U`BGVTvRWH!tLzl)-Rp)Tt}vUrrD-y_!%m` z(z+pN;TaC-uv0;U9l+sy(8}dHpsjx0EVg)>_&~N;W)^E6_4~1y_9hXyBESGo{Fv{c zJBQZv6i?>ll+L8T&g!*_b`eY!Z*k=uBL@YVUadn zk@2~Bi#RWyW4fCDs<00ALU{FLTq-I09~0HT=284lW2@d^s^7X}LlBs9JH*6z)W8V4 z5?&a12z&*ox^7CWlObgYOBR7-uIRhzi0^8R>*n2(JkD}QAEAEfoEvt4*SdxTIYLGl zPiJ4}YZJiV%7tU^C^hWjO2BgUqb!VtdK_*T%|5p_mDUffonIZcxcN~MChN^e z6S9oY;|7)GO!L!EXn|q{{xciV8@2W*8QS=Kznw=MCaXLZ~;+ zMg#DzcXI_(NQD|!&m!D5sKS|VT#SFg=gV4K2BH~kh5TTbp#_aS)JqBg==X+^8WrxP zozEc*#c{hcNf_5ly}qspRDCf|KOC&9<@W}W#H5|aW?5A7TKjE572_}7rZsx)w;@6# zUC-ahUk;Ej_`G24V3gtlL+Q;6BhyF&^tu93m<8^4?b{eUU0waP zQJVpGD=n{fbi}jm^|SSpMK4c?LQa`=tLNSQ1+$m?tqb?X4_-j_@KS1X*~rJ&>m71l z1kZDf@mrL`t3c-<6EvI?(AE5n0dv$sVIg3#{(;IExN8Ayt<1A8kQ_qI`!izswTiX` zw?Kh_baiUfYQg-=u~Q0=o1${@j$A-Nk?2i}wSeRHXQC(SZ83q-(8iv6+ynsCz;Mnn zV;3aK+AOwkj@Mmmw(x&HnL#om_y~jAtv`tE7J&104mPd21ViHB-S4>aM?AX&*b&X0 z2XNN~2>b^ep7TQom3-D5QvnB!G|84Y$)-5h6X(gQiQoRFPYc0Hw(`Gr8riG`vzQUH zb=!}w-d07#t~IRN22X<}kLM1#LyA`^T&jkYgs7` zay?e3(vG)Q`=vW$fmqDEP?1imK&yeqJal<9Yx1@Lt7dGIXxxe=z`1bJ6+!y_ zXBILv4tqmg{xFteP3q~at!i-Eh8L?Svn~aZq>Fweg+}%S#qG0xc$J zQ-b-(?Qx;w)^F8!w~5vf%oqT1#0qw7! zzI@BS;~;(>Q2`0!IO=2fi4pBz7|gu-!4>e+Q`#q<;W`HTz)S%JGIKR)`Vh=>K`Y={ zdd&(ZKcft+Pqk7WLPdoVBZ0&4Cf$OwvQX2eclGpAhHw4idheM&X8VVz&R;IkG&Rze zSv@4_99wYiaAGC*4r&|U9x_MBwl1-Z<(*;vV(X=u6Ml|hFy|K;2JBV_9+X=_=RWUt zmBm{b7>!yvuSv}s^jcXH!{bGnCil4bPq*VEoRMhqy?yZh_Kg)a{Tp3jQKqrzU~noX zKfT+B)8e~X>O*R4=E386V&c{X4>$Fcd`IYKZBcp6WF~NMPsvfCxnkvhnR7VPH<1Yj zL(`&XOMLmuMxhg(fBL8NPZ@t1k@K_sTP(DgigelR5~g29NOA4 z`-0O+0gJLXs5DT*LujE&wB^~~qoAbW8GsE3nl1UEjC8;Z>)qr0j~yyineyrK>0PDc ze|z;S49I}1q~H77tC1A(vVnhB+%E7bQo1Tpx{?8uxN!z5QJZg`z+l4DQGFXJ!1&AZ zjpFyL$BRvq^5()_FmQ=pmI;7t_+miD>o_QD)~4=5s`eyA$i|dEZsRL`Y@V`cMKJzEF^n{ILtUuAM&Pj>Gn0W5k;1rnT#)%-Krr zJxY|_+hZ0XBBh#2-bJB8$%&@HOhPh^?sL?Tj_2Va{%?baW)2HDn>hW~Z z&+DH^@^x-h`g_DDObbA0PbDoJ8w+YLe8Vg_8$T3xC~CkB4R2Skvj~HpT)$!|0E;# zMF|N7WWRsv0g!ic2LIx&t|k4BU;5>{DjrEPH;!1-4H zKDnW^t>kJ^ogfvXe{`oS4no0!3bQ@TKwI=f5q4+R(pc~eO8vDr5AG$zgEeh$ne%8v zM%uYszaL+}zqlBTzYy@cy*@oTn;Zm0b=^s>zGnY!J!sr~)c~*Yk!xb7!ztU`AuRBN zb)m;7c^GX*KML^B+LYqP5nywhw0~L4|Bj?wwAQ&ta7x&d3iLVhr3b(DX)ejfr#dF= z7%_Riz2E=pg?)J6f0BKh=6=Ta2nJsT0L})B;5A-=d}eB#4Uk`;;D;`j_da4ZkJC2H za(o{&=1!ml!ys?QH%Dbb<$0z`0<^m1qH|$QH}8`ZC9{DR&1bjIp9?5=mp}!6D;`Vc zMpxOZ(J?-z$3?k~r7S*@NTA7zUbOX5F8_G!nEsH$r-qa|e1A4cf z$MxXUkzHEaQxLLiJ%ttz(`n1~M}-N0gyx71lKyWt%gNqIvWbqm^mCRQ`Y`FiPH(RT zu5Ou9AfH?IBbV;vYxN_Sj{Jp?cvQ0?4ALi+NCRtC!Ds1g6w~S-hMsJ}NCLhr>`y%8 zqMCDHkls9?8*5glKMnn6Ga-tA_x)bmr#M8-`{ZK3I0S1TOGr+O!meWR!UlHNeyD(WF%!IXm->2S*g+J zRzkocrE;&U0af3QIW$0WQ5qt-7+;}g%~Zvebd-h{8Q2yU5I`E{-#*ky4_15G&$3Xx znKgVGK4=s(X2z*!gG%6w&5_39VvCRN8(&?a_sTOjSJ!gguXpzNr+AhukJ}GCp3xt8 zk7fm5QLrZZC)$7f$Qdk$j{B%GBf$g4Esm6Hj+{64Mp5qu%7y5MEPAv6afOVV^71QM z3c7nAoZJf#)~3>>3Y$u0r>1=}SMCkNvp8xNd^SqJS6-xtkY}LgRa;L`xyD3jP{p$e zdxF~Ud_d)KlR<*%Mgj{IKmj1PCx0BWaKP~`HTa-js$fB%zvqP^g`%GfG=y9410W+B zX)Z4Z&bmLv?zCeCuU#8t5V5Y#WU>0lo9PiiNGzR2KLVx0eNnWpFhF7hKGj+9(f$z$ z3Uuzp8h~+K4-E^>YkWVn;?R+LUFs2Z6&^MykvKi9s(`Q2Z`y*v?g7DJW3FS2w-gof z9SQUlP>(E@eGpbQx%1+({@VU)_rBzgWx(+sPFq=Q`>?`}(Z-ZN%VEohRqCxyi~_P* zXAD+*PeLGjbTK_NARd8io~x=ng;7;p#GrX|;Gf93LM|mbEr}c}4z*9Kkd8gAD=;hfZ5qOXoZ9xApc7 zR^<|hK{hj7(C|v`-5)uaQ-NXP9UtiZ3Nw(|ZV4olHGd~a$MP}o_w7ktIg_P%xfFF~ z9zAI4H_N9S9dlFMK=KpMUxXSvbC*0)b&}bLO5an&-OOnS-tfz!w*W+2G!j`7XUk%r z^9s&=b)_BKy_fDbi_J!1P+Tj0)jZ5L+#MzJ=5d(y+$EZ>!+{NatatBOzR@)cUq3`! zE7Sgs>hZhTYxB@1vs`NE+4LOMO0n8$a9L|9y`)${Gn$y0ht9!^rxTd zZ3j}Y=}w;{o0{wc&C%ye7DB5%Ay_~)QNuM7irO}EfdG4umY2S{Q|ls8wZKdh$m>8( z+=fu5-QEK19Dv3mCaG^Oh0xr2QUu(I^h6B6SXM^<9n&T1a*NYF!kAmtl|BFl30&I)A;9hyX}9&9bdOWH5qf5Sd)RA| z?%4Qao_2cv)w8+|pfXxIFu92JpSCMRM*JPs1BT8MpXE%pe@s*Vmb$|AKWl}60~8l< zLj~YP-g{j?U5$O_Z4uz&)JCsgDM|9R`-k;`(zqEPX=tRGKDPZ?!7rliv6B5HClT74!16lJk6=ETat-HR6Y*gvNE41H*9*V>oLwCCL%kVl z$tzLDF|-;I*wbths!XP!dMvDcA~Z4rC^DvEJ)&i34S5l6s8NzH?MA3w-pzbM;aa|L z!mR{J!1+Wk>_RvENWcc#)Lkrr2h@t$g$Gc&IRhj%0|tUi=?OktL77Hf6l8*LTT$){ zCdlXp^yrVCiTxCP>w%5IRKokzHd__7Yd8x;ka~&*ZHEXC#Z#Jy34GZOt`*{HtCb~& zp^5fWiIyeW8n}&zinxtilx)3ci_7=RttTnWpoLZfR669%GE9ZTu@YA}%@Jf2vYqTQ zNyQ_s@$3+hp?Jhlpm=hB@~(Yl1Nk!-UNhB$>eUCFgvOG$G;H=|(>0PaUuq)AQo{*j zoVCHqGX-h&3AG~cxS9g`u%0*Mh?>0zX+&~44a}$lsrNsT!nRgdui96yW(Bl~h_zep zZ?4wkTU&1L?mfQPAZm<4H6^xtwdHZ~I43b#5!l$o98H;% zFDFD%xQ_;^xp|hFvgW@Xf&wvr)-hH0mn0o~38s2^_y%=et%gtE6NYRgQ8NB!s+dNN z7|2B3wz7Lg-1PmIFS6P_bRm?!)>nH|exUS(|!z9>ghCOV3WM@BKRSXI#|k$?w%kV&6M z^85xq_06?i)b0f)pZMuI#q@WVoPg|Egc4$y$`E8 zU%%@gDEe-i1};S-4{O~d%kArpveTMIjY9Y;l$N>OkyIa}D4tA)Re6-%(5J6c%wF)C zRX+ywDZ41ZP(j*~r~ACw>fJ8z_IG|ARAB)=4tt{Uc;5~jZ$UeX!eBuzys|r4>J+^# zK$G@h?F)N1gf!X{P`Sj})=7u_I9$@r{uEo@J0ohJfTab^FQ zq5i+{Sh!y?zcsWnb}%7f;bQ$?qAQ8L;hMkIV29R~->U|*z9AuH`5e`UN*?s}(;FJZ z)iji3~2rA5#__<5Y8@#MV z*Lkf_gp+@7(jfYb6)d5C8|0lt$J=Ahr^cr^kyQ7Du7%)eaVC!Z`;JPuOa0l|93Ui? zHt?$W!#6%DbTdz#QI_W&Ske(F7GZtvrrI@WGGXuMi9AAEVko1>?Jnfa=Q7LVCe;i5 zj;B+_EPA0MK+*3LkV`TqXnroK_Vx}7m-rP>?Ktvdd-OG+(OnOT(+>xh)`d10)Gn~X zes`}>IbGgiWV}|179#iKoKP1#VKSses!WqVbtuYx7W1X<^Y6(!XDKH&(N2$T zw(EC;>&hxMJ?9MzcFja=nH%-+4$OXj)p9Hue?{b49H1V`7(l|BNkW%N%By$QA|d6W zS`=}hEu3IZFwmgZYUBCv?XN7B*Xu((7iCI$#IN`IaHZv^qd#h-L05#t@;4CEwygEo z56+i5&0{uRq|Qa~IP_y~e&TNcpTV#WzU*+))F#n49elTX4TT$+tclp#0_wCX=buyt zPw~}mUeDBrOPM<+Qs)GA`E&*OK&S`+oy8}PjS*XosanINVaP6HU8vVT4&nELX~T$J z&bm}@Y}`((xn6YH6?^Uwm)Gs_dW~-Pogk(VT7b>ZDIu6hG#CXm?f7ZePac9N_wQri z1^v^7L^ zC9Q!{SMC=X(j+0yoKK2xXwzf#G012|6n`Is3>6L<%KO!j>VUk%u0+5eSN{X;qYM#2 z6u2vo2HyMe437Z^Iu30eBgcE>jcGc&JRS{F46M}i9N&=$g(T5b71QwCLjCSRs z$hBQI`H++5h0 zn@#?h6yX^x#F=8jJMB=pZ7|xMi%$a^?5zi;5gGaO<;}uFq+6)F_HuCiqNKlnJko(| zJ9#EqDM=ZQZoI@PSO{`V$fC#y&knD#=4SCuvLipSRiK&3NKiJKBzcq=MOYcS1p5MjIc3XiJ*=3iuEqE?rHp4iUut}^PwLCCkR zQt31Nmi&<2Z|@p+X9Jv!`^z`kTIVG{@8yqb!B1w*EAKj z|4}6U+TR0cX9QSxIKP@mGZgNk^A_SH?yf^njUAFf$e{?C^UyZsb0A4zJvI`vxmAfP zRzBy^zcgzOWBFKx`!E(HhBMd2foRG=5Woo_l@d+Dab-S&j&qgWIkU1qutl^9+8}C; z=_%sOY3LnBZP3H68moaSYiSCGC%RY`^0lvCm~R~VbI^5uJP5-PC@;4Pr{u;GK__*= zRzdT1w#<%NMV#o%%Zk+eU3vhQQ!KUX(;f+fd;o(70sy3RN&*LpgZ3^r?XNDj9ZaY| z%+(;~Db^tF?@Zpwf}x)T6Y_*pynb2SmC*jDdd92T?_%M;5rROOpwkhsdkBqMZfBDU zh)4jyimA9c-+@xWvZ9+9EtGk7jtq@4)-Ib6iaGmos3O5c&y~^33JR=W8P7BL>B!-7 zs5%9|H>g-N(Yqsd+a97dA|rtKj0Huz`)DvhMq-~24cFBGG^E()wiz}laur<4U~$Rc zm4|oXg?3fBQ3`nQ9{^1Z`HCLNw<-% z*|J0~zp?f_C8nQ*il1QXd8#Qd_W4C9t5lv*-_aQEhlyBew(cO*YRQ3>iMMQI7Qw1w zYk-3Wlu<@Cmo*bH2vT^sTt9|t)3Mjp*1CT~nRm8*e7%2sy?RgEmVYRZGQF ztgS$U8E}rfP4z&{!Em?flEwzFXD*q)-|*zVOwV)S`{W`~^y$M|BiKNI^0Dsl=Sd(2 z5n)w28a0>~VVmZh1DG=!8P9*>8k*Y!GF+P}mX;+#C_z=DwY49BWgd&h&0=8AHt#g3 z>Q9tz>vWJ>RSclb-FhJ<0a0sL*ZaOHOtDxk@{8sGy7!EL+89JKV+0~;@re9Rj;zng z+yE3ZfX97J4aW;SCID!p`TlVsvR+-A1Jjyw(0(Xp3Q{OQQa9Z62jcPf+3%1!Wogri zkiV8M>wAdC1b>#YTfjVht8$?dL^K2Ny8!>!9HJokpk*>~)aQIyJEktT8hF%yu?`d+ zOo-jUvjDbzCeSLjHa9!nV@u9-QxtwC@3y5JB51a!{B1qQX7KyC<_#nB_(#|>sX-j) zo(IgUdR{Oe)!kQu|CBW#MTePH{r!nC8WZ9&?U~0iLlc+jVq&Gw`A7GM*~H4t8fN+y zN-LRZ8XNK!KC1!vWS_=$Q3L{C;5)oVgmq5R>W_;ru8U8Na-8S9^lyQ)NFB7YVEy@7 zK}6FO6K)~;K84-6;{SA4&-(vAPo>|?=y#4fRE3mB$AvPIhPti3j=ypk6{6kN+xOI> z1+lk(S&ruV9JLCrG-&2MKVtc?(+}S5H@eLg%ht8Yij>P{`G_-v^Wd*5L-G7$bSxn7 z)7w_1I@nf}0ABLT5{*H;Fy3`Q;b#rVQ}CT~ zp_K3_Rr>SAL|9l%{AuvTUk#lsv(YAYVFBaZu+ZpFC`ppv1Em3-AGBEtfX$5sR1FiB z^xgV|4lBr7K5v_beT^u#ji(@(kkVtPlGYKfH}Be@o<5X`=fb<&oDO6l!E zB?pC{BKpekd!ppqcivPLIwd%H&7aly-ka(1AOr*%#=sM&Dv+hDG+_BhL@JOmbeko> z18L>mrK1gMaz5db-F`;diA>UJnrf!Dn_K~5M;RT)|HG!zbjt49@< zV>Q&|RdJ|^1dyi6*`qaj%Z(DzGWz;hGl2@}K6%Q<)LmfU>;bXTQ1ji<_Br&pF40t7 zo`6EPDd6M^xFp_R55~_1#(O>7+#c^}Yu|eUf15@dd~K5(hy0hPOo4Yv`u0`dGq7?Y z)z7ihGeOfL$?EU{fePv&IrPMhy=j@Y7p=JaVw%;%<$_c)!NhrCF`7bpE;#KG=27jG-IWb0eig&8gB*3Y>#X)qCQd01Ki(~6< zMO~?A$o!B9Z81>|$PNKaPU|_q-1BAQvEmko3({vzSD@M$;(QZ}U3iXIc8cg(IZ}u2^=^$ZnL0Joa zX3+i?pi`c&%8~%H&Cq)7uE!!G9l!7*-6Gw1!GBC-9)*1-ARLi4eq{r5Dfk(%q5SXY zFYN-EZ`K=I%SZ~|xXi=-j)rjBu0Xc3)V}Ni#Dlgbg_O120MQ_mO@HMYV-uhds=jWX z!>bt~$wLL{ssXK(T8N@!IGZ9(i?5}ODsZSk_}>xxcdUOa{g|6@( zRXWZ9AppWtp>lwz=L-WiTC7z-QzyPu5sH%XnC=^aR~+Td3!(@!kfw*}|B_mE^zV8l`C`o@g- zpv?0igDln=0B7c;m+lr}S8$*KL@1@<3gFg?Z)6pk*fVOVO)2V?O6uyl&WO9)mq9QC zGJU24bQkcA3J@;aXp2%{b$Y`p#jV#*g9{oP^+D-Pzy)yvhpd3yShce(`b10#s~j#@ zXohb`7LrW(VB&AUd7%L*D>r4ee7Nt*q1~;|&IX>fXC2TMyVZy?N5hk5lj8nC1x!k&G}8TetyzpoDu_2E8+}faChUHR05)yP5o?ejE}#AfYyn zx*mukCve|4g!%gJ_!O~OXMzWSgWn@P=P8ks8@=96~;z7)!a@y+DSaqXSFXj_t41wLDfIk$+Rb@O;D+keZ8oy z-{k;fGM{6JQQfo$zov5~>>?^&tVFP;GwHZ31=v_OE^0~^D`}(mDLJ-tsxy+$GdeV1 zR}%N{`%UYmXr&tDXaL~SRA=D^>=;`JFGIsm=Z!HLp?8={Gd#k=--Vc)5EJ6>&;c_C zui|$A&e>#Hg^sxjnC39V#!mz74)(a7UW-%QC`~WhJ&?YWSwPc=``u*O40F4MsNS+} zdzpRnky6QKs`YRK3wUW$Gmh$rpT~4EB?0G=1n#R?lS3e=wfBi?NPGI0O;Sp8L!Ry| zWjzR7)x_G18m`L$=d04G^vo6zYp@=K)>gSbxfw4xMAtkgoI8Q5bJ`kL=|b)3&BVFM zY|Tgfe8av(xH=t^rD+!I&oJ!x+G>SoE9aq7>NELIZC{G#Fq)1%IhB9=I|{vx#fHq; z|APKPIk! zOI_jqU%~|mjp2ll#07MDekL(}TBdu7Sg-nXA5l3VlIp3?cUpiJ+?^#@tE%5+6#p?C zq>z1S&puPJY1JIo>{hkhT7Xu8KWD)L*$k zM#N18Ve7tvZ_nD)XXaSMW-BjyW{?Sp575Re#(2b-RhGT1ixpl;9}r@>|M>Aub)1nQ z*;!>of}zutJZC?y4Novsth1f*vK)}+LPUZB9lpeRmAC;s4w6xSAypd%qq$pzTQBQ_ z84SW2VPEU)kx*6Qm52cr_YE;OizY>IfWMa9n47_ND=(}nY2y^!<4EZ-TV*GC_EH?e+5=Txf5z{ z5lPUzNaIU5H3#mDv7dS#HcVJ-^zNZ5#GF!M#ehdg=QZ#Y2-y(rWNF^*s{a8_l}#V0 z2Jhpy1<#91#pqqgB--`q!P955o716D-it{2zUeR%c_ChimSg$OR^&74*asD$=f3fj zxGPT`K+i~7q%s{}!MX!?Xzmt(@LA>zf5iquAdIH`?!Dg%jgyxmTll=VBrcdiDN$17 zbGi&!k7+;qgb!)%Yfw^uDyDa4g?Fas#s1L|f}m6NHoy{eYYTR}*#qQX;dzSX0QuKV zuZQdV%hS~Zua>*Zvj`w~J*+JSO@NXq>z9MMlNUCiaEzzSmreq?f>8N8n`G{fVR6H< zq)Gvj+!_sl39or8m9T~$QWv}_*G4)Ehli1TnOA-4AYa_!X2`~Xp} zvI`J2t&Si^n2yDkwCM`bbX}g+AW(cL!|6RmRu!OLELBV}w2S$R1ne|$b8qQ)Y7+92 z|A{qcwzzuo*3)0sC6Cc1g^Yh@1wfw9;x9x2La$Fz;ebxA2+EttXbp(yEC$`e4hk5c z$3@aJe?B3D4_NDw9!ynYA2r`~EE|6Ne)eyd6Wgst{=&oO(nRWIGprjmC~-uj%-ia7 zL@xWV`IPl+I3%W%uVm56oZ=CHKSPvRk&r)&0BpJDPV2KRi1O?u5~-$ZhQ;8Qw}W5H zVwn?uCI98)0*+4!E{$B{8h2plK%co#Kk$5v_@|!iu?_mCvzNbP(j5@%^(h{h1zV5p zv~NDvco?p?9N!6GE6eWhc$&{Di;Yktwv03012!OW*U3o#n5_OKeT9Ydf48Iy34XVv zU(t<6P`uKDehxLQvD=8C>NjN&{RK7Ie-V^dNO^;9{5I@^eZWLsVd+G{hoVW4G-GqP zn!_bCCYk*(yrXSfj;%duPCrhOKP9Ys71a}F+-Q9x| zG;EyU?(QVG1b26Lf-T(L<@O?bpS#a{yWV+qPIZN`TA01MyE5rH=J@^}*T)StxGmc> zxUJIkN{T2XHA&I(I^o;i{`LC!gG{Qtf2S^OWw$Q1f`JXaqD2USEM_*jon>thwQMgs zoC|wlNrZEUE+t*3c}Y$LptC>aQzqCiK;$1rgwjD;LhLVX0?Sx`%OMyd=Yc60vU))* z7$WgW*EI>#H%?gt<@J=$cCH+}KL3SmWmWelT^oyu9#+BXsVyO#)wf$3J{6T)COU9?1|M*u?_Yx>VNd?_1&5`{^DI{6Pi@PFY+~HYhNe>!5nf7 zUWXHedK$|-(ylV>3>eAKKw@x`ur}La0<_6r|GHnT5U^r&V#_HMF%ifq2!!CUc4e>N zuqw5m1}72MPO3upi%_0+9Ka6|Rf$IvmFe0hmz3$xt?g10qgQ^U)T#1?&)WBW=YLB~ z7W0W_+UuQYc#{4Q1k5W&(Me=aBjE=GM&n6jzX+TQ=Ig9(E|Ixv(FZP!i-iDl*>a~3 z9pb2nHQ!Z+wKCTVi6vrHzcpb^)k^tJhV?w`P95~5w+mD^KHOX?4$4YxFHBgg0%hvI z(v}y~_#Q4+FAqV>PxrSccguYDC$|@1H&6h;?{fm^c))p{5l8`vX7NVj2h%<10L9=+ z134mUNrGVpbdqN=v13?dE^tQ(TIgGa%H1WR0}9n400g111mVPLo+e1BIu)p5A9boS z6n}Bz7&XGTNO7^So_zN#EB_NbK6I6w1_nO{6@*dF>6&4uO>(XqH=jStxs3Fr82~>) ztmgLM;AiOp4pW~Sa9u_WqII7`gWivp!N#p}+p#H~&0d9BuA)b#vm>ACq+JpZKb_0i z+g>ed;a)YUjoVX+E+3`I)`GG5p{RGF0SYUl^;Y?)X4$f)6 z;#Lya>>kitBHCQKq9NhLdg=kSj8pMl;HG(v(CG&*3&B2$Bk%aTbH9ZEv>C4{_Ln8Ul_Iq;DBAwrj*~M(|gj*Y^ zhgCFgJ@9|w>_1Jr%3j@|9B^AgPK?i{Il7Tkre!&Drv8DJboGJFCb+Kw-^z*chKDey zECITi)X3ebwy0FlnvC$Pi|2AWH z*A>hWsb2dCh9(&wAaZHvI|}cqTVHTRbaww^-}m2uF@Lwc2dr%Vzw4V52EM1Tqxb?Z zY7D!{bh?d_L=mCoP4H?^(bBKpaRfJdNO~x)V%xQgzg4i=R8YCnp?zZ30;m`Voa(?K zvK&)FDO1}WDb;VLQqE?~ae+*O@uo&j8d+GVW4WTJh-&5~Br~hmVuCX}3PDvr!_w7d z9a8xa-^;tSQ7A*jM8-#(P^(*|vVWNDRS=asAvKmOCaO{{FqX=MP*9W193_gua2y!n zoE&Ts9aGIW6$w?2774|a$PkSumCe2qfiXwW^3CYR4(6ZWqQx*DNs>Vkneg zDfl_uAuG-L?Iobi-(@*O_=|r?Bm?S9)z`c{;(}8bllCbHmsUn@(sV92OLT-z4=t3! z3zwv!6QUKQ>YLd;NXMvJx<_T8FY8fm+D-PMo!O~R!KT2%$*{QANNhT@g5+%%Pg4fe z)qbzVNpBb)tNw;4KCAk=j$HN@RTwT$dUAGm1gWe+4i@&6nM6i6p2Q&96c#FmIo+!O z|D2Xlv?K~>yB|CBjlQ{jAK^s6g^d6c90e&iq=<<%JN$} zAz_&pPq?f5H3oIs?gZ$pr)R6>>H75g{9>f#>&@+hwa!=1r>`1?Rq|%J7SMWMT)tq!K)NX$ZV7^AwyaY@Vsp}|Z0j$}(!)?gk} za=+#K%0lo5u2f=5+^%X2V}(R%BevK%Mev6MhtZvkFG02zevyiz@;DMkq_L5c89v}; z#lc`nUGJ|0pMN781H3cco0KWyEq&PRY(p)6w`;Uj0~Ut9p$>p zQ^Cff{+do?>yZ7Vy{a;1@s@PpPt;Ae#{ouAK`M& zdT0h;yEfMO{Oa+*RARrnKfKe_>Dk+ye_7K!e^e)qXY(@5{sdyU)t1hw6_#UIBz^Pr zOOWRq=FPretDvX88in15B+F-m)6$Lq0bu}290d!pufCmHgnz5L^^!oZgMePxBar_>*l)V`X3#d zTwC(U%L?5bbr$n`4aO-s^%wtsNz&6F#uqgC`dSR>kPdM>TNjoJIchDADVq*bgM1oZ zhj;wmz#wn!mcO=A(niy03!Dzo^>hU|8?N)&bC^6{(Of?t-lq7{?c8+pK$@EU_q!%N ztx+*z@GM7Djbj`9kDc)U3Yl>H#}`mQLyPmboVO*|hfeAB>k6}|eSbB?cgc`~+ccX8 zTk%=m{s2FnY!A6HQa^ip@LdG3p~E~_a+n7+v?6dOyBCdZNYI#b<`}T&6FiPB-QADP ziFuvb4|uP2dEFdblMN?vtmxhv_<{l!xY)4yG(5_FGP@sJ_B5qWiBb?Y=~)qeMFBvQ zDK$l<= zWD6Q-xO1<7RKY(iDXQeKD2%hmQdP?)zlFLYQ6Lo=flzQ6=M-?u+%dC6*VNFI`MITv zAPRc~j~RKSIP!PY(A)u+H-$0v&uu-IK+^B>ry4eIn8~+uIicimoM{&C+;<8TWy2j7 zej9@5pJ-H@y&KEnJ9|>Q^?!uvsPYDfbnmKVp%kS7)2`>LD=GOVfITL+lvntM8l1c3 zMgFm^f90_)H(>KrKavFzXW|>xdmIw;7IPlvBhh+!0h`_kjE3ecv;0DN^Q|iSzLuwJ zQo+b81T*Xps|M;OM5p8f28qYz?iX@SbL)`q`v;Kjcuuc)!+O}8Xx;H{^_|_tUqdnJ zhvu!HWPX$+SYFH9$Iy8-K;2wbSn#H@@OHNpYCwgsDR4`4i_gEMgy-@JrG!nvKw$m;or&l^!;mRr($bG+>sSDbsrF-$}SKm z4nDb0Z8T3agyHOft?xRt9)z`S`^^0fS%kEmnhl-u#S_<=B!JO1Fb=(W_Hzq0TtvMV zmO1&juhi(7woNq+$-d7l26(un*ECg%$}m!JxIKlY=}Q9NxEb)ddkC!u9QM8~Ef)-g z)sH?b^=R+RtItt)Sul5x0)x2*}BNyu-wHj7(ke_Yguj zeDoOm$(}?~o7j{uD{65mRh&6kvZP5~_%V!W?#DXUpKhX|EG|AAkMs85tdsMkP-=nO z0^#As2K7bC0z6nYO37sV$G+-+#Y{N=W39)tBq^Arwz1T*g24f1BuH5jW5Xo3bNu9^ z1eTkn=HU>lC@fuUIOgvkX)NZXp1S5n5;|N)GBKZKRD+2#$}PoOeZ+|)1U~fa>JGQD zts#3MN8(im40j@L2Dh0YX)uncb#T8z>9d0uAC>f>gs!%E>pXL$?{* z+Hi3)2EV~@qU!xZmqN+W34ss9mQy5C=#Gl@B|dF5H=rU5#;do-vzs-*Tt6-l#-P{4s;LP=yGkQydyKvbcdLi%3@0N=X5vq4!XnG(UVhEz?l#oQG+8 zS1C*c!cvv=T~m@%kU2l4h_$ts_XunY#;EHtoFfam@DC9wqHG-gK$=WZK?K_5C|Aq< zEUcEB_L3JS<_{eKY&%tDv))y;+;;&Q+9F~2`3eY}PRfv|8{EbMVbK_Bv&7U)*ZM{x z9KK0NZ*+vHsJ%aOLx$i@#%bKONY+`FwW##YWA?ntQ=lb_UTCLqx;Op z5&GtAWuJv3g)DN-$;XFIzFyZeZ3FF(ns1Wm1?29=PhYRN07Vr*%ajb~;5rV- ztpn2#(!2P5;g8oG_NLG>=~LU)nrU2%E2oc|njLqx$SbFlX3m6HZ#I8N^38E0_C^_7 zd3EHcm7P_SA?$Vc5m2V;f3Pwx%`~WO4ptvU6{>*m?77n#M_tx@I;s5p?Oe z5u57^z~WRZkCh{IYj>@xt?TR>ODpFlWi5ZgV*Q8qndkZ*Q0~jhX)VD!v))Yp0M>CS zm8c`ZK@R600MtxN-*LZKqpbj@Zk%;^HmI}_k&c@4xw|UcR(Wn?^0!%PoptE6wr{k3 zYOHK>;az}x*WmEZ!e-Pco-XHCTKNZ_j%KIF!<0|SH95}{H(&pHF>@D_cgJ7cpt5o% zq?fH4P?$e%?zt*DjbUp%Iz`e0SW#+t`85~bHe%vgCMX!~!>fuADT_4EC zv8}HINJ%yfJ=Q}w=YQG1u{ym_*nOVycz!CZRL_d0Vo_b}`=`nv4HBG2qmAP38qs#? z;G)K<>uK@YlZe^-}-O3 zlfPAUGjsl@cdW#=FfvvI5l=GDWBm_5-3-sbZGdS8%GQU_zL1#G}D%UYa z=y3fcAF;ttoX(y6BW*rXTX@_#=Yahab@mXWdUpb!TBhp>fxoF8Pt4FsHcCE3F{>iY zJ4I})F~wC)rX*#m$)tSq@+9-Zs)!m+I{kB1MM`?j(i>MjrcbPJQbTG5n4gRDvf8<_ zMS^Av^P}3em|s`78yF&t6SFi$VCaotuZ#HR?`FDoXUMH5C0Z0jo-tyKEy5XvxhtUQ zNe@N`!gd;=p?2Jn5{p_#2V!Rr+oBq5-#f-AZ_#*F@AkpPil+G56zqtQva`aPWpSZM_m5WK^qu%7 zm9ymKU&5W1Jvk|ncs)4m4Xtf&4@hnz)bOlq#x||0Z>Hd`YB?(EirHFRcgV4<=za{9 z8aMWdXd7;9>~1D&u8SyZmw;Btv0Nf!<4dkM)50IRtniXgwv9x!4+)dcjG4lV8xv^s zP>{ynO&7+0i6VpXeh2xAd4dm-6m+4?=XrJ$Uur#PuT7Bhq4P9iCgOR2mH=gE%NGCA z$YJ_$7!60oO0PEw{GT7*;6(^rXJT|r^cuFO5PW3e<4_ zuf^38ip-2sLP!Eva$Giw+=d9e%x){o6lahk{%a2m5_rL$GvcbsqLdJkcrPh07ZnsW z=_O>+D&Xf6wBKCIV5Kf#_1;`TE;(pkaWXH9ZOZo1F~t)fcuGILqZDIuvPdz=3MnO& zI2gc7N-KH3vMkWXUwaUdaPe3;OnX0D{QGtUXz&uUUy-I(2Q!{3Ro$q1=^44)Ed8hV z)&NEW(3-7#C*k_q&>8=GB$0~em?zRZ z&}|{~mGB2Oebvc4$`|#L-ydoWfDaB&)p{?jwgyMzQ{po9IV;lPWTEqDMW+=r_Am3)>IQ6eK!4xo?{Yt-q{O)7OvPjj8?_@qp;sa&^X+ zY6yIIO55hrPJ5w2_y`S5jyuJMxk_F>pRJ~^1q%B`=$fDLKlbqd4Y%`mv3#Jn{|~9m zp&&A_3K=lxOuN^EiBOruPn1kP(Ga184WNa-eZY>F$W<%%omF^x?!=DMC!ye(iZBF$9NCa}rL0i@d7+SZw&q0^+0 zkTN6rXkzl>^w3%LI7GVM_|z)#GwLY`qXsex*@YPSL#qZh?0tmyk~*t`jI&UeENbe; zDUy>(olUE36%z$2d^LlC>fB6@j-K8w&W@hJDbB~^!41w1F&njGR95D<7v!Aqua0Pg zuqWrtnDr7{(54Lz(^c!AQIKscq8xcX2?s~@Kc>OS+#`*JOB*$Lb-W7KHjsz81o#S)Yf z)5B!yXw}1HgTUEdTR1|T`Cjzk85%gkY~{jZM)O!W!b<%%f5}Ph_wK%19Heq@DJ&3v z7ix=0n&FsRRk+ZtTH4V=DQrfAP;58b|rif$nPA~6RYCIr)$TnN-C`mRfhPy zz@%~2UXdoJ``|p3WdSdB`zpzMUeYo3jgidYIHu#5UA9Vnx~j2=2tTzs@de3a6=E7C zHXN`Ml|PkN=Vb>9To&omw8>k6Rb8(OtLC`c`w~b3MlbplRH2nsvn~9(BaT3nt!AWj(DSK%rR-f*v~T>33ko5ZDEqlp~&4I~&E6>Wzald9CTch<2$CsNt- zFKfM?9D-=OkC)6*{a3GHaboIK!mdU9cOFL*4V0$39s!m z7X2?7<6JiU*sIcYOx!n&Kq-+ru0Xs>8Pm@<*?zn6gmv@ParfWoSe#e^kf3CCqxz1y?A#!LzD3(}TVW)HB0^zu^-h60V6i7{SB@^gK zdu&}im|C)W257VGP5h0r2A_p|0S6~l->m=8f)BS#KIWIoV+u=r)_(J0{)A>w#ohOG zNqZ__=U1mB6*eHSJqO++q*BX$)3ol`(7Ubn`X_D01)k85)MlpT%h+;-HhaM9@Gr^k zhlF*j=Y(G&dMf-sbydv&BQU}C|D&!i4F5M`$Uql=@LmcP9-Wkw4b>3v$_ktX7(<$C zxBjoZC@~1mjb0yIJr2(LYwCaK6fKBzs$HcdjXX)AQ7OcbHpyfb#yCnyckQCnnyF!3 zhKMNBR+YBM`%bBIW5=Xq4EH`5)OO*)p7^|@#r zWMYD_+bC_Dx}b^U^5G8UcNJf159W`PemDA#+aI4zR_Ms-T2PKxF7{&p)$P0yue_%{ zwV=XTT0b1hQtq8vCwX~~Alo+{%t{Fr&t)8M|;Fwc1}2UFQvY*ai>+9lVoNH+DeASsWF z8UK6Uu0_){am-NOZs7*wmta1PZ}iyx3KNb5v`hARfN1$3p?HE%_u^6k6kL$XhB#?uEwUt_$ z{^iobq`_(0B47K%K(#_i>diPOVYbR}ZTZh%5}?Kz(C2w4iqJFd@MMpLRF+}4reP|> zhG91z0)EFY;~Ym9&M`{gZI||JmrE7FN5iTVcDt00K(kKu(l-fJ#V@|=5Aayhj#?Wp zNxhgaoEf$|h_NtfcI>Zpx=pnY3l9I3WPfD)$$-*w!EtGivHkn!8JE%?y!;BSttQ@{ z-Ewe%b^xEjelj0-tEpKV_vc>Y%+_8{iRjn1L3XiA&r>-ayZnNKmediGioadPbRlSd zXXaCbeK)?Slh_V0jea2T97nLuf62Knot-Ipeu+uDy1yUO1;<7TbK9kp6SP{Mtp@^# z#SVqx2AbDe@OeW;`QH`~#T+%wOwIJCTTuE4MlCn_4mv>GIm_1ZYE$Q- z2n$eV5kJ-?kEC1jX5HMXq5HHFl}XETlR(O$1c6D!8cIa(*8ReTu2X}E z+%tFgCr?>`qWE3o0aFCv8qsCpD4}9rNxpo>9A_wnD^U6bN#P@DgeweTm>_Yy2L-ll zzY+gMJ_?d{eE`19>{M)|_21da-?U#%CW>9KAe)~h+}xiCrK0S60C;o?1yh%BkJWWsV#q`F&M2l!naFLm%0g=LW$a zEHkhHzELY1<@Z70qZf(5jOe8<>e{7k!Z$2%;$}s4_$qGxBc#(kS{?+a? zUI{Z5JJ6FEnmUByW{mqG`Q2YPFwg=$?`PX2Tf+Qng#}&nw;!#13azjq-40<_YbXcn zebl}%>>(NdYAgDX;0RrLs5^~6Sf3rLfex^Tvd^b`4!QNL%US>8QUAnJH!!>Y0y0y@ zZwb1DI9>ra*re|7NapJ{g07(}N&-QY4NSkkfXr_>XSW-TUpY&4hWFyXG>N=R{`7x& zPijhx7&yr$(Z6w>zu8!u(T!7EQ-Ioh<}U%RlNorR2!Ov=jdj2tVa?S79prBY(|#!_ zwZ?d>c+SP5+2eyd2k-Ta@y$~@M-Q~lox-rpJ?UjUP%lae;}Y|ae-QsyI_E#XySD`a zMpxjhGD94h8k28{I;F##qF(yXjGUnU8cxw2LT>_Ye$c*aay1xU8gF}VZ}k6K!wK|l?GYAxLnv_J4r7*bv| zx5*5fX_WQR$Shqm_7T#qJ&h9Eie3!zDL>VJWKn6Id3*KPV?CvcC!B8n@$D2&z#MH| z$+NE(=g99I@m*L5NM%My;pEqud$FK`6i}q@*|pQv1yq)YBWi(*)H(KJKG`B3fKXHb zy>g*DlsNf|q=`}9&P>IoO=q8Adf#2vo_Zc3E*>8~m1c+U(KEjV#DO$4I4cYk-MfnI zhR{!qPnw$&N=uqN7p*^f(}MuPb+PnOwI*ZMD&(fUBJIkwnP&bPyZ7`CxSETv-_x%n zBC!W6xByw<+T4_Wc%G-!1gv}+jE>Z$%)O^RYn8%raQd0^cRu~_clsGhg^@Ft)}0eO6{`KFG(+8GOtkbHmQrz} zY4%L#UXil4Vgrv47Y``7Mr2oU3(Go~_B6PrivUR9SNA;uuro7EuFOAnRsSoK^B<*z z6WYF8u>zCzxz=ULnl9Wwxn1TaKu+g?ru+pUv>mIE5`dcy{1ad#_!D< ztP*RMEQ^;Mx;)K=nM1~UNfAE#h+&U+_cP9`o=#YfNB<;GnlzW>oJ}6a-ftR0^+}!A zWSl)oH7H|#%y|cBtd$J8t?(v~;8_9~p)h>hhD{GH4hVnvn?CQ6>eVQK5e|F!b(I;1 zMT;_>{%8+UYa9{n2SnCNfZjzC@Mi!sIjWFbkbp&t{e7m<4F<0}q}1^$b&uIw9uom_ z=nGPW>5ux=jFhkeu@-IPuT6w~fNsX1>Kz*BwG+SF*Dg%cVWt%W`HEvkTG;C{P54Iy z4WRRiBEse+E-hQ>V1@A=;hE_{pf>4dO0e??0d&>~e+G+{gd-}KgsT_~hg4<*I%_ta zOg<>)Mde3y$C>3PbjOUGE$uynYLL7%+30}F0~ngFUV(5Er2=dg$TTHKC}VZi)U#nX z2K&pnjpfXkm?WpjKQa>jlyfHc3W|;F^p35Q7sHT3v7uxB;t90$EB#on?(PjQjfsG5 zUq2;XE{e-tWn?0_NuOE9Rjjj3a&z;STZC>1+oWf5=P3QOQv4_v_0d_Ih=NsXr zK;rmvW(4T3oFjkBgynP&Q&V8m?k%qjG~hX@n%O&~M;Bm%y{!u1$|>S$ujm5c-uzkw zsKMa<#thLzdvKg>9LanObJUoCSu499i&ZxSD6Jj620UuCLq$lQ^1EF#xj+mYWHSKj z2gs8BS&?ch3WvnBnxD6}WYeOYNwo=Je&NwrTO*a-O&K0lo;Vr`+M~Q-tk3bW_l>7t z?*J|@6FTEYs^zpDicT9DIN>tZ9Ei+r!!PJ6rtUphEMIfP zjsS~{cUn=>XanGd)3Nb#2RO<*IA_JD#qy~W;JnN(BNbTx4D?JHMp}Y(*31C9aIf-r zto$9Hb=NSf!UG5vreiRxkiCu@!BAmP$`%-rG`Vkg0dv*-gTv1HpYx%>JJp}644y>4iDyHA9n4Gy zdt5c$HIHw%@=I`x8;c(Al+(f)u3D+>?5;rOL5Ti#}|z82I%nqi@wiH`S&k z0hnvrOetG|hd(n8c?tg}-enO@RqEHcK)(QX5q>AGAsVFqEbOailY@aRRz|{kMy7Y& z?+BqVvMN)EI&1eqsQS*Kx^pXq0!3{sKC@*sfj+MCC|J`@d>=#o9;n|GVf(q1iN=Ls zjP|1KwPM=qb*e^^d7lN*;4nHFe#>+|DnkKv_IhJ)T~m5vvsVb;u0i>bmBqaQ3}gWD zS_MFumW)QgQk6Z>M=N9XOThMdX+nuO@(5oDkBzTJcinP{rz5fR6wsb z2wSW}FyxMlNq=!8dlrw2M2bXpp+`spUFsmNHOP?}|F)iF&|k9X?ax}tqU4*fjpGl^ zUqE~K=8SOivcWW1`bE8HZH_&fm_UPQMl)~J=sGzfHv~hdPcRri@BhH4fZ^Nr)<>s7 zhFkB<)5F8jdjaY-9bouYXX%H5WA!#K5*4$HM%mL^wfweqF!u8B*T6^%TpmU6SGSuN zO)CRl+n0J>ceKRYujjXllQD;bMz#+Nq9&{iBuW^)lxZYwIe(aQN5@69;PdQ3Ta`n#`epv?YCEEiIY6&L&}H=Oj^Yb$Tu?;AK!O?{>DJaN~KA!6|6oMre;@J}msa&-0Lg2BNCu79DI_Phc zlhEjF;10oe3gJ*LUTuZEwg{fD)T8^Cx6HKPz!gHtdB}w_Sp8ONp0q~7Ji1b9-YPm@ z`jD;8m6XtQHz#ip&TWd2M*$FZeDuouWZn-q&-W-94;EjjX}Qh?G#?+D?sFLcO$YYf zib^{5(MM4&r)d!x;Q0XI%PP-$`Z zx?0KEVts@DtgyIUg9J3X7CZmGk(CLTxO8&b-a7ONmf;0@Ncz}6_EP^Ne8a%`pGZNV z0Nn^MxdH^XZRBI?Nk@TaYhzdDMjn=9n?*DZew+HP6^iI;s3O|HMy<0Obzfakk)O`k zljeq0eVr@Nsdr4YpjXsJqu0BVYT#HD>tj`v>i=)`MA->jqYU9~0Rg4h?$gI_e2^c_ zkfv>c@u4kE&vi!Mjb(@HM;jE-D{=dFZyD9VWD>{_f~w;e0AH*&79$`iK}jPu@S19i z<63q^ZKXpQ{5pk&>R$U=;Mj{oudOF+mncjiz=!CX;{z-{HyI#v8!h9(z+*gDu=Vk> zHHZdQ@3>zzL02TMlUtQZsvAz+_?x4ymRVcC=Ag}R9w)rJvoWC1kapJAvq=P4NvYDR zAKO+aClKVqfnDr$eRI`NIcSQQU3j|$&kQgFV%3O4s+k5Hb&Y7Q8%QhB0mNC#3wekJ ziZ=wHn^pJ8(5{aM#aB8A0da@n5J=un#-zu#OeB`*i8#RMZxDvgkBLM}h(m?&4b0Z= z449 z0p_|oJRBboks4&1YJaWhi&@w%t#HK1rm%8Miu|Bctu(27v3RiTcYpost?*C65SQfp zO{?EFQ2$<0^ld5hQ7fsPdSj<4D6CgLiR%ZzHUj~uEDBWs44_OUB^C0=EJiO~l(d|( zXEH=U_-bIksG;s3yA^MnURx!oOc`lZnr!c!BRoppJc%?H>*RsSV~3JHkLQ8UbN#hl z%Jj65f^E0EYiW01xC}5f?4gQk0&KHD!u{&Nc+s|gBOq_B=z%++-e$^(t%@-J^Y{8e zU^k?UQv4i;iSDZH5`Br=@aV4{oYU&lFD765{~tw5tN?fHzmzDc@FUY>JFbwW8h1Y6 z@z_xVXq>q@NDAPZd3l?iO|T$t#i?r|!ss1HALOv~!3^ z^FTOx9Z99z?DdsG+Cc!)lG_O?tK0ne$cWzw%<3w`fA>A|tIe7NND znbdxU!NFX!Ro@2^J6UL~z}|dGJVj%@9KdKT7QmaOU-23v zznaM81SGFi(GNy3Hd9*K15D^42?^d9R=f_EKv3nxOhR0yC?`&n;3!Hk>WudTsgSEu ztKJVJG3yuoVN4%FR+fSa%va;QtL3&6MIdDE@kXXmLIX6cMPCsvWv8|V^q6;;M5i?c zwgy2NjFERr=%!Njcu&P$|G}!~f(EaaA>sVyKtOjqi<38(JdTIjT{R4#nb)rwh;TT0 z0g-JGp!|(v>lYr2Dt5IN1L^Ku#H(RFZ+{W0YeWxIBrm!Msl5Ki0K1=)7ZAPTF&KZ( zX)o0M9*_p#c%MKLOhvi;Bgtaaw-=`OVcrxN`)HcR{BD-}f(tC$Ln zeX z>i110o*MURPpT0?Ym9?KuTx_^@763dBN~^{Q<*E(5cF@?fJEX$z<&yrD1 zRJTX*$ke9tcx|bp;qIa&m$Q^`$xv~QPrR_M$b2itsJMB&=C2yu^=6&qi)r%4pEg^X|cJP8J;(7H?&Ra;aEO3~y zG!m17-7?kf$BuhX2X;8wOlpkH}exWwiK$3qd|fA_0lrzH)<5ii znl&Wa5iz+u%p9HA>D>%AD~w%era*)RV7BMsmJ|o@%~a2}S5g+ug<>5fd#FPNMLJA1 zyOCJ)B=4ntiOmUyh?16HP7&Q_CCj0e=<&eLY^V5IoJaavAoN*l84T(^$Tu~Y4`aD) z=wr2%YDW?!1ncOae6`>{BE9FWiSu=tjNbMW>dju28!^S4p1gS5%5%tfM|K=>J#9@h zLNImg>npF4BOXkkJ4S4oxkrZC7bNANuI+@(t{T9!r>Wva_FzGBgShLZy(q(XeXg4-!SzrKG+a1TScs^a@eWm)~hIZ{;HAipdB3eNMUHrm(NaW z8L_I5Zk%ldSTA`9!}%?m2R%l5Iwq6o?U&CURl9-pX6Y`7r6l?Zf<$^MTMsy`Hcf#a zFfal_tuT;Y#Lf$OH8*^ojmdB=Q8y{~tpx@=VE+Jv3jAmXumji7vz<%GAbUFX^rbY) zk*vjJ^}|aXYlGkM$niPuEakB7&OiQf-jDjdoR0`pj4?G!7;*C0@Lk{zf@vv7g>~C2 zAgjV$;0|P)(DVtbnRm;Cr0M?jrrCr62FgeF??1XwbUWchi*!x8hJ#WuK2SR;?-$Lg zS<`h%9lJ^|Kiu5x{d!LXB?RY>jzEPi&yb@l-WK7#ldLubA`fT~TEc#hfZ-1(b){3 z+$MrV1Y2qawW1I`F(SQTD8N=kc>fy1Cn!_$=l2}^n=f1+Ul1rcE3V4<38250!xq*< z@e@$IVeon#`x-biLKZ_{I}w}@B|?_FsSw%ox&O6=A#gks(TENs5op~365{1|NbqqN zqyFQWz!D$SO7zMH27#C%u$71j$%+zuRspEjsMx}~C|&}PuTei#Wv-yS!PEB^`uOJ- z@UAh}gcnOVIRd%=b}VmIrec92aQ?p?nJM)4w6mPgc3%eXjsd2F2*HN|p`8I{MCfg| zb>9p=mm(K%w7&rMYdvgVJrsffwvhB+GeU@p=s$XImzTanf2@G=XjDcf9}QRORTI_FZ6akm@0-+3~KHfNqS-n zBlKbmBTOZo#A?;E*twuN^~~|)tyl96TSV4T>;`w54aFb)- zRTJ;-qdL$hdIv9zQ=yE<$rgH>max)VNyM7x(iY1{8hncl!jmdiTxSr{Hk*QHJZ-EO+fGAV}5Dxa>(@V6L38LIXV zGg7mFXwsOO7tU#Z9eM4f)3Mn%9bz0&jMEhf{EI7|i!iWYTc1rrO>%z&18Di~~Ri19U(*kX+q(cXk5Vk?|ss zP{uR9&ig7HxrK+<{qFwcF#i*!P9euWh2Y;hyR3u}%UL({7kQK38F%?fo}3Ka_S!?|idUj6}&uNFl?&U)QV zFBW9^v=eOUGoA_w=|6@VP)f8&65AHtAm6ufge1y9s7P$*>D~D2?bN|vi&~(X2=sf? z!cUXV8e`(AmF4p@rBl{mxyK>aB;FFamepc0s6_U)t!cLgii$!9yS)TqZ*KZ@YIP&}%dje%7DDOKp zkJ6Ue8-FpBgz0$G*Cbrhn5xNEW*7<#d&fX&z>#uO9oM(qiGtGp==l~-L3#+w_i_yc z`^~K#Ir`dJa4qfFo{B3i;u?KbOw&P<_=KumW?=ihgnQ7j4|}~Nnx|a}bK?)vFBH43 z9a|4|d%K}w`$cDYsW*Ew2*vl(bNn4RnfS*<=)^zvU;ho{ z^Y>Bte};U9%*n)nGLqb-)?DCCLQfeMvVxI$$*-tA0+6%#i0N{Nr_>iBVKX|_jp=w- z`RRv4|8BDsAUj5@)iig$JPDY~d}ir`FdH0zuxcEHu*lkPGp(qBt}MhiXWcU~Vt?CQ z;r4c&I(a_9#BX7}lGv)G(wopu`FJaSYd+iRLeq_H_gD0RU+=KeTU@g$qb8E1HB^U6 zhj5~lcQBDGXiDMek<`_n0m-|)?6EO(Kvi0Guh(|+7TRGQ_g&AJg)g318LA!4Nuw{G zg`2iw=ucPeiteWLz1LX+1Vi1z1KED2Nn&qfF&2|;uW;Rv^14-+nX|GJ%OO;l4d6?R zMZN7)myP1X8V_8HA?Jsz7$Pk9OE%>wcTKQt zNqNi3gXAdNV}cGW27Bw~(_!1D%7Wo|L)++eU>_M{O&S%TzbG*l38T`cMwiR0@uIS$ zIfC#JpId@9?k#UZ9xO29^Uw|1KKGJP;PUumT{0heFsXvTiD=#g5ue&=T3Ml$z)HAd zMpTS1x>WCMa#IcHpiK}tySXfSZCR0lFAHs_IRwF3vgw7Va`p#($tG-%)=*iZ){wZN z3Nvrn51g*@A2`wmDra~@CB~LPT0^sj_Cr7k_`~&tt(tZE*RQVr)ssArJ3BWsPCg?t z^vgU=_YXbs`6D_{_j~cB%TJdZSK)*@0^hxxU`n*0R4`JMY-0GkPdZbPw*YmE+O01P z-mx}Oka;c$(DT|}5(FJ{wPLy{J)OwSt(4)bEWb+0cFYil1V2bJeIXE%P>wMyp}~Cn zkiMt$)wxvYez~g#N$qC(l%xWt%>NsA@P#Ski=;=?iZe^c}V{TYiWEx3>I} zF0YNIKOXZjv}axDS3F;DCbTL84I1MiyKMsfWA{m!7{Qqyby$EEGOiP^uIkr4?;C!L zlRq28Sbs0BR2I+Qt}Alp+6KL6nXD(8UH)nS=(`9)IS43^pgxANtT|^iVlnuR2ZFp# zCwy+02Q4JP5i|;p5P6o|B2e8xv&Y`IWiQ1%=pS0v20#N`eTtEL0!}!tU~q4Ae+jL&qS@~Lp$K?JU6ZG$0FIj^X7~j z#&f~Ot+m$Y5zD=$OO)RG=Z}@|-j#4+?@g6trHI;&NmpS9++G=z!OEyEy|L3?gNnO? z+!sPiD{G`!frvWx-OPs>jOdg@8w zX4>(VUu;+j$^-*XY4m%BvOuA?<||kQ7F%b%O>iGZ*~oA<+@UFju8r-ob#wOxjy|OE z>|Tl24@-2(<+1pMhy*x7357?6gq(prMiFmV1S=RQ^GU@dlp z2kJ-YkqTZ*q2BL)g6u*}4dZ|15?hWUyK8W8wMQq+hZna%27O%3_1aut_N;bxrKg_c zv+0mTNl2g}Cj>xPH2(CN6CP|cpPy^{Y|eXfIMl0_oHXRjG>=DDUN^*v zzrq)m&S1mop|P<4=5WqQeBaNnywt#&h|sKwofto?Y=5kVq{uCSb4`?cHuA+gK_V+s zZhV{wc#ZT>#WfrjcX=Yy1g`iD#)c8G(S%)G$WW0IsZrHUi+84$Bhg|~3+}uXZ1n-= zEM5^B8Ga6SAq)JdJ=<0xfd;Z~@oYn0qT3SrzC(r1!({>`vZ3hXvA9?Mk)eloCeRUQ zq1&6VR^NM+fJ!f9AksM7S^jgRXLJ^oUJCRn4dP=L&sysz1`#}Qe1%RglnBk46-0Df zaWOq%ya>ac6U!Hc;cq?{t!sMuCyh{y9^i{7?!Oh3B^`}qjXm7+@lYgQg59DDIvz@1IP#2`ajD_6mN|x3o?B>GnCSTl(b&TC zEA8p#boKIaZ+ZFg_I58HIeobqQ9ZGE2*fVQp*4}5GnKdgOANr^# znp~wV$FR$d*8>7M^RTq>-W&cCR2J9$oxO3DI@i+B{M+NPt|hI7ElFLyGjCdV!bIO< zc*f4UCN#Y5)S%Xk47q3vhiZ=QOH6Kk^_XrC;-GCkX8iGCy*`oR{3A0#HNpH^sKe}&roTnzB3fNtKgO*UNlB*o5O_BR1t>+Qt9z^Zy z6K?%{;#W)KQBdLlIK@38n0Ob6CY@&zj|zxiMNPh-pk2htzOR1+FYO9rwthzCe<~Dk z4u?!%QQ9K-Qrb`@S2a|T+984a?ZdD`L*#|{A1?y~k}K(Xl3t}w-@jTo`}h?QLq)D&NEui?&o32)X^Z##==1gV!;=+@}%l|z-O z&nXmsqJqM(nCOYwJc198b9%P+A6DM81F<+EziMSDFSpiEqChnh4P5Ctxjd!Y)`scA(0`_ zpTunc9qD5KPZU|WIew8YcJ_ZVAC@u@MZy7i^8@5|>vt{a`XT+WLWgMk9#=g#>V$)@gP;L?pB@+F|I>rX4kHZPV zCm}fFrIi#eeIM2LG+xIa`$lSZ7ZA8_@RdS(iR(R?VxKJ4RzZQ+0^;F)A?ld{^DA zc%$m_O~kP}WB6bNcxA1`GCRx0rF{jBa;8;>k%ic# zt^LOO%Quwzsvi#rWwE9bc;<)M*aCY7WmiCK63^UC3J;T0==e-FLk2Q0hPe5>@>zm= zmQN!&rQXfB6D63)QwG&0T80}-4e(UrA??IlBBh+hlJFTyR}9*JFg8iVnM%;`h)v-U z*Dx_bh)&^o5u2jHUUbHr=;%2l^V!B;`U{@NQEbcD3;Y@Ft{BUAa}yz@Dvs8mDBdlW zyGfJA`pU@{JLup-wi?Z`6pfGDgJqO&8EU3-*=m3>5&`9otOab2pT&m=NmbmEi)?G@ zwq^B@qIpKpDdE3v45by>wpxacU&xOL$!OOk0bDtj466jJa#K5FMYp=2_qehM zdU-IZ2s~P=y@J;6Qtv9JB?yc1f60m{ltXK`;l~i|yy12DE;nbJ7QV|j5rdeuY^M}3 zM&WKP2Zatxfh>y0&|duTFN{SDlXJ1PHG$T3&@4^ybp6kS&QRMv%xIlo)ZS(t?#=|By}Ufk{6KfAl#_vYrc7HTEP&Cy#O_ky z=vx!CrEoDXAZ&rs>@`-y-Yq?4yyhUgEXAEJZf*f#MYraYHK|lCWYGkCFuG^h-nf!GcNIg`I1T!MCWwGTV=B% zVSeoX*chHupL`emiI=F-8u!U< z<5gQ4d1l5DeXe4EDlo};v42epZ8ovKpE-DY}ud7kQ*rFq)A(`m~p9N^T+980@c z0ZTENACc+vRv30{Ygh)po0O|iU_tSB5 ze3Ai%7=tn$QB+ia#~R*YufE5-Vmr9v_J^0L$OM*E?`9z`PrdI+}*n;5;rt7V>dK--|pZ?#%yQ+aPft!`516DGO-Cva>B#A z=$x<#mV|LnC?mI=M?>a>VIn`h6ar5+a0PUSXzYoLSt46O&%i;!(CW$BS;yMhm(~`30l>=&uy(ya?s+fxrM2}r56l(3a^z4R z%j4^T`-UVgP&mISm?L^+rG(jP-&+dVF}t}cvzto%txefRRr2s62H!4wP-3qQLJ)PN zl#u~AwQIA*o!^dBu=e*kQttSCFv-vROX2WuW`q3M#dc=l4+g+^Qeb9PPT zN9>kiaImB^Uyxvgdb$qBf>QP6P)lBeY8i2XpB_+RWBSp*wwO|9Snx!;q6OlMA z^71E4#P4*#Oi29vEsei1hOGA>e=!7`3UNoT)YyDugx>&pkw;~~^qJ<2ptc1b^@7c$ zzA&w1_Ke20Xtgs%OL@Jw8MK9+wuPR~R9b$ZFm&5R*%|&Gi2ZcEMP$T&{v*0O&yW&F zAOX?t14c6eBMAdsLoqsQQ=tn znqM8EpY;e`C1KvwDOS8vjJyyp%r5yha0DWe?RI0;ShIZfU`*s0QsxL?Po(7`i}y1N zsf%I=6btg}`{I7kj1%NnzoGT2qw@9m^n$^qZhfDtYzh9G+Y7%XymvybZ4YW4y5HYG z{4Kfqzp8ZrtJ;6C9x)PT!hzNW$RUnO-OA}FPr>`AwWVY<#I;5G_ck2v@h7Zzh+CIb za4w29`Cg=JaXsn#==j~@;}DOhQuLR+NOFajgaWzC;_P`b;!1g=-NFj$Yjt$Cxt>Ox zd!9xdb$A*d=R#sRQm;sIHftpsu0B(utz*M5w=yDH%J3lC=0)2z(9kb@_Ll%mI!M3_ z0OZO|9A>SSWwH@vnk1o?+&h|%egQlk6vYpVat3_zfKM6-_GpC&3`Nj#j>lfV#*tmc z#NuRaHG+g&u;-2Oxww9-YIJTdh4<}Vig?~yO7Yl{tQ%wx8}suXHreqb z*-`GyF=gJ&qvmZl8na7eouKacQDZaFX9_}K^BYpfwWtMQ>SD%y6x?MYd)o-ONW!Ro z!VXns%&GGT@x!AC!NVhDa)C^c(xn@Y8PN!2 z*j}HyxmbJfec<5FTvV_giP{d_ay`&(xi;7;e}CZXbv0W^u2-xlaQE2@H%nK**X`(MLIX<%CddcX}|jx9Dl5%M+UElp?I8%&^v!cm_|fJfI|lG z4N2^c_%%Y-oIO&>k=B?|DYN*R(UxC%0c5JO=x`f%;0Y=r)P?&)wrP#e7l=KY(fEKb zZH>PD#+?}gKmP2IsQ!jCVmGFeOv6v0xI(%Q_+jw_^vJJ=Ad70A&u*D5GFEPanmH=c zU=sO)a1WhpKBe~@W`4B6;m&|*PKENUHChMN8VP8QpWtaewUsdg0N;t~?>QrW$5a~d zK%abI>771s3rn-(pNEb3otOXwD*0$==OO+?NIjGWGi3UxB50ipDfNNi_|%XwMCVZZ zXi>2JjCLlVG`z+>Frj-gS32^etNSMS-$Q)K)ZG8YCxj_MjKYwtZ$-?yT74i^`dk2Q z^e0DhsnNe;)ORHNpaEDat!#g@$f$mI`pP)WGYgbMm+J>i?+S!N&PdJ8zAlsB{iAFYMN~)93|3#ds)042&d|YOc;lvDmm2Xo$hh z{8RkJB@l-o@Gz5MOip0B0d%GM1Cc{xP43JsvJ}5|BEgHoB zJp_+kJQ9z+QWIbw;(!>0X9crWUpw=DecnR9>UY~Lz!gsGIXtU3w#kEpTe8X%4uLX) zkKngVa2bfli2zS9HjT!jHu%6(|ViY$I4mlQzS}%1)j8s^aFN%qr3ao5)t`8=J^P(g`@o3@YFQ zOA!>YLhLCce!RTN=>U+--XgwaUKBSzc+#p23SrKZI_&t5rPDm@Kt%J_6-jmjvJn}T4UTi5p8A^*p}a`o)8noWnl|ms2E8?XWsGkziOz2F4GCwK z*5aL9wz{z^IAm*l1v%g`L{(wckHGyQgW8(@C;YkwI16*_7pIuaBwE`kM6ASN!;15<(K6JWXgr3D0 z7m4yvAJfG?4h3go^q?!e#5Tm>vmN+yn7Kc;%mUJ^t(V_j%EuWxH{aH+W71qK%0ZuQ zGHa3#&ulWQmJ`u>ld9Ez&2AOCnK;VKWE1C$+H6b6#hiCf+44btU5SDi!yEuhSCxga zKsOc@;=h2y_Ugn?caE9MO?WqV&$HbWB0+57;&n8pba?#%LYAx%Bf;K8C3W?DXZkgJ zmbzM6GB_)UDRzox(`W0H?uBYv^4_CXi45)FP8bjWSbb))_*a;c{tGQfSvWU0cQ%mU z>ufs@o4(k^%ZEBi#=A=s6?OVZTNQ~uqn@VB?UaZ!mYzExy4wj-%Zj@l_S=% z8uDKMEC?3|3YLHZro%q#vGZqeS8y$L)XiUb%&g%KMzqYPgqzG3PH+Uyz2Bkhu!X91 z53rCPcycVfG4UL?l26@}s^OoqlIK`Z8ah|z5R!|rEx+1K{duYPs@X`BYtiYquJgU< z>0xnoC4UnqEB%zNFQ4j7oX5nY+WiZav4j${esdsf?1$BhBs8N_*+Tab3Q=uPZP<7Y zh|t##3vqA!3=NqjhuS^EY#X#cf+VU+_uHo=bX+E16(L`c1=D+HFkU2*IeUIRpCooF z9-r=WkZDYGVA{~^uX8Up+%=k09R3-)bEKQ%CKA%i*PW<~7_KINPx0vV?MMqa17$x_ zFVq~G;^cMu;-93Quh%{);^*1x^V-HuolBU=jQ?4Z^7vMmlEts~NdZ6Io|L(Ks#kGb zdA<{M0Rx?m)Q&W-^Y1BXHN~d57Y}7WQsW8n<@q9Nx(GC=5jlH>!@A^4_n$tm$M+VA z@>0$7QB?begJ!hN7aXbOp{$1zrZ3D9=Tn*9?M>j-a#$>!TkRy#?vIEq+2)EzhK8hu@8E2|L8_GUH?Sw5=z)!jCo9^mxQSJvw# zZ4cnZ;|!57vU+5H>K^jGK|H!EiS&@3lnA|tXN5q2tP%RRr2Icpf%)V72L$@Zo$|52NCiQ*}(KXs(nUd^zJFP#QB5n1d~-%HxE@5{JVTHDEy>L1Z2; zM{~X~zh^#ur%hN6HBNIUC9+98%#yq->T>cKV^L)c=L9m6`$=VGek^=&L1hdjqh)@o zKyckS7lCp4BzlMEceDq4vE_+qpqW$ zmw}_vp_{bvYlKgj`FdH%3crIwr`>@8d3UyUFdkTxISfyU0vAhl6Zsu^_xK^Xlm>(M z=hObVeDhkI#P;f5eBXFF2cfq3nsb~_4&`ZnHtYW4B^K-cuh~J58zvdO0f4|~P6Z;D z(igvLES3t=K0_*(vRf8|-$hInzRkHSF~<*OriK8}npT73%A>NEWE(c4eO=Xcuu>#T zYls}2kRc8w%QGXVK3n_Xf8mbfy{&EQ&AD4!kkDNvDT{AyY5}& zNUQJnqmgLekG}V6jtY z40%{MTg{t<(=!BX6_xgCh*#f!+MDjK%#~@WBv|+v_Sce^QLpW3mf0nBWYIU49`xe26zFcr&h#zQ3Ze(eTF2PTuZJ z9FzO>4OaiViO*foq5DiNDWY)(;#P?r5dswbCwC5^=A~y4-GrN~H$v7@-!EM% zMqgfOWDGP+0eJ>T{EIyA6Juk>wJ@6rV~;n?EkZMH&)82Q6H$1uk4s`+1m4P;SzFgP z^YOBnTfW)g68JVhukDWC)4cN~_i2PWd{qx}hgS;EByWf<;C}8I_(%W-C@lnO-*J|AtJrv>Af)o(HajT?4+YkeKD2Lox{z z{L$mL*lpD?VU-53@b+)&pKBASp;A59figEA-&BXI<{6PzO4Yu6nRdRM=Xhzx@s$;_ zE!ZAMe?Mj;0Z*njqutWI0SJU zc9RlNeudo9HXatq(#p_=`Z|#*0&N`?86z_IMiVc|OG(AVn6QuJ5_~ZN8LagK$ELb zXJXOiyS*9EZmDa&I@@u^$4-Ft@wkuZw36Ao?cuRy(hiDy10lI1pLEy3?xZe zNr-+!SbD-xA6KDXK^oi8@LAH4aGtVmwN|o4#^1dn+-QM{VKaR4y;PW-b*xiTZU3#@ zN~W*JY>|Ph_gh>7zVCDjKYsZsDR82hG*IUEwHWG+IOdrV2IdmWy6eAIv7Ayfd{O1+ zOwQZ|{DX$|w3Mx4UN)|OA#d@JtyMA2F1%{1mGT)TKh1Kd~2pv^(Wr3U&S=$U^MJMGBoOJV@E3GW?}5b&qjxETMxuxTW5*b zEx(~=0Q#zbsZpJ4&D1Ss*cVn`hsPC1&0v9RJjK#0y+8cv3%S64!lVdA^pEBtz4oCW z>R!Dc>1-H3jKj9IM3;$ADs$5cw};cMUIkznd-R39uj4*Q)uS)QT`xFo?d;*7aFH$x z7R4_T6{P6a>WNFT`ZBSZ*GFM(`BYagvDrxL4YzVFHOt(zQ8OHqdtW`xngJb>z1SPJ zgaxG@$iz>W5is9B(zk?uyBZQG-Z|A z$$ehnqm~BZ^qwcxer9;}N17xT=X=5`_ytRQT5lXNJ`NLaKpbn|-d6FuDrPP8kA=Oq za$ijmUv)>ozS$&#HM!AD8H6pps)giM_MVS<#T^$q`D=D6f-?vz@milZMi(6?~ z)~_Zxo!maCv#84|MR)*OM#%zVoHspT>2ObC zpi{G-R6_eqE&2i{^9*o^$bUaPEGmD{VTD#|R$XfS!%ag^ z)8?l%fJYfSoU3bPODZq2M)AC%0yL$!ilv%)Z0{XU6=k+mkSidNT!btV?ggWVaBQ!tZr_%N)qe&nLSB+lv^ATn<$S z!U<%?{rKn%G>w#EAWP5Qd@ed_CxeMiAe0DCfSwLd5ZU86YF3E~9a$bni>M|GGx^HO z&eI?nww;tDGf+IV8xN`r?@c=eSk}*h7}8!<3dJEilK>i}=7@-$DDL^F-H5Zk;^RWm z(GW@IumC1J@Mr@c8+%g}$m~?0yScZx#ty4N4#nnqB7r*lrYuTwC*~CqO@bFR?M2fD zZ{=EUYF#^Q$oYC0Hi+<{DLA^zJ3@%kEJA4QZH;hVr1PizT1gaHdL2cmuEeDtN6lJ` zY3X;gQ`*72F{ba>!=9qpK!t&(!*w$iL=zIh>a~zGhS>_HB4!o5lw=<6-9cYfOar=A zOtB=umm+4hD88_foHsn|O*Atl>hHi2e&TWl<00L6ya8Sj8db5T%5b#Z>R1DNk1U>d z)La<8-C?00EoS5FD(A}!*_?~=7fZV~qc?+og6mf^zy@h3*Nw+MKjk&r%h&3D;&$IS zuzi4vClM_F9O)3U`W3T2LJObnsL4w>pXM9Y?&Y<$wTa-KBHz24^UKTIiq=*ifK6cQ z+wA>pqw=dIETe~i{U-;E0V&2OZNU!piTaiZz@`3Ewb4Laod}PH%xE37j?CzWXcDH* zi__ZV=JXSX;Zh*#b)XmsO~-kY=%_htJ{6OQsrkZ;C&!0YE$O5weMY6DDSdJypZUqu z$oerhhe@y6By>&CRaojPoMo7G$$bj;d(@T1(!1|U#P`9M1G}9r(h)xiWU+*3Hxd%d zTDYtA2HU}gie^iP^|)JBw>v^I`+U*LI~I0x=d_@jSB)d7r{1Ys8OG!D%+><7*M7qT zW6}IIw?o6%Q{+`77?y(6^-6|B=sdPQUet~xfu3oZxGE{^3q|B9vTq6(YMbX3vubb4 z2eh7ci;$tGsyc!>RKl_v2CPRYTZmLq=cxo>Ihdjd)fc)_l>%On8cH$u&ESHO-rAfk>gWzV&+f((Iu)yU)n%U*K!` zvvj?{HSb6;>K?c&AOMyql{QAnkkQw3I`M`=rL;cf#iETTO)0Vo-UM-TCQqGPcaLjK z)A}ZF%aP)#RHf=a*mx0tuYz%+oGllmZfV(J{*7#tV7wzmr{ily()(a`U8F&l1H!bZ zk{>u2W6RmRu1(FVdScyrO@wfk@^axoKtjqZ!Kn2bP5xK~qs1LCp5~1v0z)&yi-zrd0@vq=%QoG>a_kk#^U)�*Uz>#OK1(WHiHzvkAp58zy=23 zhB`uY5Y6f1fkG{HPR9s?#VXmoaY?Fftm&|-F-eYY6M{;1;@< z>^$HoE4_;KQk?=wXbxj|Sw(^_LpT^T)&vZ#I15R@NQqsu;`(4xc$S(*)Xu=bML5n5 z5>Iu>R~D{F_%EYFj?MUjnqWw$0|HTN@B*T*Q{6p>y=0fcRnZ7uqVd>mEATajY+ib7 z7!2s9*!fo^rb3x?(@$y;dcGUAg`M>U5p`-XD)N<97E95#2QW2dh}jt--)FY>@DC%B za{32G&w1M-lCquqz? zeE0ED8)73WchBADgIP4tRVqqX_QZu>-(_JBiQy;htl;&Mk{b2=7fBxoyas3CsLI0) zkp)!0bu5FGDi5o4PL^NNeG{N*L)4M837DNh-U>)Ofa)V;YB95agjT0lFu z@}>L!F(7xDMJlkQJHJW0*J{J!`yRdf!@{+o%|Wa0t(WJ;-j{m;K$|;jL~p4Dg{&Xb zQ5VM7llYsM-5!0z+vPHURY(NG0--kdnH$oJV*=R4JT79{ljQfc?yP;_ZEfDi-R{V8 zFE{k#d(bevU+0@vVSZ1*t>wDS;?cS?x^7f}emIZ$#xXiFiWs7V^<+n3Q+FqS4T7Af z|1(?kRik%&BU5x0=?&a~8u2_|pTg#_8u4STRSC)U-0UqFp$W%}R9t0YRTv5ENqSn9 z7#Xq^=73#8JD)b0C&c~h_LZ4EHx3?Zg?gX~y!bw+O0TJvw^FsJi50xPf!nY17sP}X zV1x!7FRGFHHh)UOkG@@|^;Fx{#hShzzFdfYKH61Zjyoxs=~$|zM>a-TX-p%N}De9761rZxY6a5n@wjo7@$=cDM7-2ORN4P zy_P>{6$hZ>^6w9))#akKInZtZ3Gp=--#Os02NEH4fPRi}^_662ApGlg^7~AiXiL`w zb$Imu8d84wS-BHzY%H;~IIqxBJXusB$kQSX{|*VaJ(FG#t|EE)Pd$AX=KJQ$#u*Sm6B&t z&{p_dLVX7s;8i(!e&W4mJZPFBZaB1c<n6f|UN5V`9v>d-vQ>&*1R zTA=2+k{(tmSLTREw%dCyTV}yqzOFk5clh_6^O{RKBt9&>ZPx=G8%G0rq$~%5_qQXq zS-zKRYenyEEAn58hUb6Cm&}S1i?deD?4UT}qtTQ#O z^S~DKw{2bh14DfxyOab>@{PnzHcBPh`&(SKahXTNbdyZjQq5No%^Wjb>g?N|mc6R& zplXbovZY(caOH<`KZ3rjlBr< zhSp1g8k}S6`Ek~w3Kt1(6oBW$}dz|~Uo6~nmZr9m_85q0dvE2`cOSd7( zYMm-cwTmB*%NxJO)qhaa)l}0NKSwcG^1(G z+b!^Z1h)+VepC*@QhGV%=HcbaMkF|+?8EzwFzPnm4A{z3_tVA7hwg**!DM*QBh3F+qx``p?_3ia1Rc*m0;=e|!gdfl9L z46$Kr>b`;f1OW+gf;h;)TJfnF@`Qe{bXKFP#_*Sp_w?OasVFSo!RcZaY0Kw9NG64V z#Nsh}h)3)YuxJo4tPpT+V`}*=iq19UXH_oSc~H-_0_zd2vFGV)Rm@69Rde>b_D%$( zT3ogtTR*mLsok)}K|*^Dr4RAwCB(D%*ACmX!BGy|h}MYKu)jiKa2(z<)>_bS0im`{ zm-zf^r5Y|zyy&c7cI1zMqPu-49E{7`Jh~Eix0>mZL`7=JK#KC}5%lv%$e$kZLWs6w zeH_oB(tFk*lJ;95lwDyB?7(`gS_Nv~Ugo?LCKUP+eh0@*Tra(A3Ag)r^id)wA@(Z>0thJhSCB;Y z(jum89jdUgKLcxE8y2h*o~(h-Y!Y(DkexlNHW4x|Tt`huWP?%{LvqvnyY?z>YBgozMF&c4MIyr}iw+2G|b>X?@uSwk&2$ zpJOrRio~RO72B_CC8Z>!=LMJ)$73<(vu^<(;_)5Ze`{le{Xf!Q;`zmDVEt!9lYskL zi3f|gOUv;#&X3kqAYpBTW}mGkfB;)a{x!V|TS-lik^Mjx@5If%KT|BpZ!Ps$`26m@ zbtxCyy-Z|NQ(Gi#BYC8GV@{+gA6V}7BA(o|3z&0irQ2e!Ff8&*f$dF~ij~xUHOzT5L0#w6FpX0%kXgw8P9+-EX!x%ug$bB%j^$U z2rI=eY2He%XjM`O&PS#!_7G1ykSc*=4?$(b0^eS}-SUU2wiyXT?-&G3P9C!BlXoY# z=-$xEpPy0KM^T_+`6qq%fB}`KR{<{6zXVIZc|jtAHEpL_IYRqZYt}4vB~4Df{k^`J zT$M9LY?h1qf;T*s#mXAZbVo2AXL~T7?hEx0P|%kDU2I=wI7PSi5s{&&DKa~h=Fp5~ zi2c-DvH24{7Ra3hw!0iGZ+%2dcVxzw8vewUE|;TKxhq=Ri`!7_Nfwh>8KpQ^2GGlh zq=uL0pM)bo0C*(;yyF$`VI}jKGa32f;*1~6*YhP}GgbDCnpxWTt{G4XzF1c7N2{C|p0&cx_F*+Fn}i+iDMBzq7~ zqP=uAV{{JHng$@L$lN{>Ckg0McGpm)_cY1ewQU!YMH2dVR$SY!6VBqo#i_x9VP@P6Y)fh6<{B;r@ZRAJvTQ6MO6GiHhw}W zE^`JXi2b#O%ANQGs!%{C4#<`QSudrSZ$V@`yFRsqk!64AQ>xf03zhn7!W2M%=RkX3 zQYu1yUwAflXJj>#&#@1qOc#8eMID>wpU(wt-n=jIajZAs=X%vzt?idOWa9HSca?3~ ztc@?VSbEWqADR&b4xei1_SoHE@=lln@WwjA^xiDSM zeDgWm1pJ|G$f}9l8uTH@+WLM2<$W^YwD`f@glF6MGN%L4p~gYwrVElgW*}1#MccUy_72H|EH2T&kO6^sjuhA;96>0KNT9)+MnAmpV6Bjgj_>1*t)*LU1=jtq2LtL`rWyE1krWNaky$*HQZ#zr zYmq)^(d5L_E~?_-u|oy$-iiov#)?P;K8IMFo4AiZ-W?(UR2AsJ9{5;a&>31CX=8!T z&$ZDcn=UHoxbP`6G1bQiFN4vpuD`yQbS?LWGl=v7Kj?+S_TrRyB*}am(mljQv8w3`E+bxhYSmL908ncB?=SIx9 z3$RDbCroY08jjB|I6BhBGOP{!$LfKDb^#x9S@gZ5vm<|Zq5LHu&*qyY?g;tlq@FF` z`|o#`r)vkkEw`6v(Lm&T-#OY>dybj*EIJ1+iP&lbRC_WWpg|%s!z=)h9RY|UD)n+k z69E}DDXQ?Uld!<6FDF@o&5vG_t)y_Z=`FzmI^RE3wC$AJbfLVH=zv|QCIVIQBlf$w zoM(clIM-KgHiJ-wBg3cGec)t)XA|#vB8BA4GIti@d%TpIrJo)HrZOtx)>SaIpoWy< z64d0rJ)LbtO;nS!QqM1<8n8heZy=XEZ6fW7Ov%%DP%;129dysbRuv;kBY$M)B*3<* z>ei_gZeSNLKQ8_U#h{exX*=c(qNM8+0O*-r6Lq6BK)8tFrOM;h0RmtXR|?Rx4)^5s z_NKk^kQfJF*`j>7ss^f$=D_9MHhyZ%tR8nzMt`kY@V&RZmA zv()DX;nIb2Lraiga2yb2m=RuAdiE|9<)2Fgy+*Le5?A)+h$}6qUa*Xq^3VdGn^4{X(m?Ql zG!T3~=t*v*1jV!{#t{u$?3glUikuonX$nj=APdx+yO|09z75N-7GwfFU#Jc}O+!L? zSkJDJr*J?rCc2I>CL9^@*7P8xI|Sa@5sTv)qA8UKRU~leX`Rmx5-|#Or_Ae&>EHvc z+r2>M@q!lb1yQlyBpVKe#DFafdqHZ3y;YMG)!oF#WDcVB6a$F7)TF(Ekd3F>e- z9eiM7$tdGa-ef{O4z{IN^AYeBpJ*Le9cCq&9k`za5eZ<5M3INSb2IlNM;|Fe4PTi8 z3XDUg-n78A#eCm0iDKXGOFPCi{qtk8UqCc&I>^gP1wV;GUz zka{+EkB36cWdxC%!c(foUUYsxz#tG!5K-xa;R;2iJXk*ruxMs7JM{}$^vKS#ohd?E zNq2E3GZ*YgO|r87FwH}Gl|1vJi$XP9ZinO^4`LqXjIq~W*`~vNrb|uW3+L)EBl8tt zDc05b8$mdkc$>LO`e^MQ=Z{`iB^$^f!-Ib$Q302<#ErnaUfbJt!3 zqeheZ^k41mJ$Nv*#?Pb#PHX0=0!E@|%u2@x0j{m;x4qCEu6YVrhL74n;NciQG;F-!5>(Xpvum2GZOStE zK>4M+_N&jPeY}^n;su*k`#NAl$0z7E{TrRs;s|3@fV@<{PW6W|+sowUJ>S-``*uJG zkosJNqC#nvk2>ntK~Q^NycHqFmt;8EtiHm<vW+@>{K5NB+u(f_rxjF(lM^$ zB>|~X$w_DF^rB9C=~Ja#VswP8Nh;6pwJjB3Qp&lBB4^SL6Vd7-`CWk^;y^d~tZ8rL z1<0dJfp^z<%^7Yo6wah;4K?#|l8Zh1m7Q7`CD(ZAab^$20UPMnQk^ygaZ9ZENA;v< z;*_Yr@fe(>zXglx6?HzytUesa>rjtn3RE1_+Na5QesA6f+k<3(#yy`ePTd!KR-2j* zc21h2yM|nS0Zdjkh#qKRlwPZU?zvzJ9r|AIQcDYs;e-0;Ivbur+tk?4ta)ekxEtb_ zEFWZUv;c40n|jfI>usCkKhmc8gJJp4G%R@_%m_GK0erE(oF1yzPga5Svr0`_3S<-p ze6hB(K3L+pak$DCNhQ&qSH4X?(MV(*NJ^$GRv4V?mAGRAX(5u6qzg+K6|%TIsyt! zE02Oi%n+?j42V?5tFO&OTuUr3iB~Tucv=in4U=|uJJb5} z)5llDK5nN*_?$GRzQ}}*`6$qlBIC@>8+bf8`&4ocUYF|ggP;?tl~YRY>_k$${N7_I zdvqP2kmpQ-qb0M)BCJsLH)v0eHiAC|u?V6G?F^vGCPi$(MGW-1!v{vDV4@=uvYAp~ zagG}ql~Fq|LuObE^uZ%5Y7L9iZl*Z$3d1Q6OKekN4}sPsjIRtLm6@#ZD8=@zg})AP zDUG*yvCVD|aCw!1uS_aIiMFtWj#sdzPRw6M{ko5b2sN}?ctn`KX!j;h1TjpiTZ_|F zw>TD80eumOy@sQrJ2v4y#h?81*5zt(hEizF+#?xwvlNQAE`y93W(g$3XZh5 z4TyCA?bGnSO}vbgDw1miT|a^6{S?hhhK``Pfn)eLtJNkZ+>PZ{!VXv7r|@{NP4kt< z`mX^ylYmVgO~puo8!yjXN%?GB`PMNVuV#KF2DQ0sKhcQCrOh3bXDZD(Fd z+D^htN=^!4YSvj5w3O0oJi1vKB0o!-N>kf9F`REitf$yk_+c!kQthWg6XNt!xP`!d zhvhAX53xYh!|+Tm+l8lcEg?f*;{(y`QU5SkmCoaD4bv4pbtuF$-@OVJ{3_QpqcOSw zj9BtB>v{nLoj$=1TocZUPO8tDaLSH4sB1mG2b_D|c?IC1Vji)QhgZVEdnX@CgeE~) z-n(vyeiQlr-XyL8w^E1?Nj;{vr^>4&5i&7)4rWjak-YE8k+7tl>J)G(p6(Gojs`Z2 z`e;$}f4dI*4>W8*?4aK_jO<)Lq_R0#l-=!&S>z2Zl$@*u1RR|lj18<&5Y3i8D=maA zu%g{2xLc7LY9x9oXh0$u<#2I!E-*W3_^(B<5K26*m+k%HnvdtPfHNJ<(aX!5%0`k= z6(5FunXSAkf;XQ6wG{>bN+Jp!4LT|otuqQi2);*@45O!$tN@G=(+@%v#>adapR9vjn2+O2&ls%+{|RxQ#7ce0j)amxYJy{Hsb?0BM%aXe$O?=mveYK{dD zr@g*-+_9O8i_zb|bALlkYrI1@!D6B_Dmj-lbiKPz!R1`K_gzkb>oRJtXn&01?f3%a zGtkbpY>*4Il|3sICyLFC&UFM_fR*!y#WI2S*Pph+#1^PsoOSU(`*f9e#5J zsM_;(3B~$fIEnB#&Bs=+Pq^(nPb;8MNd{+B!QCnEc8r|&`z|nKd|dH0uDJF|LTR!< z`eudiu0+Zfz!n*>Q*FY@ncaE{8@*(%ck>QPn@X2Ve53@bpHc)YcvAzl`u?#Ou08|@ zMEu`cc;fhzg#T~+1U3#||hM;AHT}i^3=9W@iAlGwlJ9Av-!Q3xOcDLw}y6JAA8@!z@wa{Lr# zPEK~bEP#%RE3+#bv#o?#7{x-(9y5IpYyW&Q%5$A%s=MH47Rmq0dBB>nAuqVu8|S=*Wm1& z9jtx~%?Qk5Y-Mb1Y~$nzv;+NZI{>A>8vaXXZU%NhBi8?|k(}JWZ)R=H@(TgL{P=*e z^S*SjHF5?UI|#^`gB@%gZB3lo%gNMi9gKiy0pjF)nBO0D{y+?$5t!G+*1_7qNx;C) z&dMBY@PNgK+I%d3-1^u0PUcQl#y_6oFXaAsoI+Mk|62Mmwuk3oW&ZG(d94g=O!+C? zn2d}~44kc;CRh$zB>bnK?d`8IXxsnFB*JW_n@l z?BrlzMJ8rr>|p9nrsVGEWNgjH@)P*KcKWmQU&r!eE`J^N!_>h5b#=0J_zQ#wuu8`E z|62OTWCX+=44iGuY)y+wnpYA?*9V@J1-k2 zFB|)xVf?A)Ut#=4lm4He{JHMG!jY5X6}1IBKYYWaL0fgr%6Dx?FmF+3mfSrep>vy<+YWo}9pU?kKH0Z~B^RpD7Z~$>-`9)p- z$1C;g8}$EY;*Sac{|WUku>RZ0Ul8)|v;RfczsJvC?*12De?iE<&;A!({~kYox%*#q z{RJWaKKoyE{d@fUj7vdlLGhpeuJw_zZckgD8zYWk`+ZWCN z4b}h+$xx^)Moj)o#%bj~UC$*FD}?4et;XL@=TF*2{}0pQW_u7n{okhJG&F$N&WZ+1 zCnbZ4LQauRRg_luQy_)19dYUy?EL??J|Fdj_*3a2jxij0{Qr-i{A|O_+U**|va)lr z?(GX#OB~x`cXmz|T`cN<_ZFAi>z#pa+Q~iFUY=Q!ywu&R*Y2wK``V*dF1yMVsFfv5 zIrk{V|J`)|%Q|!Geoj2u%Ju)}3{8ykJ+{G8Il+0vcA4S2?$j%NJ@fc~r(4!%fDi|vm#v;ZcGVZ;(e7-w0Rp$7|;&tWkWMf)% zCk4DX?!>MX!=bz7$WGoP0o`Iv3T#aaFQ{>r&)jTuYAa8W*}|~Nrk<)ll&5kWi*>oM z&-Wkeu2qI}YV5+_6)*g{=GoInN2jNst2}3UzV>$Jsr`Pp0{VyYtQcXTQShSHE8Gd);<^ok3K7`u$ULzAiVrS{)xL`Sw1~vsZTh zcg~qszI#wtJ3m+5SpWFpkBgHw$2>1vc;oNl9S_ex`X+t!-ohVc*Xs5Bp5^X--X*;8 zcjUA9N8yFZ8|`QQJRb8o_}S@?HDO8r^J3rgy^rmQKVJSwedni)yZd)f`FXoS^Inhf z$N76c*I2gS`xj$>=k4VkCfkb4tn(#rSN>?be^lF0*LP3k{mu0TpFbSYOF4JazsCNX z?&qCF@nQQq!Z+Lf*_EGk>do6#_doquyXoHjnLkgjd48|+qwyc}I*V`H4&Q&hzRK>e z`s?p}^MCw!dHwayuVp=TySG*AeqOsKU-tJR`A6#w?|!p8_owFDnajWDU%$W3`p+)w ztLLO&Zk~LpuD}1^{w?+Ta{leU(Q~5KevZ0v@Av&vhqu-$U0?pTsd&M<722=5u85Yp z#!lR|2*?Qv2XS6?0XZJAfk4hmp!_Z+pnPEX5`v0LpUQyDBU(LS!(%PkF&%UC>y6Oo paq}+y0q#)uS|xGc)3(nUH#p7xc~vEVA22p literal 0 HcmV?d00001 From 7be50266b79762cac96e9690952b65384eb8a259 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Tue, 22 Aug 2023 14:56:42 +0200 Subject: [PATCH 04/29] Update Snakefile with vehicle cost file --- Snakefile | 1 + 1 file changed, 1 insertion(+) diff --git a/Snakefile b/Snakefile index 156976e..8b18eb3 100644 --- a/Snakefile +++ b/Snakefile @@ -7,6 +7,7 @@ rule compile_cost_assumptions: pypsa_costs = "inputs/costs_PyPSA.csv", fraunhofer_costs = "inputs/Fraunhofer_ISE_costs.csv", fraunhofer_energy_prices = "inputs/Fraunhofer_ISE_energy_prices.csv", + fraunhofer_vehicles_costs = "inputs/Fraunhofer_ISE_vehicles_costs.csv", EWG_costs = "inputs/EWG_costs.csv", dea_transport = "inputs/energy_transport_data_sheet_dec_2017.xlsx", dea_renewable_fuels = "inputs/data_sheets_for_renewable_fuels.xlsx", From 4a758c7c09314282cee2b0c12f283b29d7191347 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Thu, 24 Aug 2023 17:12:01 +0200 Subject: [PATCH 05/29] Update compile_cost_assumptions.py --- scripts/compile_cost_assumptions.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 4e41258..c5f22ff 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1408,8 +1408,8 @@ def rename_ISE_vehicles(costs_vehicles): "Lebensdauer": "lifetime", "M/O-Kosten": "FOM", "Wirkungsgrad*" : "Efficiency (carrier to wheel)", - "LKW Batterie-Elektromotor" : "Battery electric (passenger cars)", - "PKW Batterie-Elektromotor" : "Battery electric (trucks)", + "PKW Batterie-Elektromotor" : "Battery electric (passenger cars)", + "LKW Batterie-Elektromotor" : "Battery electric (trucks)", "LKW H2- Brennstoffzelle": "Hydrogen fuel cell (trucks)", "PKW H2- Brennstoffzelle": "Hydrogen fuel cell (passenger cars)", "LKW ICE- Flssigtreibstoff": "Liquid fuels ICE (trucks)", From 8894e51030466e4f4c1f6b20db397c58267458c6 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Mon, 18 Sep 2023 11:27:18 +0200 Subject: [PATCH 06/29] Update compile_cost_assumptions.py --- scripts/compile_cost_assumptions.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index c5f22ff..733b758 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -2184,7 +2184,7 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): costs_vehicles = pd.read_csv(snakemake.input.fraunhofer_vehicles_costs, engine="python", index_col=[0,1], - encoding='utf-8') + encoding="ISO-8859-1") # rename + reorder to fit to other data costs_vehicles = rename_ISE_vehicles(costs_vehicles) # add costs for vehicles From 8220ea30e47f44a069d134c1d5b57397663ad7bd Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Mon, 18 Sep 2023 12:56:16 +0200 Subject: [PATCH 07/29] Update compile_cost_assumptions.py --- scripts/compile_cost_assumptions.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 733b758..72ccb57 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1412,8 +1412,8 @@ def rename_ISE_vehicles(costs_vehicles): "LKW Batterie-Elektromotor" : "Battery electric (trucks)", "LKW H2- Brennstoffzelle": "Hydrogen fuel cell (trucks)", "PKW H2- Brennstoffzelle": "Hydrogen fuel cell (passenger cars)", - "LKW ICE- Flssigtreibstoff": "Liquid fuels ICE (trucks)", - "PKW ICE- Flssigtreibstoff": "Liquid fuels ICE (passenger cars)", + "LKW ICE- Flüssigtreibstoff": "Liquid fuels ICE (trucks)", + "PKW ICE- Flüssigtreibstoff": "Liquid fuels ICE (passenger cars)", "LKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * LKW": "Charging infrastructure fuel cell vehicles trucks", "PKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * PKW": "Charging infrastructure fuel cell vehicles passenger cars", "PKW Ladeinfrastruktur schnell (reine) Batteriefahrzeuge*" : "Charging infrastructure fast (purely) battery electric vehicles passenger cars", From e1eda22381899d49dc9ec28ee6e9c822a7e6670a Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Mon, 18 Sep 2023 13:27:39 +0200 Subject: [PATCH 08/29] Update compile_cost_assumptions.py --- scripts/compile_cost_assumptions.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 72ccb57..b654085 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1404,6 +1404,7 @@ def rename_ISE_vehicles(costs_vehicles): """ rename ISE_vehicles costs to fit to tech data """ + costs_vehicles.rename(index = {"Investition": "investment", "Lebensdauer": "lifetime", "M/O-Kosten": "FOM", @@ -1412,8 +1413,8 @@ def rename_ISE_vehicles(costs_vehicles): "LKW Batterie-Elektromotor" : "Battery electric (trucks)", "LKW H2- Brennstoffzelle": "Hydrogen fuel cell (trucks)", "PKW H2- Brennstoffzelle": "Hydrogen fuel cell (passenger cars)", - "LKW ICE- Flüssigtreibstoff": "Liquid fuels ICE (trucks)", - "PKW ICE- Flüssigtreibstoff": "Liquid fuels ICE (passenger cars)", + "LKW ICE- Fl�ssigtreibstoff": "Liquid fuels ICE (trucks)", + "PKW ICE- Fl�ssigtreibstoff": "Liquid fuels ICE (passenger cars)", "LKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * LKW": "Charging infrastructure fuel cell vehicles trucks", "PKW Ladeinfrastruktur Brennstoffzellen Fahrzeuge * PKW": "Charging infrastructure fuel cell vehicles passenger cars", "PKW Ladeinfrastruktur schnell (reine) Batteriefahrzeuge*" : "Charging infrastructure fast (purely) battery electric vehicles passenger cars", From eb9178f78f3e6eefcfb4e7a6a9990581509397b3 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Mon, 18 Sep 2023 13:32:28 +0200 Subject: [PATCH 09/29] Add files via upload --- outputs/costs_2020.csv | 746 +++++++++++++++++++------------------- outputs/costs_2025.csv | 782 ++++++++++++++++++++-------------------- outputs/costs_2030.csv | 756 ++++++++++++++++++++------------------- outputs/costs_2035.csv | 788 ++++++++++++++++++++-------------------- outputs/costs_2040.csv | 758 ++++++++++++++++++++------------------- outputs/costs_2045.csv | 790 +++++++++++++++++++++-------------------- outputs/costs_2050.csv | 734 +++++++++++++++++++------------------- 7 files changed, 2733 insertions(+), 2621 deletions(-) diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index 567bc43..4bb5fd1 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -4,25 +4,32 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.32,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.68,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.25,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C in fuel,0.25,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.75,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.28,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,FOM,3.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" @@ -30,353 +37,378 @@ CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_ CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,170294.0671,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,170294.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,681176.2683,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,681176.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,26657.9934,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,26657.99,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", Fischer-Tropsch,VOM,5.3,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,757400.9996,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.53,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,757401.0,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,169666.742,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,169666.74,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,131071.4442,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,131071.44,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,103151.4416,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,103151.44,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1586.2889,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1586.29,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,170186.3718,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,170186.37,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,680745.4871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,680745.49,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,101949.0686,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,101949.07,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,1181390.354,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,1181390.35,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,1146506.0562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.48,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,1146506.06,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,135616.1853,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,FOM,2.41,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,135616.19,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,330854.2753,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,330854.28,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,456183.7659,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,456183.77,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,320299.2399,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,320299.24,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,169144.4199,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,169144.42,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,86573.55,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,294988.1555,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,294988.16,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,86573.55,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,337033.2923,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,337033.29,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,135293.0994,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,135293.1,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,541172.3976,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,541172.4,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,62877.4884,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,62877.49,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. We assume an exchange rate of 1.17$ to 1 €. The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +NT,Wirkungsgrad el.,62.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +NT,Wirkungsgrad th.,27.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +Ni-Zn-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,86573.55,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,312321.7116,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,312321.71,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,731096.174,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,731096.17,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,513322.8456,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,513322.85,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,28343.7836,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.06,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,28343.78,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,138236.7705,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,138236.77,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,552947.0821,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,552947.08,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,7259.2007,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,7259.2,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,135814.5241,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,135814.52,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,287672.9532,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,287672.95,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,176526.0342,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,176526.03,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,121637.3372,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,121637.34,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,431692.9606,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.28,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,431692.96,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,250772.9587,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,250772.96,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,891679.1058,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,investment,891679.11,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC @@ -384,99 +416,99 @@ battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,11.3822,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,11.38,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1710.692,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,investment,1710.69,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,11.3822,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,11.38,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1710.692,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,investment,1710.69,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5059,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.6909,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.69,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" biogas upgrading,investment,423.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,FOM,3.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.45,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,FOM,3.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.45,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,FOM,5.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.11,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,875.42,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,FOM,7.39,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,investment,682.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,20.4043,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,C in fuel,0.39,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.61,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.22,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.11,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,20.4,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,5258.0331,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,investment,5258.03,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,efficiency,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions @@ -484,7 +516,7 @@ central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_f central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" @@ -495,8 +527,8 @@ central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,FOM,0.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,0.98,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" @@ -505,7 +537,7 @@ central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_ central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW @@ -513,77 +545,77 @@ central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_d central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,FOM,2.89,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3534.65,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,FOM,2.89,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,5449.8023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,5449.8,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,FOM,2.89,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3534.65,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,FOM,0.52,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.58,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,144.8807,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,investment,144.88,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- csp-tower TES,FOM,1.0,%/year,see solar-tower.,- -csp-tower TES,investment,19.4098,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,investment,19.41,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower TES,lifetime,30.0,years,see solar-tower.,- csp-tower power block,FOM,1.0,%/year,see solar-tower.,- -csp-tower power block,investment,1014.9348,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,investment,1014.93,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.96,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,FOM,6.56,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,investment,312.08,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,investment,195.05,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,FOM,1.85,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions @@ -596,7 +628,7 @@ decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost a decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", @@ -611,89 +643,82 @@ direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,FOM,1.21,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,FOM,1.21,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,FOM,1.55,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,FOM,1.55,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,FOM,1.34,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.86,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation, +electrobiofuels,C in fuel,0.92,per unit,Stoichiometric calculation, electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,4.6618,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,VOM,4.66,EUR/MWh_th,combination of BtL and electrofuels, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, -electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.18,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.62,per unit,Stoichiometric calculation, +electrobiofuels,investment,517844.13,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1839,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,588.725,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,efficiency,0.66,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.18,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,588.73,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,FOM,3.67,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,investment,54.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" @@ -707,87 +732,78 @@ home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewab home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,investment,323.53,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,FOM,1.05,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,718.9542,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,718.95,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanol,CO2 intensity,0.25,tCO2/MWh_th,, methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,757400.9996,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,757401.0,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,FOM,6.67,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,10045.31,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.51,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,investment,1804.77,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -795,80 +811,80 @@ offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,FOM,1.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,investment,1118.77,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,40219.7802,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,40219.78,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,FOM,1.58,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,733.4715,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,investment,733.47,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,FOM,1.15,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,957.4695,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,investment,957.47,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,FOM,1.22,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,790.08,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,FOM,1.08,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,1124.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,FOM,2.01,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,509.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,FOM,1.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,589.04,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,FOM,5.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,investment,618.18,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,FOM,5.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,investment,618.18,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,FOM,2.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,27.28,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.28,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,efficiency,0.2,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8577.7,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,FOM,2.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,27.28,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.28,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,efficiency,0.2,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8577.7,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 517ee90..eff0eef 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -4,25 +4,32 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.33,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.67,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.24,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.62,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,C in fuel,0.26,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.74,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.27,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.53,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,efficiency,0.37,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,FOM,3.34,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" @@ -30,473 +37,498 @@ CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_ CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,150446.7235,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,150446.72,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,601786.8939,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,601786.89,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,24217.7978,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,24217.8,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", Fischer-Tropsch,VOM,4.75,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,704056.1323,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,carbondioxide-input,0.34,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.48,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,704056.13,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,156106.1107,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,156106.11,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,120674.3619,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,120674.36,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,95042.884,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,95042.88,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,FOM,3.58,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,FOM,3.58,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1441.8589,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1441.86,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,150392.8758,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,150392.88,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,601571.5033,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,601571.5,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,93592.5875,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,93592.59,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,747916.8314,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,747916.83,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,744892.3888,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.53,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,744892.39,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,126161.4367,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,FOM,2.42,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,126161.44,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,310629.9982,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,310630.0,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,443529.5699,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,443529.57,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,311414.3789,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,311414.38,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,156579.97,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,80219.53,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,254588.9617,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,254588.96,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,80219.53,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,290598.6752,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,290598.68,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,132946.2396,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,132946.24,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,531784.9586,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,531784.96,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,57723.5959,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,57723.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. We assume an exchange rate of 1.17$ to 1 €. The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +NT,Wirkungsgrad el.,63.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +NT,Wirkungsgrad th.,28.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +Ni-Zn-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,80219.53,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,277455.3631,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,277455.36,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,710533.1055,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,710533.11,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,498884.9464,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,498884.95,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,19401.0364,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.11,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,19401.04,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,134418.0752,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,134418.08,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,537672.3008,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,537672.3,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6664.1842,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6664.18,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,126337.339,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.42,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,126337.34,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,260708.7462,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,260708.75,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,167237.3159,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.18,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,167237.32,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,97751.4205,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,2.3,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,97751.42,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,402565.8733,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.27,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,402565.87,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,233721.2052,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,233721.21,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,810492.641,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,investment,810492.64,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,FOM,0.25,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,12.0732,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,12.07,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1625.1574,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,investment,1625.16,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,12.0732,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,12.07,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1625.1574,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,investment,1625.16,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.4373,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,VOM,3.44,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" biogas upgrading,investment,402.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,FOM,5.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.45,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,854.02,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,FOM,7.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,investment,665.99,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,17.0036,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,C in fuel,0.4,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.6,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.22,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.19,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,17.0,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,4089.5813,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,investment,4089.58,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.87,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.92,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1880.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,FOM,0.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.12,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" @@ -505,7 +537,7 @@ central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_ central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,FOM,1.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW @@ -513,77 +545,77 @@ central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_d central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,FOM,2.88,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3442.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,FOM,2.88,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,5308.7011,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,5308.7,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,FOM,2.88,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3442.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,FOM,0.53,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.56,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,121.5174,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,investment,121.52,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- csp-tower TES,FOM,1.05,%/year,see solar-tower.,- -csp-tower TES,investment,16.2805,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,investment,16.28,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower TES,lifetime,30.0,years,see solar-tower.,- csp-tower power block,FOM,1.05,%/year,see solar-tower.,- -csp-tower power block,investment,851.2692,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,investment,851.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,2.98,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,FOM,6.62,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,304.45,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,investment,190.28,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,FOM,1.84,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions @@ -596,7 +628,7 @@ decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost a decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", @@ -611,89 +643,82 @@ direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,FOM,1.2,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,FOM,1.2,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,FOM,1.52,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,FOM,1.52,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,4.2383,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.53,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,4.24,EUR/MWh_th,combination of BtL and electrofuels, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, -electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, +electrobiofuels,efficiency-hydrogen,1.2,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.63,per unit,Stoichiometric calculation, +electrobiofuels,investment,473961.81,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.6725,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.175,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,efficiency,0.67,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.18,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,498.15,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" @@ -703,91 +728,82 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,FOM,0.25,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,303.6,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,investment,264.77,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,FOM,1.08,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,50.96,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,efficiency,2.62,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,673.7793,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,673.78,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanol,CO2 intensity,0.25,tCO2/MWh_th,, methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,704056.1323,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,704056.13,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,8716.89,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,investment,1602.34,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -795,80 +811,80 @@ offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.51,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,FOM,1.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.42,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1077.17,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,36907.6923,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,36907.69,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,FOM,1.73,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,612.7906,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,investment,612.79,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,FOM,1.26,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,797.0658,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,investment,797.07,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,FOM,1.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,651.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,FOM,1.16,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,942.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,FOM,2.2,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,428.52,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,FOM,2.04,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,500.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,FOM,5.76,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.8,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,investment,604.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,FOM,5.76,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.8,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,investment,604.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,FOM,2.38,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.9,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8344.05,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,FOM,2.38,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.9,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8344.05,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index c629dff..839c3d0 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -4,25 +4,32 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.34,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.66,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.24,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.64,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,C in fuel,0.27,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.73,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.27,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.67,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,efficiency,0.38,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" @@ -30,453 +37,478 @@ CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_ CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", Fischer-Tropsch,VOM,4.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,650711.2649,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,carbondioxide-input,0.33,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.42,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,650711.26,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,142545.48,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,110277.28,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,86934.33,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,FOM,3.17,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,FOM,3.17,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1297.4289,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1297.43,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.31,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.72,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.72,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,430875.37,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,302529.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.77,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. We assume an exchange rate of 1.17$ to 1 €. The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +NT,Wirkungsgrad el.,63.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +NT,Wirkungsgrad th.,28.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.01,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,689970.04,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,484447.05,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.29,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.17,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.54,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.79,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,729306.1762,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,investment,729306.18,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,FOM,0.34,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,12.841,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,12.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1539.6228,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,investment,1539.62,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,12.841,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,12.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1539.6228,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,investment,1539.62,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.4934,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.1838,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,FOM,2.49,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.18,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,FOM,3.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,FOM,3.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,FOM,5.75,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,832.63,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,FOM,7.49,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,investment,649.3,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,C in fuel,0.41,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.59,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.22,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.33,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2921.1295,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,investment,2921.13,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,investment,1860.47,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,FOM,3.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions @@ -484,7 +516,7 @@ central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_ central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,FOM,3.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" @@ -495,8 +527,8 @@ central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,FOM,0.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.25,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" @@ -513,77 +545,77 @@ central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_d central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3349.49,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4921.0185,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4921.02,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3349.49,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,FOM,0.55,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.54,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,98.154,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,investment,98.15,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- csp-tower TES,FOM,1.1,%/year,see solar-tower.,- -csp-tower TES,investment,13.1512,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,investment,13.15,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower TES,lifetime,30.0,years,see solar-tower.,- csp-tower power block,FOM,1.1,%/year,see solar-tower.,- -csp-tower power block,investment,687.6037,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,investment,687.6,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.0,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,FOM,6.69,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,investment,296.82,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,investment,185.51,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,FOM,1.82,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions @@ -596,7 +628,7 @@ decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost a decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", @@ -611,89 +643,82 @@ direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,FOM,1.46,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.88,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.8264,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.67,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.83,EUR/MWh_th,combination of BtL and electrofuels, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, -electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.21,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.63,per unit,Stoichiometric calculation, +electrobiofuels,investment,431201.82,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1662,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,407.5789,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,efficiency-heat,0.17,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,407.58,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" @@ -703,91 +728,82 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,FOM,0.34,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,investment,228.06,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,investment,202.9,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,FOM,1.11,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,628.6044,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,628.6,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanol,CO2 intensity,0.25,tCO2/MWh_th,, methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,650711.2649,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,650711.26,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,FOM,6.11,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,7410.27,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,investment,1523.55,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -795,80 +811,80 @@ offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,FOM,1.22,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,investment,1035.56,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,32882.0513,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,32882.05,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,FOM,1.95,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,492.1097,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,investment,492.11,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,FOM,1.42,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,636.6622,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,investment,636.66,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,FOM,1.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,512.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,FOM,1.27,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,760.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,FOM,2.48,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,347.56,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,FOM,2.29,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,411.63,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,FOM,6.08,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.82,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,investment,590.91,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,FOM,6.08,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.82,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,investment,590.91,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.52,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8110.39,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.52,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8110.39,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index d7d925d..66e6bad 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -4,490 +4,522 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,928478.86,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.675,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.35,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.65,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.24,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.63,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.68,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0631,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,C in fuel,0.28,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.72,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.26,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.75,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,FOM,3.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", Fischer-Tropsch,VOM,3.7,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,608179.5463,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,carbondioxide-input,0.31,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.39,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,608179.55,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,142545.48,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,110277.28,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,86934.33,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,121.8784,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +H2 evaporation,investment,121.88,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,783.5042,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,783.5,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1179.2994,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1179.3,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.31,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.72,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.72,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,430875.37,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,302529.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.77,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. We assume an exchange rate of 1.17$ to 1 €. The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +NT,Wirkungsgrad el.,64.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +NT,Wirkungsgrad th.,28.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.01,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,689970.04,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,484447.05,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.29,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.17,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.54,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.79,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,662903.5995,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,investment,662903.6,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,FOM,0.42,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.1372,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,13.14,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1501.1323,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,investment,1501.13,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.1372,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.14,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1501.1323,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,investment,1501.13,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.4966,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.3085,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.31,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" biogas upgrading,investment,371.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,FOM,3.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,FOM,3.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,FOM,5.74,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.87,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.78,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,812.77,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,FOM,7.5,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,633.81,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,C in fuel,0.42,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.58,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.21,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.53,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2521.1708,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,investment,2521.17,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,efficiency,3.62,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1841.32,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M @@ -495,9 +527,9 @@ central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,FOM,0.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M @@ -505,7 +537,7 @@ central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_ central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,FOM,1.66,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW @@ -513,77 +545,77 @@ central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_d central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3301.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4783.0021,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4783.0,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3301.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,FOM,0.57,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.52,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. csp-tower,investment,94.35,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- csp-tower TES,FOM,1.2,%/year,see solar-tower.,- -csp-tower TES,investment,12.6395,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,investment,12.64,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower TES,lifetime,30.0,years,see solar-tower.,- csp-tower power block,FOM,1.2,%/year,see solar-tower.,- -csp-tower power block,investment,660.9616,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,investment,660.96,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.03,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,FOM,6.7,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,289.74,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,investment,181.09,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,FOM,1.86,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,efficiency,3.94,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions @@ -596,7 +628,7 @@ decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost a decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", @@ -608,92 +640,85 @@ direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Ag direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,heat-output,0.88,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,FOM,1.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,FOM,1.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,FOM,1.48,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,FOM,1.48,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,FOM,1.42,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.83,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.459,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.75,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.46,EUR/MWh_th,combination of BtL and electrofuels, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, -electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.23,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.64,per unit,Stoichiometric calculation, +electrobiofuels,investment,396566.0,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.6975,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1455,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,339.6491,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.15,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,339.65,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,31.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" @@ -703,91 +728,82 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,FOM,0.42,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,investment,186.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,investment,169.68,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,FOM,1.39,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,35.98,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,591.5994,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,591.6,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanol,CO2 intensity,0.25,tCO2/MWh_th,, methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,608179.5463,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,608179.55,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,FOM,6.18,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6998.59,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,investment,1469.32,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -795,80 +811,80 @@ offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.45,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,FOM,1.2,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1006.56,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,29589.7436,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,29589.74,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,FOM,1.99,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,449.9901,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,investment,449.99,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,FOM,1.48,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,580.9113,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,investment,580.91,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,FOM,1.65,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,464.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,FOM,1.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,697.04,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,FOM,2.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,319.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,379.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,FOM,6.12,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,investment,577.27,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,FOM,6.12,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,investment,577.27,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,FOM,2.34,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.27,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7850.02,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,FOM,2.34,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.27,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7850.02,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 7486780..dd4af58 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -4,25 +4,32 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,794849.98,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.36,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.64,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.23,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.62,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,efficiency,0.66,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,C in fuel,0.29,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.71,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.26,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,efficiency,0.42,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,FOM,3.3,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" @@ -30,353 +37,378 @@ CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_ CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", Fischer-Tropsch,VOM,3.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,565647.8278,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,carbondioxide-input,0.3,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.36,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,565647.83,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,142545.48,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,110277.28,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,86934.33,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,FOM,2.33,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,FOM,2.33,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,100.1144,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +H2 evaporation,investment,100.11,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,696.4481,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,696.45,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1061.1698,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1061.17,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.31,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.72,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.72,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,430875.37,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,302529.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.77,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. We assume an exchange rate of 1.17$ to 1 €. The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +NT,Wirkungsgrad el.,64.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +NT,Wirkungsgrad th.,28.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.01,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,FOM,1.79,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,689970.04,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,484447.05,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.29,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.17,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.54,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.79,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,596501.0228,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,investment,596501.02,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC @@ -384,99 +416,99 @@ battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_ battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.4491,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,13.45,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1462.6417,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,investment,1462.64,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.4491,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.45,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1462.6417,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,investment,1462.64,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.4332,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,VOM,3.43,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" biogas upgrading,investment,362.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,FOM,3.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,FOM,3.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,FOM,5.73,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.95,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,792.91,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,FOM,7.51,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,investment,618.33,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,C in fuel,0.43,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.57,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.21,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.81,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2121.2121,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,investment,2121.21,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1822.17,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,FOM,3.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions @@ -484,7 +516,7 @@ central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_ central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,FOM,3.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" @@ -495,8 +527,8 @@ central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,FOM,0.41,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.34,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" @@ -505,7 +537,7 @@ central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_ central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,FOM,1.62,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW @@ -513,77 +545,77 @@ central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_d central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3252.72,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4646.9979,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4647.0,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3252.72,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,FOM,0.59,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.51,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.5459,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,investment,90.55,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- csp-tower TES,FOM,1.3,%/year,see solar-tower.,- -csp-tower TES,investment,12.1277,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,investment,12.13,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower TES,lifetime,30.0,years,see solar-tower.,- csp-tower power block,FOM,1.3,%/year,see solar-tower.,- -csp-tower power block,investment,634.3195,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,investment,634.32,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.07,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,FOM,6.71,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,282.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,investment,176.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,FOM,1.9,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,efficiency,3.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions @@ -596,7 +628,7 @@ decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost a decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", @@ -611,89 +643,82 @@ direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,FOM,1.15,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,FOM,1.15,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,FOM,1.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,FOM,1.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.1021,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.84,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.1,EUR/MWh_th,combination of BtL and electrofuels, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, -electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, +electrobiofuels,efficiency-biomass,1.33,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.25,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.64,per unit,Stoichiometric calculation, +electrobiofuels,investment,362825.01,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.715,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1248,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,efficiency,0.72,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.12,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,271.72,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,32.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" @@ -705,89 +730,80 @@ helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,investment,144.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,investment,136.17,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,FOM,1.85,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,27.05,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,554.5944,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,554.59,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanol,CO2 intensity,0.25,tCO2/MWh_th,, methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,565647.8278,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,565647.83,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6586.91,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,investment,1415.08,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -795,80 +811,80 @@ offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.44,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,FOM,1.19,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.24,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,977.57,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,26297.4359,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,26297.44,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,407.8706,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,investment,407.87,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,FOM,1.56,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,525.1604,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,investment,525.16,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,FOM,1.74,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,417.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,FOM,1.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,633.22,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,FOM,2.52,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,290.58,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,FOM,2.45,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,348.08,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,FOM,6.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,investment,563.64,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,FOM,6.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,investment,563.64,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,FOM,2.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.03,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7589.64,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,FOM,2.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.03,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7589.64,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 0102d90..9d51f52 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -4,490 +4,522 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,661221.1,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.625,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.37,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.63,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.23,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.62,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0631,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,C in fuel,0.3,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.26,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.92,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,efficiency,0.43,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,FOM,3.28,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", Fischer-Tropsch,VOM,2.65,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,523116.1092,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,carbondioxide-input,0.29,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.34,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,523116.11,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,142545.48,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,110277.28,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,86934.33,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,FOM,1.92,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,FOM,1.92,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,78.3504,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +H2 evaporation,investment,78.35,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,609.3921,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,609.39,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,937.3581,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,937.36,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.31,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.72,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.72,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,430875.37,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,302529.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.77,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. We assume an exchange rate of 1.17$ to 1 €. The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +NT,Wirkungsgrad el.,65.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +NT,Wirkungsgrad th.,28.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.01,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,FOM,1.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,689970.04,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,484447.05,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.29,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.17,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.54,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.79,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,526904.4016,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,investment,526904.4,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,FOM,0.68,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.7778,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,13.78,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1424.1511,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,investment,1424.15,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.7778,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.78,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1424.1511,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,investment,1424.15,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5035,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.558,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.56,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" biogas upgrading,investment,352.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,FOM,3.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,FOM,3.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,FOM,5.71,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.04,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.28,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,773.06,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,FOM,7.53,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,602.85,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,C in fuel,0.43,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.57,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.21,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,2.16,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,1790.8884,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,investment,1790.89,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,efficiency,3.68,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.75,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1803.02,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,FOM,3.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,FOM,3.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M @@ -495,9 +527,9 @@ central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,FOM,0.43,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.38,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M @@ -505,7 +537,7 @@ central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_ central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW @@ -513,77 +545,77 @@ central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_d central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3204.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4570.4672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4570.47,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3204.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,FOM,0.62,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.49,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.2787,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,investment,90.28,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- csp-tower TES,FOM,1.35,%/year,see solar-tower.,- -csp-tower TES,investment,12.096,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,investment,12.1,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower TES,lifetime,30.0,years,see solar-tower.,- csp-tower power block,FOM,1.35,%/year,see solar-tower.,- -csp-tower power block,investment,632.4447,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,investment,632.44,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.1,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,FOM,6.72,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,275.59,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,investment,172.24,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,FOM,1.94,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,efficiency,4.01,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions @@ -596,7 +628,7 @@ decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost a decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", @@ -611,89 +643,82 @@ direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,FOM,1.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,FOM,1.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,FOM,1.43,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,FOM,1.43,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,2.7233,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.92,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,2.72,EUR/MWh_th,combination of BtL and electrofuels, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, -electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, +electrobiofuels,efficiency-biomass,1.33,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.28,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.65,per unit,Stoichiometric calculation, +electrobiofuels,investment,329978.85,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.7325,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1041,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,249.076,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,efficiency,0.73,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,249.08,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,33.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" @@ -703,91 +728,82 @@ helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,FOM,0.68,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,investment,115.9,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,investment,122.66,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,FOM,1.87,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,24.03,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,efficiency,3.18,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,efficiency,2.82,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,517.5894,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,517.59,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanol,CO2 intensity,0.25,tCO2/MWh_th,, methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,523116.1092,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,523116.11,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,FOM,6.33,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6175.23,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.17,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,investment,1397.68,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -795,58 +811,58 @@ offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.23,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,970.32,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,23661.5385,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,23661.54,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,FOM,2.05,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,389.0293,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,investment,389.03,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,FOM,1.58,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,500.2702,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,investment,500.27,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,FOM,1.77,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,395.99,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,604.55,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,FOM,2.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,277.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,FOM,2.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,333.68,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,FOM,6.23,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,FOM,6.23,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", @@ -854,21 +870,21 @@ solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1 solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,FOM,2.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.78,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7329.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,FOM,2.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.78,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7329.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index c2ec9b5..9c91d10 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -4,20 +4,27 @@ Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia t Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.38,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.62,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.23,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C in fuel,0.32,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.68,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.25,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" @@ -30,353 +37,378 @@ CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_d CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", Fischer-Tropsch,VOM,2.1,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,480584.3906,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,carbondioxide-input,0.28,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.33,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,480584.39,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,investment,142545.48,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,investment,110277.28,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,investment,86934.33,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,56.5864,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +H2 evaporation,investment,56.59,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,522.3361,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,522.34,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,813.5463,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.31,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.72,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.72,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,investment,430875.37,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,investment,302529.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.77,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. We assume an exchange rate of 1.17$ to 1 €. The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +NT,Wirkungsgrad el.,65.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +NT,Wirkungsgrad th.,29.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT +Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.01,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,FOM,1.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,investment,689970.04,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,investment,484447.05,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.29,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.17,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.54,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.79,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,457307.7803,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC @@ -384,99 +416,99 @@ battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_c battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,14.1248,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,14.12,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1385.6605,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,investment,1385.66,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,14.1248,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,14.12,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1385.6605,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,investment,1385.66,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5073,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.6827,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.68,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,FOM,3.54,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,FOM,3.54,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,FOM,5.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,investment,753.2,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,FOM,7.54,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,investment,587.36,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,CO2 stored,0.21,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,2.67,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,1460.5648,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,investment,1460.56,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.72,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,efficiency,0.54,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.87,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,FOM,3.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions @@ -484,7 +516,7 @@ central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_ central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,FOM,3.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" @@ -495,8 +527,8 @@ central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,FOM,0.44,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" @@ -505,7 +537,7 @@ central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_ central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW @@ -513,77 +545,77 @@ central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_d central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,FOM,2.85,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.95,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,FOM,2.85,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4494.0463,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4494.05,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,FOM,2.85,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3155.95,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,FOM,0.64,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.47,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.0115,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,investment,90.01,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- csp-tower TES,FOM,1.4,%/year,see solar-tower.,- -csp-tower TES,investment,12.0643,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,investment,12.06,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." csp-tower TES,lifetime,30.0,years,see solar-tower.,- csp-tower power block,FOM,1.4,%/year,see solar-tower.,- -csp-tower power block,investment,630.5698,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,investment,630.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." csp-tower power block,lifetime,30.0,years,see solar-tower.,- decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,FOM,3.14,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,FOM,6.73,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,investment,268.51,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,investment,167.82,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,FOM,1.99,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions @@ -596,7 +628,7 @@ decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost a decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", @@ -611,89 +643,82 @@ direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,FOM,1.03,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,FOM,1.03,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,FOM,1.41,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,FOM,1.41,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,FOM,1.31,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation, +electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,2.3561,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,VOM,2.36,EUR/MWh_th,combination of BtL and electrofuels, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, -electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, +electrobiofuels,efficiency-biomass,1.33,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.3,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.66,per unit,Stoichiometric calculation, +electrobiofuels,investment,298027.5,EUR/kW_th,combination of BtL and electrofuels, electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.0834,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,226.4327,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,efficiency-heat,0.08,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,226.43,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment electrolysis,lifetime,35.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, gas,fuel,20.1,EUR/MWh_th,BP 2019, gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" @@ -705,89 +730,80 @@ helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,investment,87.43,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,investment,108.59,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,FOM,1.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,FOM,0.1,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,480.5844,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,480.58,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanol,CO2 intensity,0.25,tCO2/MWh_th,, methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,480584.3906,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,480584.39,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.55,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,FOM,2.17,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,investment,1380.27,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions @@ -795,80 +811,80 @@ offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/ offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.41,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.22,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.07,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,21025.641,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,21025.64,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,FOM,2.07,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,370.188,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,investment,370.19,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,FOM,1.61,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,FOM,1.81,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.88,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,FOM,1.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.88,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,FOM,2.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,265.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,FOM,2.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,319.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,FOM,6.28,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,investment,536.36,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,FOM,6.28,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,investment,536.36,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,FOM,2.29,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.54,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,efficiency,0.22,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7068.89,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,FOM,2.29,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.54,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,efficiency,0.22,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7068.89,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 5e50f25e2319bcb2bb4b66e60fc3f35117b797b0 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Wed, 1 Nov 2023 15:54:45 +0100 Subject: [PATCH 10/29] Update Snakefile update with vehicle cost file --- Snakefile | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/Snakefile b/Snakefile index 8b18eb3..5d52eb4 100644 --- a/Snakefile +++ b/Snakefile @@ -7,7 +7,7 @@ rule compile_cost_assumptions: pypsa_costs = "inputs/costs_PyPSA.csv", fraunhofer_costs = "inputs/Fraunhofer_ISE_costs.csv", fraunhofer_energy_prices = "inputs/Fraunhofer_ISE_energy_prices.csv", - fraunhofer_vehicles_costs = "inputs/Fraunhofer_ISE_vehicles_costs.csv", + fraunhofer_vehicles_costs = "inputs/Fraunhofer_ISE_vehicles_costs.csv", EWG_costs = "inputs/EWG_costs.csv", dea_transport = "inputs/energy_transport_data_sheet_dec_2017.xlsx", dea_renewable_fuels = "inputs/data_sheets_for_renewable_fuels.xlsx", From 7bdbe5ea8de630e903fc092d86a78137f76a40e3 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Wed, 1 Nov 2023 15:56:31 +0100 Subject: [PATCH 11/29] Update compile_cost_assumptions.py updated with vehicle costs --- scripts/compile_cost_assumptions.py | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 70b8859..6c6b2f7 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -1400,6 +1400,7 @@ def rename_ISE(costs_ISE): return costs_ISE + def rename_ISE_vehicles(costs_vehicles): """ rename ISE_vehicles costs to fit to tech data @@ -1431,7 +1432,6 @@ def rename_ISE_vehicles(costs_vehicles): costs_vehicles.unit.replace({"a": "years", "% Invest": "%"}, inplace=True) costs_vehicles["source"] = source_dict["vehicles"] costs_vehicles['further description'] = costs_vehicles.reset_index()["technology"].values - return costs_vehicles def carbon_flow(costs,year): @@ -2186,7 +2186,7 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): index_col=[0,2]).sort_index() # rename some techs and convert units costs_pypsa = rename_pypsa_old(costs_pypsa) - + # (b1) ------- add vehicle costs from Fraunhofer vehicle study ------------------------ costs_vehicles = pd.read_csv(snakemake.input.fraunhofer_vehicles_costs, engine="python", @@ -2194,9 +2194,13 @@ def geometric_series(nominator, denominator=1, number_of_terms=1, start=1): encoding="ISO-8859-1") # rename + reorder to fit to other data costs_vehicles = rename_ISE_vehicles(costs_vehicles) + if 'NT' in costs_vehicles.index: + costs_vehicles.drop(['NT'], axis=0, inplace=True) + # add costs for vehicles data = pd.concat([data, costs_vehicles], sort=True) - + + # (b) ------- add costs from Fraunhofer ISE study -------------------------- costs_ISE = pd.read_csv(snakemake.input.fraunhofer_costs, engine="python", From 2972c1d2907cb11e7acd4273bcb89e2daa5cd821 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Thu, 2 Nov 2023 17:42:05 +0100 Subject: [PATCH 12/29] Delete outputs/costs_2030.csv --- outputs/costs_2030.csv | 891 ----------------------------------------- 1 file changed, 891 deletions(-) delete mode 100644 outputs/costs_2030.csv diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv deleted file mode 100644 index 9df6739..0000000 --- a/outputs/costs_2030.csv +++ /dev/null @@ -1,891 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.34,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.66,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.24,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.64,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.27,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.73,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.27,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.67,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.38,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,4.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.33,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.42,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,650711.26,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.48,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.28,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.33,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.17,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,3.17,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1297.43,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.31,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.72,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.72,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.37,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.77,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -NT,Wirkungsgrad el.,63.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -NT,Wirkungsgrad th.,28.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.01,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.04,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.05,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.29,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.17,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.54,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.79,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,729306.18,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.34,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,12.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1539.62,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,12.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1539.62,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.49,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.18,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.75,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.63,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.49,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.3,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.41,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.59,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.22,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.33,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2921.13,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.47,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.25,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.49,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4921.02,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.87,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.58,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.82,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3349.49,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.55,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.54,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,98.15,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.1,%/year,see solar-tower.,- -csp-tower TES,investment,13.15,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.1,%/year,see solar-tower.,- -csp-tower power block,investment,687.6,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.69,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.82,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.51,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.82,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.46,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.88,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.67,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.83,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.21,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.63,per unit,Stoichiometric calculation, -electrobiofuels,investment,431201.82,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.17,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,407.58,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.34,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.06,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.11,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,628.6,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.25,tCO2/MWh_th,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,650711.26,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.11,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.27,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1523.55,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.22,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.56,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,32882.05,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.95,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,492.11,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.42,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,636.66,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.27,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.48,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.56,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.29,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,411.63,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.08,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.82,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.91,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.08,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.82,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,590.91,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.52,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8110.39,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.52,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8110.39,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 788f06c65adeb41fff1a2bde6025e1ef796f00ab Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Thu, 2 Nov 2023 17:42:16 +0100 Subject: [PATCH 13/29] Delete outputs/costs_2020.csv --- outputs/costs_2020.csv | 891 ----------------------------------------- 1 file changed, 891 deletions(-) delete mode 100644 outputs/costs_2020.csv diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv deleted file mode 100644 index 4a29d2a..0000000 --- a/outputs/costs_2020.csv +++ /dev/null @@ -1,891 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.32,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.68,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.25,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.25,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.75,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.28,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,170294.07,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,681176.27,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,26657.99,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.3,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.53,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,757401.0,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,169666.74,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,131071.44,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,103151.44,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1586.29,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,170186.37,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,680745.49,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,101949.07,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,1181390.35,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.48,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,1146506.06,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.41,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,135616.19,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.24,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,330854.28,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,456183.77,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,320299.24,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,169144.42,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,86573.55,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,294988.16,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,86573.55,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,337033.29,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,135293.1,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,541172.4,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,62877.49,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -NT,Wirkungsgrad el.,62.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -NT,Wirkungsgrad th.,27.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -Ni-Zn-bicharger,FOM,2.07,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,86573.55,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,312321.71,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,731096.17,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,513322.85,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.06,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,28343.78,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,138236.77,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,552947.08,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,7259.2,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,135814.52,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,287672.95,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.19,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,176526.03,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.48,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,121637.34,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.28,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,431692.96,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.25,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,250772.96,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,891679.11,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,11.38,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1710.69,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,11.38,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1710.69,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.69,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,423.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.45,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.11,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.45,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3381.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.11,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,875.42,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.39,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,682.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.39,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.61,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.22,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.11,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,20.4,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,5258.03,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.48,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,0.98,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.89,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3534.65,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.89,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,5449.8,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.89,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3534.65,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.52,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.58,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,144.88,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.0,%/year,see solar-tower.,- -csp-tower TES,investment,19.41,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.0,%/year,see solar-tower.,- -csp-tower power block,investment,1014.93,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.96,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.56,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,312.08,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,195.05,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.85,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.21,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.21,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.55,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.55,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.34,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.86,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.92,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,4.66,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.18,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.62,per unit,Stoichiometric calculation, -electrobiofuels,investment,517844.13,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.66,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.18,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,588.73,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.67,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,54.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,323.53,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.05,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,718.95,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.25,tCO2/MWh_th,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,757401.0,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.67,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,10045.31,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.51,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1804.77,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1118.77,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,40219.78,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.58,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,733.47,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.15,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,957.47,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.22,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,790.08,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.08,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,1124.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.01,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,509.47,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,1.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,589.04,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,618.18,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,618.18,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,27.28,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.28,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8577.7,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,27.28,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.28,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8577.7,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From ccb2fb4306cd7fd6c556b4b283d77fe128856228 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Thu, 2 Nov 2023 17:42:27 +0100 Subject: [PATCH 14/29] Delete outputs/costs_2050.csv --- outputs/costs_2050.csv | 891 ----------------------------------------- 1 file changed, 891 deletions(-) delete mode 100644 outputs/costs_2050.csv diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv deleted file mode 100644 index d12017a..0000000 --- a/outputs/costs_2050.csv +++ /dev/null @@ -1,891 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.38,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.62,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.23,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.32,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.68,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.25,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.1,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.28,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.33,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,480584.39,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.48,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.28,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.33,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,56.59,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,522.34,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,813.55,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.31,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.72,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.72,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.37,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.77,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -NT,Wirkungsgrad el.,65.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -NT,Wirkungsgrad th.,29.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.01,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.04,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.05,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.29,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.17,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.54,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.79,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,457307.78,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,14.12,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1385.66,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,14.12,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1385.66,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.51,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.68,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.54,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.54,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.24,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.54,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.36,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.21,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.67,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,1460.56,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.72,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.54,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.87,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.46,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.44,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.85,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.95,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.85,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4494.05,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.85,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.67,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3155.95,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.64,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.47,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.01,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.4,%/year,see solar-tower.,- -csp-tower TES,investment,12.06,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.4,%/year,see solar-tower.,- -csp-tower power block,investment,630.57,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.14,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.73,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.51,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.82,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.99,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.03,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.03,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.41,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.41,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.31,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, -electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,2.36,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.33,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.3,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.66,per unit,Stoichiometric calculation, -electrobiofuels,investment,298027.5,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.08,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,226.43,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,35.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,87.43,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,108.59,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,480.58,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.25,tCO2/MWh_th,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,480584.39,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.55,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.17,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1380.27,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.41,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.22,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.07,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,21025.64,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.07,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,370.19,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.61,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.81,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.88,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.88,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,265.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,319.28,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.28,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.36,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.28,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,536.36,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.29,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.54,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.22,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7068.89,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.29,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.54,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.22,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7068.89,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From ba233014bfb361ab752307561da8db328b5cb1e9 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Thu, 2 Nov 2023 17:42:36 +0100 Subject: [PATCH 15/29] Delete outputs/costs_2045.csv --- outputs/costs_2045.csv | 891 ----------------------------------------- 1 file changed, 891 deletions(-) delete mode 100644 outputs/costs_2045.csv diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv deleted file mode 100644 index 642cc6a..0000000 --- a/outputs/costs_2045.csv +++ /dev/null @@ -1,891 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,661221.1,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.37,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.63,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.23,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.61,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.62,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.3,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.26,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.92,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.43,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.28,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.65,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.29,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.34,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,523116.11,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.48,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.28,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.33,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,1.92,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,1.92,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,78.35,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,609.39,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,937.36,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.31,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.72,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.72,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.37,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.77,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -NT,Wirkungsgrad el.,65.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -NT,Wirkungsgrad th.,28.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.01,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.04,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.05,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.29,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.17,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.54,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.79,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,526904.4,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.68,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.78,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1424.15,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.78,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1424.15,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.56,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,352.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.55,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2986.75,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.71,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.04,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.28,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,773.06,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.53,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,602.85,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.43,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.57,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.21,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.16,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,1790.89,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.68,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.75,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1803.02,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.43,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.38,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.58,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3204.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4570.47,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.65,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.34,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3204.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.62,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.49,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.28,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.35,%/year,see solar-tower.,- -csp-tower TES,investment,12.1,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.35,%/year,see solar-tower.,- -csp-tower power block,investment,632.44,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.72,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,275.59,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,172.24,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.94,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.01,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.43,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.43,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.92,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,2.72,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.33,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.28,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.65,per unit,Stoichiometric calculation, -electrobiofuels,investment,329978.85,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.73,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,249.08,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,33.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.68,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,115.9,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,122.66,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.87,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,24.03,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.18,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.82,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,517.59,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.25,tCO2/MWh_th,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,523116.11,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.33,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6175.23,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.17,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1397.68,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.42,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.23,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,970.32,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,23661.54,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.05,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,389.03,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.58,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,500.27,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.77,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,395.99,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,604.55,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.53,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,277.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,333.68,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.23,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.23,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.78,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7329.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.78,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7329.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 830641571b6bbf679c6c16f6038b6e702750f8f5 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Thu, 2 Nov 2023 17:42:46 +0100 Subject: [PATCH 16/29] Delete outputs/costs_2040.csv --- outputs/costs_2040.csv | 891 ----------------------------------------- 1 file changed, 891 deletions(-) delete mode 100644 outputs/costs_2040.csv diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv deleted file mode 100644 index 6f5710c..0000000 --- a/outputs/costs_2040.csv +++ /dev/null @@ -1,891 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,794849.98,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.36,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.64,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.23,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.62,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.66,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.29,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.71,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.26,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.84,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.42,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.3,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.36,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,565647.83,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.48,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.28,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.33,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,2.33,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,2.33,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,100.11,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,696.45,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1061.17,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.31,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.72,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.72,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.37,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.77,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -NT,Wirkungsgrad el.,64.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -NT,Wirkungsgrad th.,28.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.01,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.79,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.04,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.05,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.29,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.17,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.54,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.79,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,596501.02,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.45,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1462.64,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.45,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1462.64,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.43,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,362.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.56,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3061.26,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.73,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.95,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,792.91,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.51,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,618.33,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.43,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.57,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.21,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.81,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2121.21,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.78,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.53,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1822.17,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.39,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.41,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.34,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.62,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3252.72,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4647.0,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.63,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3252.72,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.59,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.51,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.55,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.3,%/year,see solar-tower.,- -csp-tower TES,investment,12.13,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.3,%/year,see solar-tower.,- -csp-tower power block,investment,634.32,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.07,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.71,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,282.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,176.67,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.15,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.15,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.45,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.84,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.1,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.33,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.25,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.64,per unit,Stoichiometric calculation, -electrobiofuels,investment,362825.01,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.72,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.12,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,271.72,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,32.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,144.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,136.17,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.85,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,27.05,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,554.59,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.25,tCO2/MWh_th,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,565647.83,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6586.91,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.18,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1415.08,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.44,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.19,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.24,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,977.57,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,26297.44,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,407.87,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.56,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,525.16,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.74,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,417.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,633.22,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.52,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,290.58,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.45,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,348.08,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,563.64,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.85,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,563.64,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.03,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7589.64,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.03,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7589.64,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 4c180cba30fa7f726dc9629f87d5055c3092ab81 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Thu, 2 Nov 2023 17:42:55 +0100 Subject: [PATCH 17/29] Delete outputs/costs_2035.csv --- outputs/costs_2035.csv | 891 ----------------------------------------- 1 file changed, 891 deletions(-) delete mode 100644 outputs/costs_2035.csv diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv deleted file mode 100644 index b0a1a69..0000000 --- a/outputs/costs_2035.csv +++ /dev/null @@ -1,891 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,928478.86,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.35,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.65,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.24,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.63,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.68,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.28,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.72,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.26,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.75,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.33,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.7,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.31,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.39,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,608179.55,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.48,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.28,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.33,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,121.88,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,783.5,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1179.3,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.11,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.63,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.31,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.58,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.72,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.69,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.72,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.37,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.52,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.77,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.06,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -NT,Wirkungsgrad el.,64.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -NT,Wirkungsgrad th.,28.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -Ni-Zn-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.01,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.04,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.05,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.15,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.29,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.38,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.52,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.17,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.54,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.17,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.6,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.12,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.26,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.79,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.22,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.45,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,662903.6,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.42,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.14,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1501.13,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.14,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1501.13,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.31,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,371.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.57,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3135.77,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.74,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.87,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.78,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,812.77,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,633.81,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.42,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.58,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.21,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.53,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2521.17,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.92,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.62,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.25,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.81,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1841.32,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.35,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.66,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3301.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4783.0,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.86,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.61,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3301.1,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.57,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.52,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,94.35,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.2,%/year,see solar-tower.,- -csp-tower TES,investment,12.64,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.2,%/year,see solar-tower.,- -csp-tower power block,investment,660.96,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.03,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,289.74,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,181.09,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.86,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.94,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.88,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.17,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.48,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.48,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.42,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.83,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.75,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.46,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.23,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.64,per unit,Stoichiometric calculation, -electrobiofuels,investment,396566.0,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.15,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,339.65,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,31.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.45,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.42,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,186.57,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,169.68,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.39,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,35.98,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,591.6,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.25,tCO2/MWh_th,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,608179.55,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.18,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.61,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6998.59,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1469.32,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.45,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1006.56,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,29589.74,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.99,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,449.99,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.48,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,580.91,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.65,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,464.79,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.32,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,697.04,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,319.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,379.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.12,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,577.27,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.12,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.84,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,577.27,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.34,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.27,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7850.02,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.34,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.27,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7850.02,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From b2e7cefd042a538bbb4498d9bc463e7618aa87d7 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Thu, 2 Nov 2023 17:43:05 +0100 Subject: [PATCH 18/29] Delete outputs/costs_2025.csv --- outputs/costs_2025.csv | 891 ----------------------------------------- 1 file changed, 891 deletions(-) delete mode 100644 outputs/costs_2025.csv diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv deleted file mode 100644 index 9ceb427..0000000 --- a/outputs/costs_2025.csv +++ /dev/null @@ -1,891 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.33,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.67,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.24,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.62,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.26,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.74,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.27,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.53,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.06,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.37,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.34,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.95,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,investment,79.0,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,investment,114.89,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.6,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.04,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.13,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.12,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.01,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.03,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.17,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.93,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.72,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.23,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.14,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,150446.72,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.43,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,601786.89,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,24217.8,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,4.75,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.34,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.8,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.01,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.48,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,704056.13,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.83,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.79,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.93,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.02,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,156106.11,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,120674.36,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.36,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,95042.88,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.58,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,investment,226.47,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,3.58,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,investment,105.88,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,investment,329.37,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.08,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.58,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.64,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.2,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.02,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.56,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.82,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.97,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.33,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.25,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.15,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1441.86,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.16,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,150392.88,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.44,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,601571.5,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,93592.59,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.55,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.7,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,747916.83,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.53,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.49,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,744892.39,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.35,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.59,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.33,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.03,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.15,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.0,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.87,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.54,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.94,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.27,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.34,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.26,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.42,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.88,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,126161.44,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.25,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,310630.0,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,443529.57,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,311414.38,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.32,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,156579.97,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,80219.53,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,254588.96,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.92,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,80219.53,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.04,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,290598.68,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,132946.24,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.54,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,531784.96,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,57723.6,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.34,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.43,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.2,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.93,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.34,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -NT,Wirkungsgrad el.,63.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -NT,Wirkungsgrad th.,28.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,NT -Ni-Zn-bicharger,FOM,2.09,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,80219.53,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.23,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,277455.36,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.37,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,710533.11,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.52,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,498884.95,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.11,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,19401.04,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,1.0,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.29,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.74,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.4,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.66,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.08,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,134418.08,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.27,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,537672.3,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.33,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6664.18,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.47,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.48,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.42,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.81,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,126337.34,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.23,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,260708.75,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.79,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.18,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,167237.32,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.3,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.83,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,97751.42,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.27,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,402565.87,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.44,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.89,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.15,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.24,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,233721.21,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,810492.64,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.25,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,12.07,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1625.16,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.09,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,12.07,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1625.16,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.44,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,402.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.53,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.47,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.46,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3295.78,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.78,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.45,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,854.02,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,665.99,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.6,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.22,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.19,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,17.0,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,4089.58,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.83,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.21,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.39,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.63,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.87,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.92,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1880.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.31,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.12,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.61,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.88,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3442.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.88,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,5308.7,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.88,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.59,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.35,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.27,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.83,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3442.07,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.53,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.56,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.63,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.34,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,121.52,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.05,%/year,see solar-tower.,- -csp-tower TES,investment,16.28,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.05,%/year,see solar-tower.,- -csp-tower power block,investment,851.27,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.98,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.62,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,304.45,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,190.28,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.84,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.01,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.38,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.2,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.2,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.52,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.52,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.33,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.79,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.39,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.64,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.4,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.39,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.93,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.53,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,4.24,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.63,per unit,Stoichiometric calculation, -electrobiofuels,investment,473961.81,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.67,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.18,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,498.15,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.2,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.59,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.03,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.34,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.78,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.25,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,303.6,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,264.77,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.16,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.42,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.23,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.08,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,50.96,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.09,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.11,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.62,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.41,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.51,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.2,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.28,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,673.78,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.25,tCO2/MWh_th,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.27,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.25,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.27,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.14,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,704056.13,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.43,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.35,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,8716.89,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.45,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.37,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1602.34,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.26,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.51,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.23,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.42,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1077.17,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.24,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.0,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.03,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,36907.69,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.25,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.73,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,612.79,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.26,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,797.07,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.36,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,651.27,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.16,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,942.86,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.2,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,428.52,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.04,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,500.34,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.37,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.76,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.8,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,604.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.76,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.8,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,604.55,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.38,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.9,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8344.05,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.38,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.9,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.29,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.21,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.76,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8344.05,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.84,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From e9fb2a86ff2452eca09f8931e45c9a1eb11e69d1 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Thu, 2 Nov 2023 17:44:53 +0100 Subject: [PATCH 19/29] Add files via upload --- costs_2020.csv | 910 +++++++++++++++++++++++++++++++++++++++++++++++++ costs_2025.csv | 910 +++++++++++++++++++++++++++++++++++++++++++++++++ costs_2030.csv | 910 +++++++++++++++++++++++++++++++++++++++++++++++++ costs_2035.csv | 910 +++++++++++++++++++++++++++++++++++++++++++++++++ costs_2040.csv | 910 +++++++++++++++++++++++++++++++++++++++++++++++++ costs_2045.csv | 910 +++++++++++++++++++++++++++++++++++++++++++++++++ costs_2050.csv | 910 +++++++++++++++++++++++++++++++++++++++++++++++++ 7 files changed, 6370 insertions(+) create mode 100644 costs_2020.csv create mode 100644 costs_2025.csv create mode 100644 costs_2030.csv create mode 100644 costs_2035.csv create mode 100644 costs_2040.csv create mode 100644 costs_2045.csv create mode 100644 costs_2050.csv diff --git a/costs_2020.csv b/costs_2020.csv new file mode 100644 index 0000000..f5bdbf6 --- /dev/null +++ b/costs_2020.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,170294.0671,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,681176.2683,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,26657.9934,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,5.3,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,757400.9996,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,169666.742,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,131071.4442,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,103151.4416,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1586.2889,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,170186.3718,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,680745.4871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,101949.0686,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,1181390.354,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,1146506.0562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,135616.1853,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,330854.2753,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,456183.7659,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,320299.2399,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,169144.4199,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,294988.1555,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,337033.2923,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,135293.0994,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,541172.3976,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,62877.4884,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,312321.7116,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,731096.174,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,513322.8456,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,28343.7836,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,138236.7705,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,552947.0821,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,7259.2007,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,135814.5241,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,287672.9532,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,176526.0342,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,121637.3372,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,431692.9606,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,250772.9587,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,891679.1058,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,11.3822,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1710.692,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,11.3822,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1710.692,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5059,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.6909,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,423.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,20.4043,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,5258.0331,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,5449.8023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,144.8807,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.0,%/year,see solar-tower.,- +csp-tower TES,investment,19.4098,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.0,%/year,see solar-tower.,- +csp-tower power block,investment,1014.9348,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,4.6618,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, +electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1839,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,588.725,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,718.9542,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,757400.9996,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,40219.7802,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,733.4715,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,957.4695,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/costs_2025.csv b/costs_2025.csv new file mode 100644 index 0000000..8815902 --- /dev/null +++ b/costs_2025.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,150446.7235,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,601786.8939,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,24217.7978,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,4.75,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,704056.1323,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,156106.1107,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,120674.3619,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,95042.884,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1441.8589,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,150392.8758,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,601571.5033,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,93592.5875,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,747916.8314,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,744892.3888,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,126161.4367,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,310629.9982,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,443529.5699,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,311414.3789,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,156579.97,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,254588.9617,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,290598.6752,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,132946.2396,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,531784.9586,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,57723.5959,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,277455.3631,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,710533.1055,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,498884.9464,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,19401.0364,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,134418.0752,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,537672.3008,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6664.1842,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,126337.339,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,260708.7462,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,167237.3159,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,97751.4205,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,402565.8733,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,233721.2052,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,810492.641,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,12.0732,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1625.1574,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,12.0732,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1625.1574,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.4373,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,402.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,17.0036,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,4089.5813,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,5308.7011,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,121.5174,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.05,%/year,see solar-tower.,- +csp-tower TES,investment,16.2805,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.05,%/year,see solar-tower.,- +csp-tower power block,investment,851.2692,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,4.2383,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, +electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.6725,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.175,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,673.7793,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,704056.1323,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,36907.6923,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,612.7906,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,797.0658,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/costs_2030.csv b/costs_2030.csv new file mode 100644 index 0000000..2045dbe --- /dev/null +++ b/costs_2030.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,4.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,650711.2649,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1297.4289,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,729306.1762,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,12.841,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1539.6228,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,12.841,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1539.6228,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.4934,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.1838,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,2921.1295,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4921.0185,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,98.154,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.1,%/year,see solar-tower.,- +csp-tower TES,investment,13.1512,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.1,%/year,see solar-tower.,- +csp-tower power block,investment,687.6037,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.8264,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, +electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1662,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,407.5789,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,628.6044,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,650711.2649,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,32882.0513,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,492.1097,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,636.6622,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/costs_2035.csv b/costs_2035.csv new file mode 100644 index 0000000..de15e1d --- /dev/null +++ b/costs_2035.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,928478.86,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.675,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0631,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,3.7,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,608179.5463,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,121.8784,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,783.5042,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1179.2994,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,662903.5995,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,13.1372,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1501.1323,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.1372,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1501.1323,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.4966,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.3085,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,371.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,2521.1708,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4783.0021,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,94.35,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.2,%/year,see solar-tower.,- +csp-tower TES,investment,12.6395,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.2,%/year,see solar-tower.,- +csp-tower power block,investment,660.9616,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.459,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, +electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.6975,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1455,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,339.6491,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,31.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,591.5994,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,608179.5463,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,29589.7436,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,449.9901,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,580.9113,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/costs_2040.csv b/costs_2040.csv new file mode 100644 index 0000000..e996339 --- /dev/null +++ b/costs_2040.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,794849.98,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,3.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,565647.8278,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,100.1144,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,696.4481,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1061.1698,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,596501.0228,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,13.4491,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1462.6417,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.4491,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1462.6417,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.4332,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,362.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,2121.2121,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4646.9979,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.5459,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.3,%/year,see solar-tower.,- +csp-tower TES,investment,12.1277,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.3,%/year,see solar-tower.,- +csp-tower power block,investment,634.3195,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.1021,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, +electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.715,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1248,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,32.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,554.5944,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,565647.8278,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,26297.4359,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,407.8706,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,525.1604,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/costs_2045.csv b/costs_2045.csv new file mode 100644 index 0000000..692ae41 --- /dev/null +++ b/costs_2045.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,661221.1,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.625,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0631,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,2.65,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,523116.1092,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,78.3504,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,609.3921,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,937.3581,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,526904.4016,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,13.7778,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1424.1511,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.7778,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1424.1511,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5035,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.558,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,352.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,1790.8884,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4570.4672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.2787,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.35,%/year,see solar-tower.,- +csp-tower TES,investment,12.096,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.35,%/year,see solar-tower.,- +csp-tower power block,investment,632.4447,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,2.7233,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, +electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.7325,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1041,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,249.076,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,33.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,517.5894,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,523116.1092,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,23661.5385,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,389.0293,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,500.2702,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/costs_2050.csv b/costs_2050.csv new file mode 100644 index 0000000..5e0f01c --- /dev/null +++ b/costs_2050.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,2.1,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,480584.3906,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,56.5864,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,522.3361,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,813.5463,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,457307.7803,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,14.1248,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1385.6605,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,14.1248,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1385.6605,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5073,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.6827,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,1460.5648,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4494.0463,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.0115,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.4,%/year,see solar-tower.,- +csp-tower TES,investment,12.0643,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.4,%/year,see solar-tower.,- +csp-tower power block,investment,630.5698,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation, +electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,2.3561,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, +electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.0834,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,226.4327,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,35.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,480.5844,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,480584.3906,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,21025.641,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,370.188,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 7d85130e988868ea66d7e0e8d9e98c9681467c46 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Fri, 3 Nov 2023 13:54:23 +0100 Subject: [PATCH 20/29] Create test --- outputs/test | 1 + 1 file changed, 1 insertion(+) create mode 100644 outputs/test diff --git a/outputs/test b/outputs/test new file mode 100644 index 0000000..9f4e8d7 --- /dev/null +++ b/outputs/test @@ -0,0 +1 @@ +#test From dd892d26cba55445d986ca291ab497d22ce13152 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Fri, 3 Nov 2023 13:55:01 +0100 Subject: [PATCH 21/29] Add files via upload --- outputs/costs_2020.csv | 910 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2025.csv | 910 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2030.csv | 910 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2035.csv | 910 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2040.csv | 910 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2045.csv | 910 +++++++++++++++++++++++++++++++++++++++++ outputs/costs_2050.csv | 910 +++++++++++++++++++++++++++++++++++++++++ 7 files changed, 6370 insertions(+) create mode 100644 outputs/costs_2020.csv create mode 100644 outputs/costs_2025.csv create mode 100644 outputs/costs_2030.csv create mode 100644 outputs/costs_2035.csv create mode 100644 outputs/costs_2040.csv create mode 100644 outputs/costs_2045.csv create mode 100644 outputs/costs_2050.csv diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv new file mode 100644 index 0000000..f5bdbf6 --- /dev/null +++ b/outputs/costs_2020.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,170294.0671,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,681176.2683,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,26657.9934,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,5.3,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,757400.9996,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,169666.742,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,131071.4442,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,103151.4416,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1586.2889,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,170186.3718,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,680745.4871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,101949.0686,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,1181390.354,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,1146506.0562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,135616.1853,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,330854.2753,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,456183.7659,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,320299.2399,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,169144.4199,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,294988.1555,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,337033.2923,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,135293.0994,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,541172.3976,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,62877.4884,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,312321.7116,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,731096.174,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,513322.8456,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,28343.7836,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,138236.7705,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,552947.0821,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,7259.2007,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,135814.5241,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,287672.9532,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,176526.0342,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,121637.3372,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,431692.9606,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,250772.9587,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,891679.1058,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,11.3822,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1710.692,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,11.3822,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1710.692,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5059,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.6909,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,423.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,20.4043,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,5258.0331,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,5449.8023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,144.8807,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.0,%/year,see solar-tower.,- +csp-tower TES,investment,19.4098,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.0,%/year,see solar-tower.,- +csp-tower power block,investment,1014.9348,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,4.6618,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, +electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1839,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,588.725,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,718.9542,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,757400.9996,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,40219.7802,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,733.4715,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,957.4695,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv new file mode 100644 index 0000000..8815902 --- /dev/null +++ b/outputs/costs_2025.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,150446.7235,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,601786.8939,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,24217.7978,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,4.75,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,704056.1323,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,156106.1107,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,120674.3619,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,95042.884,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1441.8589,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,150392.8758,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,601571.5033,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,93592.5875,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,747916.8314,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,744892.3888,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,126161.4367,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,310629.9982,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,443529.5699,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,311414.3789,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,156579.97,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,254588.9617,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,290598.6752,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,132946.2396,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,531784.9586,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,57723.5959,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,277455.3631,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,710533.1055,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,498884.9464,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,19401.0364,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,134418.0752,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,537672.3008,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6664.1842,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,126337.339,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,260708.7462,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,167237.3159,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,97751.4205,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,402565.8733,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,233721.2052,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,810492.641,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,12.0732,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1625.1574,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,12.0732,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1625.1574,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.4373,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,402.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,17.0036,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,4089.5813,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,5308.7011,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,121.5174,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.05,%/year,see solar-tower.,- +csp-tower TES,investment,16.2805,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.05,%/year,see solar-tower.,- +csp-tower power block,investment,851.2692,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,4.2383,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, +electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.6725,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.175,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,673.7793,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,704056.1323,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,36907.6923,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,612.7906,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,797.0658,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv new file mode 100644 index 0000000..2045dbe --- /dev/null +++ b/outputs/costs_2030.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,4.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,650711.2649,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1297.4289,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,729306.1762,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,12.841,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1539.6228,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,12.841,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1539.6228,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.4934,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.1838,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,2921.1295,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4921.0185,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,98.154,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.1,%/year,see solar-tower.,- +csp-tower TES,investment,13.1512,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.1,%/year,see solar-tower.,- +csp-tower power block,investment,687.6037,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.8264,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, +electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1662,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,407.5789,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,628.6044,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,650711.2649,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,32882.0513,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,492.1097,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,636.6622,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv new file mode 100644 index 0000000..de15e1d --- /dev/null +++ b/outputs/costs_2035.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,928478.86,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.675,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0631,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,3.7,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,608179.5463,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,121.8784,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,783.5042,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1179.2994,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,662903.5995,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,13.1372,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1501.1323,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.1372,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1501.1323,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.4966,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.3085,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,371.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,2521.1708,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4783.0021,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,94.35,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.2,%/year,see solar-tower.,- +csp-tower TES,investment,12.6395,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.2,%/year,see solar-tower.,- +csp-tower power block,investment,660.9616,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.459,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, +electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.6975,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1455,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,339.6491,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,31.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,591.5994,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,608179.5463,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,29589.7436,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,449.9901,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,580.9113,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv new file mode 100644 index 0000000..e996339 --- /dev/null +++ b/outputs/costs_2040.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,794849.98,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,3.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,565647.8278,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,100.1144,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,696.4481,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,1061.1698,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,596501.0228,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,13.4491,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1462.6417,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.4491,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1462.6417,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.4332,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,362.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,2121.2121,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4646.9979,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.5459,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.3,%/year,see solar-tower.,- +csp-tower TES,investment,12.1277,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.3,%/year,see solar-tower.,- +csp-tower power block,investment,634.3195,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,3.1021,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, +electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.715,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1248,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,32.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,554.5944,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,565647.8278,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,26297.4359,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,407.8706,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,525.1604,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv new file mode 100644 index 0000000..692ae41 --- /dev/null +++ b/outputs/costs_2045.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,661221.1,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.625,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0631,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,2.65,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,523116.1092,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,78.3504,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,609.3921,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,937.3581,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,526904.4016,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,13.7778,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1424.1511,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,13.7778,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1424.1511,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5035,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.558,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,352.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,1790.8884,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4570.4672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.2787,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.35,%/year,see solar-tower.,- +csp-tower TES,investment,12.096,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.35,%/year,see solar-tower.,- +csp-tower power block,investment,632.4447,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation, +electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,2.7233,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, +electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.7325,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.1041,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,249.076,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,33.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,517.5894,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,523116.1092,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,23661.5385,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,389.0293,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,500.2702,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv new file mode 100644 index 0000000..5e0f01c --- /dev/null +++ b/outputs/costs_2050.csv @@ -0,0 +1,910 @@ +technology,parameter,value,unit,source,further description +Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." +Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). +Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and +Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." +Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", +Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) +Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) +BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" +BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" +BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" +BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" +BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" +BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" +BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" +BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" +BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" +BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" +CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" +CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" +CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" +CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" +CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" +CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" +CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" +CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." +CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- +CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." +CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." +CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." +CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." +CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- +CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . +CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." +CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", +CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." +CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." +CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., +CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. +CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." +CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", +CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. +CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." +CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", +CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. +Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars +Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks +Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars +Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" +Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" +Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" +Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +Fischer-Tropsch,VOM,2.1,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M +Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." +Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", +Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." +Fischer-Tropsch,investment,480584.3906,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz +General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . +General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). +General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . +General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", +Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" +Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" +Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" +Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" +Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" +Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." +H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." +H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", +H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." +H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." +H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. +H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- +H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." +H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- +H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- +H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." +H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). +H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", +H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 evaporation,investment,56.5864,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and +Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." +H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. +H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", +H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" +H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction +H2 liquefaction,investment,522.3361,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and +Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." +H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions +H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions +H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions +HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", +HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 +HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." +Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M +Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. +Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." +Haber-Bosch,investment,813.5463,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." +HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) +Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) +Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" +Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" +Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" +Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" +Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" +Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. +LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. +LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. +LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", +LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." +LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. +LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. +LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", +LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." +LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." +LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", +LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." +LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." +Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" +Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) +Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) +Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" +Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" +Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" +Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", +Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." +Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", +Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. +NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", +NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. +While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. +We assume an exchange rate of 1.17$ to 1 €. +The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." +NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", +NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", +NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", +Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" +Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M +OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M +OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" +OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment +OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime +PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" +Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" +Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" +Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" +Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" +Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" +Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" +Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" +Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" +SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% +SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" +SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", +Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" +Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" +Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" +Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" +Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" +Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" +Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" +Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" +Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" +Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. +Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). +Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." +Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" +Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" +Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" +Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" +Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" +Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" +Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" +Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" +Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" +Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" +air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M +air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." +air separation unit,investment,457307.7803,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment +air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime +battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas,FOM,14.1248,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions +biogas,investment,1385.6605,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biogas CC,FOM,14.1248,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" +biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, +biogas CC,investment,1385.6605,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" +biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" +biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M +biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment +biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime +biogas upgrading,FOM,2.5073,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " +biogas upgrading,VOM,3.6827,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" +biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" +biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" +biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions +biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP +biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" +biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " +biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" +biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" +biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" +biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" +biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " +biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" +biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" +biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output +biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" +biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment +biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime +biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" +biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" +biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" +biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" +biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, +biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", +biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M +biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M +biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" +biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" +biomass-to-methanol,investment,1460.5648,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment +biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime +cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln +central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" +central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" +central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" +central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" +central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" +central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M +central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M +central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient +central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient +central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" +central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment +central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime +central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions +central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" +central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" +central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" +central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" +central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" +central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" +central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M +central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M +central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" +central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment +central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime +central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" +central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" +central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" +central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" +central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" +central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M +central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M +central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" +central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW +central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime +central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions +central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions +central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions +central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP CC,investment,4494.0463,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, +central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" +central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " +central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" +central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" +central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" +central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" +central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " +central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" +central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M +central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment +central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime +clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,fuel,8.15,EUR/MWh_th,BP 2019, +coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. +csp-tower,investment,90.0115,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- +csp-tower TES,FOM,1.4,%/year,see solar-tower.,- +csp-tower TES,investment,12.0643,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." +csp-tower TES,lifetime,30.0,years,see solar-tower.,- +csp-tower power block,FOM,1.4,%/year,see solar-tower.,- +csp-tower power block,investment,630.5698,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." +csp-tower power block,lifetime,30.0,years,see solar-tower.,- +decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions +decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions +decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions +decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M +decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment +decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime +decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M +decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" +decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment +decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime +decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment +decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime +decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M +decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" +decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment +decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime +decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions +decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions +decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions +decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions +decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions +decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions +decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions +decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions +decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions +decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions +decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions +digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", +digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." +direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." +direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture +direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M +direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M +direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" +direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment +direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime +direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M +direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M +direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" +direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment +direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime +direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." +direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. +direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." +direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." +direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. +dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." +dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." +dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." +dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. +electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." +electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. +electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. +electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. +electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. +electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M +electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M +electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" +electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment +electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime +electric steam cracker,FOM,3.0,%/year,Guesstimate, +electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC +electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. +electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +electric steam cracker,lifetime,30.0,years,Guesstimate, +electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", +electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions +electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions +electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions +electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions +electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation, +electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels, +electrobiofuels,VOM,2.3561,EUR/MWh_th,combination of BtL and electrofuels, +electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, +electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, +electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, +electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M +electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen +electrolysis,efficiency-heat,0.0834,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating +electrolysis,investment,226.4327,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment +electrolysis,lifetime,35.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime +fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M +fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient +fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" +fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment +fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime +gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, +gas,fuel,20.1,EUR/MWh_th,BP 2019, +gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M +gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M +gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" +gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment +gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime +gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" +gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" +gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" +gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" +geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity +geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" +geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" +geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" +geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", +helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions +helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions +helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions +helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions +home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M +home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC +home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment +home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime +home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment +home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime +hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. +hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." +hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- +hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." +hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- +hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M +hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment +hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime +hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M +hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M +hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment +hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime +industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M +industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M +industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" +industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment +industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime +industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M +industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M +industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" +industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment +industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime +iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." +lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, +lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,fuel,2.9,EUR/MWh_th,DIW, +lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", +methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). +methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions +methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). +methanation,investment,480.5844,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", +methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." +methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). +methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." +methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). +methanol,CO2 intensity,0.2482,tCO2/MWh_th,, +methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." +methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", +methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " +methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC +methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). +methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker +methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " +methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", +methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M +methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", +methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", +methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH +methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH +methanolisation,investment,480584.3906,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." +methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", +micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M +micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" +micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" +micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment +micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime +nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" +offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" +offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] +offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions +offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions +offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions +offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions +oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, +oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M +oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M +oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" +oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions +oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment +oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime +onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M +onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M +onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment +onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime +ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions +ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions +seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. +seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", +seawater desalination,investment,21025.641,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", +seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", +shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. +shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). +solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions +solar,investment,370.188,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' +solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions +solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' +solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] +solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] +solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] +solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] +solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] +solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] +solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] +solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] +solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] +solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] +solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] +solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, +solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", +solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M +solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M +solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" +solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment +solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime +solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, +solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", +uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, +waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" +waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " +waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" +waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" +waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" +waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" +waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " +waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" +water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) +water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From dbdd62ea53f615f83a7907d2ae9074528eff6ca6 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Fri, 3 Nov 2023 13:55:16 +0100 Subject: [PATCH 22/29] Delete outputs/test --- outputs/test | 1 - 1 file changed, 1 deletion(-) delete mode 100644 outputs/test diff --git a/outputs/test b/outputs/test deleted file mode 100644 index 9f4e8d7..0000000 --- a/outputs/test +++ /dev/null @@ -1 +0,0 @@ -#test From 5694c8a0dcdc0fa931f0a243484bd4caf4b33c2f Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Fri, 3 Nov 2023 13:55:30 +0100 Subject: [PATCH 23/29] Delete costs_2050.csv --- costs_2050.csv | 910 ------------------------------------------------- 1 file changed, 910 deletions(-) delete mode 100644 costs_2050.csv diff --git a/costs_2050.csv b/costs_2050.csv deleted file mode 100644 index 5e0f01c..0000000 --- a/costs_2050.csv +++ /dev/null @@ -1,910 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,527592.22,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,129400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.378,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.622,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2281,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6067,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.6,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.7,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.3156,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.6844,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.251,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.45,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.2,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.1,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,480584.3906,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,1.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.017,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,56.5864,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,522.3361,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,813.5463,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,12.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,125710.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,26880.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,15.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,116401.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.8023,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,411.84,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,457307.7803,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.9,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,60.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,75.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,14.1248,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1385.6605,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,14.1248,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1385.6605,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,453.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5073,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.6827,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,343.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5368,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2912.2424,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.6957,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.1189,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,753.2015,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5412,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.88,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,587.362,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.44,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.56,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2053,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.65,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,1460.5648,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.018,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,1800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.67,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7228,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.535,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1783.8744,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4615,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.43,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,520.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.4,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4378,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.4284,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.75,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,456.84,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,800.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5333,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4494.0463,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8518,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6676,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3423,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2652,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8294,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3155.9505,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6429,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4667,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.4,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.0115,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.4,%/year,see solar-tower.,- -csp-tower TES,investment,12.0643,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.4,%/year,see solar-tower.,- -csp-tower power block,investment,630.5698,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1413,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,760.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7293,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.99,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,268.5084,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,167.8177,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9895,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.05,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1200.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0303,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4091,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3143,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation, -electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,2.3561,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation, -electrobiofuels,investment,298027.5019,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.75,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.0834,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,226.4327,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,35.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,800.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.74,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.94,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.9,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,87.4286,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,108.594,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.9048,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,21.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.2,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.2,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,840.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1029,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.12,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.85,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,700.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,480.5844,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,480584.3906,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,5763.5468,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.1655,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1380.2714,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4095,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,336.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1775,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.215,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,963.0662,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,21025.641,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.0676,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,370.188,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.6059,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,475.38,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.812,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,374.8836,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3998,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,575.8763,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5292,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,264.996,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.5531,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,319.2816,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2831,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.9,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,536.3636,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.2917,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.5378,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3034,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2165,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7068.8867,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 2bd6293e28166ab0f20541dd29765658bd23dfe4 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Fri, 3 Nov 2023 13:55:42 +0100 Subject: [PATCH 24/29] Delete costs_2045.csv --- costs_2045.csv | 910 ------------------------------------------------- 1 file changed, 910 deletions(-) delete mode 100644 costs_2045.csv diff --git a/costs_2045.csv b/costs_2045.csv deleted file mode 100644 index 692ae41..0000000 --- a/costs_2045.csv +++ /dev/null @@ -1,910 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,661221.1,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,23827.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,131200.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.3686,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6314,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2315,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6148,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.625,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6825,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1525.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.3039,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.6961,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2552,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.9164,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0631,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.4333,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.2755,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.595,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,807.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,2.65,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,523116.1092,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,1.9167,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.0175,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,78.3504,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,609.3921,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,937.3581,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,28160.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,12.4,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,122939.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,26610.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,15.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,113629.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7964,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,417.69,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,526904.4016,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.675,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,84.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.7778,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1424.1511,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.7778,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1424.1511,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,529.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5035,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.558,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,352.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.0215,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.549,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,2986.7514,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7111,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,3.0351,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.2806,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,773.0574,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5261,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,602.8461,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4332,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5668,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2078,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,2.1583,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.64,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,1790.8884,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.019,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.43,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.752,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1803.0246,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.4245,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.05,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.425,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,530.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.426,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3848,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.745,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,469.53,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,875.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.575,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4570.4672,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8555,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6468,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3444,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2664,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8282,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3204.3351,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.6171,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.4861,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.35,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.2787,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.35,%/year,see solar-tower.,- -csp-tower TES,investment,12.096,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.35,%/year,see solar-tower.,- -csp-tower power block,investment,632.4447,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.1033,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.75,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,782.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7194,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9875,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,275.5868,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,172.2417,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.9426,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,4.0125,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1250.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,4500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.0909,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4318,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.35,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,2.7233,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation, -electrobiofuels,investment,329978.8455,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.7325,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1041,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,249.076,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,33.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,875.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.85,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.935,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.675,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,115.8974,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,122.6635,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.873,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,24.0252,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.35,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0886,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.175,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,858.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1063,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.17,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.825,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,715.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,517.5894,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,523116.1092,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6175.2287,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.1709,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1397.6772,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4231,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,337.75,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1817,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.2285,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,970.3158,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,23661.5385,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.0531,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,389.0293,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.5792,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,500.2702,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7726,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,395.9936,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,604.5468,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5269,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,277.7884,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4972,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,333.6821,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.2273,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.895,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,2750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3092,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,25.7834,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.3005,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2144,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7624,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7329.2636,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 11c7efb6a224d50ab8ef99b3cbbe40cb05334017 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Fri, 3 Nov 2023 13:56:49 +0100 Subject: [PATCH 25/29] Delete costs_2040.csv --- costs_2040.csv | 910 ------------------------------------------------- 1 file changed, 910 deletions(-) delete mode 100644 costs_2040.csv diff --git a/costs_2040.csv b/costs_2040.csv deleted file mode 100644 index e996339..0000000 --- a/costs_2040.csv +++ /dev/null @@ -1,910 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,794849.98,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,24092.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,133000.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.3591,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6409,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.235,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6226,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.65,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1550.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2922,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7078,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2595,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.8364,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0636,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.4167,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3006,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.1,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.59,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,815.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,565647.8278,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,2.3333,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.018,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,100.1144,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,696.4481,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1061.1698,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,29440.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,12.7,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,120177.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,26167.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,16.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,110858.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7906,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,423.54,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,596501.0228,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.54,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,100.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,94.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.4491,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1462.6417,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.4491,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1462.6417,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,604.8,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.4332,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,362.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.023,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3061.2605,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7257,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.9513,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.5312,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,792.9134,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.5118,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.87,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,618.3302,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4265,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5735,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2103,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.8083,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2121.2121,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.95,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.075,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.13,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.02,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.66,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.48,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2200000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.7812,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5275,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1822.1747,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3889,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.1,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.42,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,540.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.6,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4147,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.3411,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.74,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,482.22,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,950.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4646.9979,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8591,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.626,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3465,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2675,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8269,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3252.7197,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5934,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5056,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.3,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,90.5459,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.3,%/year,see solar-tower.,- -csp-tower TES,investment,12.1277,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.3,%/year,see solar-tower.,- -csp-tower power block,investment,634.3195,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0674,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.7,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,805.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7099,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.985,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,282.6652,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,176.6658,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8994,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1300.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.75,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4545,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3328,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3857,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.78,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.1021,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation, -electrobiofuels,investment,362825.0124,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.715,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1248,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,271.7192,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,32.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,950.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.96,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.54,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,144.5652,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,136.1652,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,30.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.8484,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,27.0504,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0913,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.15,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,876.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1096,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.22,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.8,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,730.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,554.5944,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,565647.8278,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.25,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6586.9106,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.1762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1415.0831,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,339.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.1858,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.242,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,977.5652,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,26297.4359,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,2.04,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,407.8706,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.5552,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,525.1604,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.7372,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,417.1035,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3731,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,633.2174,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.5247,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,290.5808,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.4459,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,348.0825,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1742,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.848,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,563.6364,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3255,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.0289,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2976,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2123,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7622,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7589.6404,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 7c0b7eefc1b46a99707b6f3184e9279c988f48ff Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Fri, 3 Nov 2023 13:57:00 +0100 Subject: [PATCH 26/29] Delete costs_2035.csv --- costs_2035.csv | 910 ------------------------------------------------- 1 file changed, 910 deletions(-) delete mode 100644 costs_2035.csv diff --git a/costs_2035.csv b/costs_2035.csv deleted file mode 100644 index de15e1d..0000000 --- a/costs_2035.csv +++ /dev/null @@ -1,910 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,928478.86,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,24358.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,16.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,134700.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.3496,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6504,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2385,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6302,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.675,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6475,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1575.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2805,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7195,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2638,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.7484,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0631,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.4,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,2750.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3252,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.05,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.585,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,822.5,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1788360.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,3.7,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,608179.5463,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,2.75,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.0185,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,121.8784,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,783.5042,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1179.2994,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,30720.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,13.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,117600.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,25622.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,16.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,108086.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,429.39,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,662903.5995,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.4154,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,130.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,118.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,13.1372,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1501.1323,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,13.1372,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1501.1323,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,680.4,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.4966,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.3085,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,371.5,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.024,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2550000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5717,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3135.7695,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7396,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.8675,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,0.7818,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,812.7693,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4981,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.865,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,633.8142,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4197,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5803,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2128,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.5331,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.62,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2521.1708,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.925,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.08,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.135,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.021,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.69,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.51,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2400000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.35,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.625,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8104,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5238,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1841.3248,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3545,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.15,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.415,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,550.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.4041,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2975,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.735,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,494.91,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1025.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6583,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4783.0021,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8627,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6051,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3485,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2687,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8257,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3301.1043,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5714,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.525,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.2,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,94.35,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.2,%/year,see solar-tower.,- -csp-tower TES,investment,12.6395,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.2,%/year,see solar-tower.,- -csp-tower power block,investment,660.9616,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0335,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.65,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,827.5,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.7009,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.9825,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,289.7436,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,181.0898,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8594,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9375,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1350.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,0.875,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,5500000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2788,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.4773,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3316,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4214,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.8275,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.459,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation, -electrobiofuels,investment,396566.0023,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.6975,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1455,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,339.6491,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,31.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1025.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,4.07,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.4154,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,186.5741,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,169.6831,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,27.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.3897,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,35.9802,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,1.75,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0922,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.1,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,905.28,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1107,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.21,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.75,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,754.4,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,591.5994,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,608179.5463,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,6998.5925,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1469.3167,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.4498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,341.25,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2017,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.296,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1006.5633,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,29589.7436,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.9904,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,449.9901,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.4828,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,580.9113,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.6467,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,464.7861,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.3189,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,697.0365,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.498,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,319.069,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.3606,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,379.8551,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.1236,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.8365,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,577.2727,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3250.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3408,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.2744,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2947,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2102,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.762,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,7850.0172,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From b1f3ce965c9b617eec325bfe2cb28313b2698d8c Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Fri, 3 Nov 2023 13:57:08 +0100 Subject: [PATCH 27/29] Delete costs_2030.csv --- costs_2030.csv | 910 ------------------------------------------------- 1 file changed, 910 deletions(-) delete mode 100644 costs_2030.csv diff --git a/costs_2030.csv b/costs_2030.csv deleted file mode 100644 index 2045dbe..0000000 --- a/costs_2030.csv +++ /dev/null @@ -1,910 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,24624.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,15.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,136400.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.3402,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6598,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2419,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6375,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,1.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.63,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,1600.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2688,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7312,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2681,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.6667,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.3833,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,3000.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3494,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,2.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.58,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,830.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,448894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,1787894.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1005.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,21777.6021,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,4.2,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,650711.2649,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,142545.4794,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,110277.2796,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,86934.3265,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,3.1667,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.019,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1297.4289,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,85236.1065,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,33226.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,13.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,116497.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.6345,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,314443.3087,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5812,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,343278.7213,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4427,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,116706.6881,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2542,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,290405.7211,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,24999.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,17.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,105315.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,430875.3739,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,302529.5178,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3208,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,144015.52,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,214189.7678,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.038,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,244164.0581,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,52569.7034,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2262,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,242589.0145,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7795,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,435.24,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,689970.037,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,484447.0473,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1528,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,10458.2891,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,130599.3799,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,522397.5196,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6069.1678,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2345,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,233744.5392,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1654,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,157948.5975,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.1198,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,73865.5037,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2576,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,373438.7859,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2244,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,216669.4518,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,729306.1762,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.3375,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.96,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,160.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,142.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,12.841,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1539.6228,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,12.841,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1539.6228,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,756.0,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.4934,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.1838,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,381.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,2700000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5822,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.0998,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4564,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.3003,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7083,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3210.2786,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7529,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.7836,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,832.6252,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.4851,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.86,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,649.2983,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4129,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5871,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2153,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.3333,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,13.6029,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.61,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,2921.1295,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.085,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.14,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.022,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.72,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.54,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2600000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2336,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.51,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,856.2467,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8397,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,1.01,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.52,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1860.475,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3214,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.2,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,1.0,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.41,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,560.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.8,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.04,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,50.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.394,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.2538,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.73,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,507.6,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1100.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.7,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,1.0,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,4921.0185,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8661,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5843,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3506,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2699,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8245,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3349.489,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.551,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5444,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.1,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,98.154,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.1,%/year,see solar-tower.,- -csp-tower TES,investment,13.1512,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.1,%/year,see solar-tower.,- -csp-tower power block,investment,687.6037,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,3.0014,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.6,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,850.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6924,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.98,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,296.8221,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,185.5138,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8223,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.9,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1400.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.0,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,6000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.1818,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2775,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3303,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.4571,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.875,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,70.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,3.8264,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation, -electrobiofuels,investment,431201.8155,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.68,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1662,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,407.5789,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1100.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,4.18,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.0,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.93,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,45.4545,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.3375,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.96,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,228.0597,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,202.9025,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,25.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.1133,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,44.91,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,30.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0931,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.05,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,934.56,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1117,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.2,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.7,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,778.8,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,628.6044,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,650711.2649,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,7410.2745,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.3185,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1523.5503,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.463,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2167,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.35,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1035.5613,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,32882.0513,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.9495,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,492.1097,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.4234,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,636.6622,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,40.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.573,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,512.4687,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.2737,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,760.8557,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.4757,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,347.5572,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.2884,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,411.6278,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,40.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,6.0754,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,590.9091,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3500.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.355,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.5199,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2918,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2081,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7619,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8110.3941,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From a798069eb41ad3ae09d0616238939e04023b92af Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Fri, 3 Nov 2023 13:57:16 +0100 Subject: [PATCH 28/29] Delete costs_2025.csv --- costs_2025.csv | 910 ------------------------------------------------- 1 file changed, 910 deletions(-) delete mode 100644 costs_2025.csv diff --git a/costs_2025.csv b/costs_2025.csv deleted file mode 100644 index 8815902..0000000 --- a/costs_2025.csv +++ /dev/null @@ -1,910 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,28812.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,165765.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.3321,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.6679,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2449,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.6195,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.2,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.615,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,2050.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2571,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7429,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2724,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.5263,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.3667,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,3250.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3392,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.9,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.57,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,855.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,527507.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,2000991.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1126.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,150446.7235,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,601786.8939,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3269,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,24217.7978,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,4.75,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,704056.1323,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,156106.1107,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,120674.3619,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,95042.884,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,3.5833,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.02,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1441.8589,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,150392.8758,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,601571.5033,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,93592.5875,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,43500.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,12.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,122291.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.5473,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,747916.8314,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.5307,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,744892.3888,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4245,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,126161.4367,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2464,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,310629.9982,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,24309.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,17.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,102543.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,443529.5699,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,311414.3789,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.3244,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,156579.97,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,254588.9617,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,290598.6752,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,132946.2396,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,531784.9586,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,57723.5959,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.095,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,80219.5255,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.225,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,277455.3631,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7784,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,444.6,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,710533.1055,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,498884.9464,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.1071,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,19401.0364,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,134418.0752,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,537672.3008,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,6664.1842,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4212,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,126337.339,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.234,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,260708.7462,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1773,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,167237.3159,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.2974,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,97751.4205,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2713,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,402565.8733,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2362,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,233721.2052,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,810492.641,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2512,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.955,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,215.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,187.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,12.0732,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1625.1574,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,12.0732,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1625.1574,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,831.6,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.4373,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,402.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.5955,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1031,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4554,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2998,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7088,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3295.7752,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.7785,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.4483,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,854.0249,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.434,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.84,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,665.9862,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.4028,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.5972,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.219,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1905,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,17.0036,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.595,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,4089.5813,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,2800000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.8698,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.925,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.5025,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1880.2375,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.313,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.3,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.98,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.405,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,575.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.5,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.05,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.035,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,55.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3733,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,1.1179,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.72,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,535.8,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1200.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.6077,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.95,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,65.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,5308.7011,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8762,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.5929,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3498,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2694,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.825,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3442.0674,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5338,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.562,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,22.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.05,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,121.5174,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.05,%/year,see solar-tower.,- -csp-tower TES,investment,16.2805,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.05,%/year,see solar-tower.,- -csp-tower power block,investment,851.2692,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9785,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.5,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,895.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.6243,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.975,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,304.4508,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,190.2818,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8384,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.85,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1450.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.197,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.28,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5227,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3278,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3933,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.87,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,75.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,4.2383,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation, -electrobiofuels,investment,473961.8141,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.6725,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.175,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,498.1519,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,27.5,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1200.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.9,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.05,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.925,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,50.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2512,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.955,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,303.5989,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,264.7723,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,22.5,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0794,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,50.955,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,27.5,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,2.5,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0929,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,3.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,990.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1115,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.23,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.625,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,825.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,673.7793,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,704056.1323,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,8716.8874,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.3741,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1602.3439,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,30.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5143,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2347,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.425,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1077.1681,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,28.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,36907.6923,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.7275,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,612.7906,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.2567,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,797.0658,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,37.5,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.3559,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,651.2742,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.1576,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,942.8574,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.1982,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,428.5154,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,2.0365,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,500.3359,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,37.5,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.7564,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.802,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,604.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,3750.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.3789,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,26.8983,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2872,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2051,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7627,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8344.0469,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) From 0ec3459467eb185f134504eb4e583d7ba8b04c07 Mon Sep 17 00:00:00 2001 From: BertoGBG <99412005+BertoGBG@users.noreply.github.com> Date: Fri, 3 Nov 2023 13:57:25 +0100 Subject: [PATCH 29/29] Delete costs_2020.csv --- costs_2020.csv | 910 ------------------------------------------------- 1 file changed, 910 deletions(-) delete mode 100644 costs_2020.csv diff --git a/costs_2020.csv b/costs_2020.csv deleted file mode 100644 index f5bdbf6..0000000 --- a/costs_2020.csv +++ /dev/null @@ -1,910 +0,0 @@ -technology,parameter,value,unit,source,further description -Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate." -Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report). -Ammonia cracker,investment,1062107.74,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and -Calculated. For a large (2500 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3." -Ammonia cracker,lifetime,25.0,years,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.", -Battery electric (passenger cars),Efficiency (carrier to wheel),68.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),FOM,0.9,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),investment,33000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (passenger cars) -Battery electric (trucks),FOM,14.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),investment,204067.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -Battery electric (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Battery electric (trucks) -BioSNG,C in fuel,0.324,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,C stored,0.676,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,CO2 stored,0.2479,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BioSNG,FOM,1.608,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Fixed O&M" -BioSNG,VOM,2.7,EUR/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Variable O&M" -BioSNG,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BioSNG,efficiency,0.6,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Bio SNG" -BioSNG,investment,2500.0,EUR/kW_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","84 Gasif. CFB, Bio-SNG: Specific investment" -BioSNG,lifetime,25.0,years,TODO,"84 Gasif. CFB, Bio-SNG: Technical lifetime" -BtL,C in fuel,0.2455,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,C stored,0.7545,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,CO2 stored,0.2767,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -BtL,FOM,2.4,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Fixed O&M" -BtL,VOM,1.0626,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Variable O&M" -BtL,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -BtL,efficiency,0.35,per unit,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Electricity Output, MWh/MWh Total Input" -BtL,investment,3500.0,EUR/kW_th,doi:10.1016/j.enpol.2017.05.013,"85 Gasif. Ent. Flow FT, liq fu : Specific investment" -BtL,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","85 Gasif. Ent. Flow FT, liq fu : Technical lifetime" -CCGT,FOM,3.3295,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Fixed O&M" -CCGT,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Variable O&M" -CCGT,c_b,1.8,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cb coefficient" -CCGT,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Cv coefficient" -CCGT,efficiency,0.56,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Electricity efficiency, annual average" -CCGT,investment,880.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Nominal investment" -CCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","05 Gas turb. CC, steam extract.: Technical lifetime" -CH4 (g) fill compressor station,FOM,1.7,%/year,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) fill compressor station,investment,1498.9483,EUR/MW_CH4,"Guesstimate, based on H2 (g) pipeline and fill compressor station cost.","Assume same ratio as between H2 (g) pipeline and fill compressor station, i.e. 1:19 , due to a lack of reliable numbers." -CH4 (g) fill compressor station,lifetime,20.0,years,Assume same as for H2 (g) fill compressor station.,- -CH4 (g) pipeline,FOM,1.5,%/year,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) pipeline,investment,78.9978,EUR/MW/km,Guesstimate.,"Based on Arab Gas Pipeline: https://en.wikipedia.org/wiki/Arab_Gas_Pipeline: cost = 1.2e9 $-US (year = ?), capacity=10.3e9 m^3/a NG, l=1200km, NG-LHV=39MJ/m^3*90% (also Wikipedia estimate from here https://en.wikipedia.org/wiki/Heat_of_combustion). Presumed to include booster station cost." -CH4 (g) pipeline,lifetime,50.0,years,Assume same as for H2 (g) pipeline in 2050 (CH4 pipeline as mature technology).,"Due to lack of numbers, use comparable H2 pipeline assumptions." -CH4 (g) submarine pipeline,FOM,3.0,%/year,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (g) submarine pipeline,electricity-input,0.01,MW_e/1000km/MW_CH4,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: 112 6 gas Main distri line.","Assumption for gas pipeline >100MW, 0.1% per station and spacing of 100km yields 1%/1000km. Electric compression." -CH4 (g) submarine pipeline,investment,114.8928,EUR/MW/km,Kaiser (2017): 10.1016/j.marpol.2017.05.003 .,"Based on Gulfstream pipeline costs (430 mi long pipeline for natural gas in deep/shallow waters) of 2.72e6 USD/mi and 1.31 bn ft^3/d capacity (36 in diameter), LHV of methane 13.8888 MWh/t and density of 0.657 kg/m^3 and 1.17 USD:1EUR conversion rate = 102.4 EUR/MW/km. Number is without booster station cost. Estimation of additional cost for booster stations based on H2 (g) pipeline numbers from Guidehouse (2020): European Hydrogen Backbone report and Danish Energy Agency (2021): Technology Data for Energy Transport, were booster stations make ca. 6% of pipeline cost; here add additional 10% for booster stations as they need to be constructed submerged or on plattforms. (102.4*1.1)." -CH4 (g) submarine pipeline,lifetime,30.0,years,"d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material.",- -CH4 (l) transport ship,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,capacity,58300.0,t_CH4,"Calculated, based on Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306",based on 138 000 m^3 capacity and LNG density of 0.4226 t/m^3 . -CH4 (l) transport ship,investment,151000000.0,EUR,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 (l) transport ship,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,FOM,3.5,%/year,"Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 evaporation,investment,87.5969,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 100 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 evaporation,lifetime,30.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,FOM,3.5,%/year,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,electricity-input,0.036,MWh_el/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","Assuming 0.5 MWh/t_CH4 for refigeration cycle based on Table 2 of source; cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CH4 liquefaction,investment,232.1331,EUR/kW_CH4,"Calculated, based on Lochner and Bothe (2009): https://doi.org/10.1016/j.enpol.2008.12.012 and Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306","based on 265 MUSD-2005/(1 bcm/a), 1 bcm = 10.6 TWh, currency exchange rate: 1.15 USD=1 EUR." -CH4 liquefaction,lifetime,25.0,years,"Fasihi et al 2017, table 1, https://www.mdpi.com/2071-1050/9/2/306", -CH4 liquefaction,methane-input,1.0,MWh_CH4/MWh_CH4,"Pospíšil et al. (2019): Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage (https://doi.org/10.1016/j.rser.2018.09.027), Table 2 and Table 3. alternative source 2: https://encyclopedia.airliquide.com/methane (accessed 2021-02-10).","For refrigeration cycle, cleaning of gas presumed unnecessary as it should be nearly pure CH4 (=SNG). Assuming energy required is only electricity which is for Table 3 in the source provided with efficiencies of ~50% of LHV, making the numbers consistent with the numbers in Table 2." -CO2 liquefaction,FOM,5.0,%/year,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,carbondioxide-input,1.0,t_CO2/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Assuming a pure, humid, low-pressure input stream. Neglecting possible gross-effects of CO2 which might be cycled for the cooling process." -CO2 liquefaction,electricity-input,0.123,MWh_el/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf ., -CO2 liquefaction,heat-input,0.0067,MWh_th/t_CO2,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,For drying purposes. -CO2 liquefaction,investment,16.0306,EUR/t_CO2/h,Mitsubish Heavy Industries Ltd. and IEA (2004): https://ieaghg.org/docs/General_Docs/Reports/PH4-30%20Ship%20Transport.pdf .,"Plant capacity of 20 kt CO2 / d and an uptime of 85%. For a high purity, humid, low pressure input stream, includes drying and compression necessary for liquefaction." -CO2 liquefaction,lifetime,25.0,years,"Guesstimate, based on CH4 liquefaction.", -CO2 pipeline,FOM,0.9,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 pipeline,investment,2000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch onshore pipeline. -CO2 pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 storage tank,FOM,1.0,%/year,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,investment,2528.172,EUR/t_CO2,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, Table 3.","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 storage tank,lifetime,25.0,years,"Lauri et al. 2014: doi: 10.1016/j.egypro.2014.11.297, pg. 2746 .","Assuming a 3000m^3 pressurised steel cylinder tanks and a CO2 density of 1100 kg/m^3 (close to triple point at -56.6°C and 5.2 bar with max density of 1200kg/m^3 ). Lauri et al. report costs 3x higher per m^3 for steel tanks, which are consistent with other sources. The numbers reported are in rather difficult to pinpoint as systems can greatly vary." -CO2 submarine pipeline,FOM,0.5,%/year,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.", -CO2 submarine pipeline,investment,4000.0,EUR/(tCO2/h)/km,"Danish Energy Agency, Technology Data for Energy Transport (March 2021), Excel datasheet: 121 co2 pipeline.",Assuming the 120-500 t CO2/h range that is based on cost of a 12 inch offshore pipeline. -Charging infrastructure fast (purely) battery electric vehicles passenger cars,FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,investment,629102.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fast (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fast (purely) battery electric vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles passenger cars -Charging infrastructure fuel cell vehicles trucks,FOM,2.2,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,investment,2243051.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure fuel cell vehicles trucks,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure fuel cell vehicles trucks -Charging infrastructure slow (purely) battery electric vehicles passenger cars,FOM,1.8,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,investment,1283.0,EUR/Lades�ule,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Charging infrastructure slow (purely) battery electric vehicles passenger cars,lifetime,30.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Charging infrastructure slow (purely) battery electric vehicles passenger cars -Compressed-Air-Adiabatic-bicharger,FOM,0.9265,%/year,"Viswanathan_2022, p.64 (p.86) Figure 4.14","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-bicharger,efficiency,0.7211,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.52^0.5']}" -Compressed-Air-Adiabatic-bicharger,investment,856985.2314,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Turbine Compressor BOP EPC Management']}" -Compressed-Air-Adiabatic-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'pair', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Compressed-Air-Adiabatic-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB 4.5.2.1 Fixed O&M p.62 (p.84)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Compressed-Air-Adiabatic-store,investment,4935.1364,EUR/MWh,"Viswanathan_2022, p.64 (p.86)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Cavern Storage']}" -Compressed-Air-Adiabatic-store,lifetime,60.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['pair'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Concrete-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Concrete-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-charger,investment,170294.0671,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Concrete-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'concrete'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Concrete-discharger,efficiency,0.4343,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Concrete-discharger,investment,681176.2683,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Concrete-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Concrete-store,FOM,0.3231,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Concrete-store,investment,26657.9934,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Concrete-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['concrete'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,VOM,5.3,EUR/MWh_FT,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M -Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." -Fischer-Tropsch,investment,757400.9996,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz -General liquid hydrocarbon storage (crude),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (crude),investment,135.8346,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed 20% lower than for product storage. Crude or middle distillate tanks are usually larger compared to product storage due to lower requirements on safety and different construction method. Reference size used here: 80 000 – 120 000 m^3 . -General liquid hydrocarbon storage (crude),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -General liquid hydrocarbon storage (product),FOM,6.25,%/year,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , figure 7 and pg. 12 .",Assuming ca. 10 EUR/m^3/a (center value between stand alone and addon facility). -General liquid hydrocarbon storage (product),investment,169.7933,EUR/m^3,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 8F .",Assumed at the higher end for addon facilities/mid-range for stand-alone facilities. Product storage usually smaller due to higher requirements on safety and different construction method. Reference size used here: 40 000 – 60 000 m^3 . -General liquid hydrocarbon storage (product),lifetime,30.0,years,"Stelter and Nishida 2013: https://webstore.iea.org/insights-series-2013-focus-on-energy-security , pg. 11.", -Gravity-Brick-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Brick-bicharger,efficiency,0.9274,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.86^0.5']}" -Gravity-Brick-bicharger,investment,376395.0215,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Brick-bicharger,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['elec', 'gravity', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Brick-store,investment,169666.742,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Brick-store,lifetime,41.7,years,"Viswanathan_2022, p.77 (p.99) Table 4.36","{'carrier': ['gravity'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Aboveground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Aboveground-bicharger,investment,331163.0018,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Aboveground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywa', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Aboveground-store,investment,131071.4442,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Aboveground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywa'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-bicharger,FOM,1.5,%/year,"Viswanathan_2022, p.76 (p.98) Sentence 1 in 4.7.2 Operating Costs","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['1.5 percent of capital cost']}" -Gravity-Water-Underground-bicharger,efficiency,0.9014,per unit,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level ((0.785+0.84)/2)^0.5']}" -Gravity-Water-Underground-bicharger,investment,819830.358,EUR/MW,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 0% cost reduction for 2030 compared to 2021","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Power Equipment']}" -Gravity-Water-Underground-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['elec', 'gravitywu', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Gravity-Water-Underground-store,investment,103151.4416,EUR/MWh,"Viswanathan_2022, p.71 (p.94) text at the bottom speaks about 15% cost reduction for 2030 compared to 2021","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Gravitational Capital (SB+BOS)']}" -Gravity-Water-Underground-store,lifetime,60.0,years,"Viswanathan_2022, p.77 (p.99) Table 4.37","{'carrier': ['gravitywu'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -H2 (g) fill compressor station,FOM,1.7,%/year,"Guidehouse 2020: European Hydrogen Backbone report, https://guidehouse.com/-/media/www/site/downloads/energy/2020/gh_european-hydrogen-backbone_report.pdf (table 3, table 5)","Pessimistic (highest) value chosen for 48'' pipeline w/ 13GW_H2 LHV @ 100bar pressure. Currency year: Not clearly specified, assuming year of publication. Forecast year: Not clearly specified, guessing based on text remarks." -H2 (g) fill compressor station,investment,4478.0,EUR/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 164, Figure 14 (Fill compressor).","Assumption for staging 35→140bar, 6000 MW_HHV single line pipeline. Considering HHV/LHV ration for H2." -H2 (g) fill compressor station,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), pg. 168, Figure 24 (Fill compressor).", -H2 (g) pipeline,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline,investment,226.4689,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for-48 inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 2750 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, > 6000 MW_HHV single line pipeline, incl. booster station investments. Considering LHV by scaling with LHV/HHV=0.8462623413." -H2 (g) pipeline repurposed,FOM,4.0,%/year,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) pipeline repurposed,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) pipeline repurposed,investment,105.8799,EUR/MW/km,European Hydrogen Backbone Report (June 2021): https://gasforclimate2050.eu/wp-content/uploads/2021/06/EHB_Analysing-the-future-demand-supply-and-transport-of-hydrogen_June-2021.pdf.,"Assumption for 48-inch single line pipeline, incl. compressor investments, 16.9 GW peak capacity, 500 EUR/m, 434 MWe/1000 km for compressor, 3.4 MEUR/MWe for compressor, from European Hydrogen Backbone Report, Table 35." -H2 (g) pipeline repurposed,lifetime,50.0,years,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.",Same as for new H2 (g) pipeline. -H2 (g) submarine pipeline,FOM,3.0,%/year,Assume same as for CH4 (g) submarine pipeline.,- -H2 (g) submarine pipeline,electricity-input,0.021,MW_e/1000km/MW_H2,"Danish Energy Agency, Technology Data for Energy Transport (2021), Excel datasheet: H2 140.","Assumption for a 140 bar, 5-20 GW pipeline. Electric compression." -H2 (g) submarine pipeline,investment,329.3682,EUR/MW/km,"Assume similar cost as for CH4 (g) submarine pipeline but with the same factor as between onland CH4 (g) pipeline and H2 (g) pipeline (2.86). This estimate is comparable to a 36in diameter pipeline calaculated based on d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material (=251 EUR/MW/km).",- -H2 (g) submarine pipeline,lifetime,30.0,years,Assume same as for CH4 (g) submarine pipeline.,- -H2 (l) storage tank,FOM,2.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) storage tank,investment,750.075,EUR/MWh_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.","Assuming currency year and technology year here (25 EUR/kg). Future target cost. Today’s cost potentially higher according to d’Amore-Domenech et al (2021): 10.1016/j.apenergy.2021.116625 , supplementary material pg. 16." -H2 (l) storage tank,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 6.",Assuming currency year and technology year here (25 EUR/kg). -H2 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,capacity,11000.0,t_H2,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,investment,361223561.5764,EUR,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 (l) transport ship,lifetime,20.0,years,"Cihlar et al 2020: http://op.europa.eu/en/publication-detail/-/publication/7e4afa7d-d077-11ea-adf7-01aa75ed71a1/language-en , Table 3-B, based on IEA 2019.", -H2 evaporation,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 evaporation,investment,143.6424,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Pessimistic assumption for large scale facility / near-term estimate for medium sized facility, in between low / mid estimate with e.g. DNV numbers (Fig. 3.15).; and -Optimistic assumption for large scale facility 2500 t/d, cf Fig. 3.15 ." -H2 evaporation,lifetime,20.0,years,Guesstimate.,Based on lifetime of liquefaction plant. -H2 liquefaction,FOM,2.5,%/year,"DNV GL (2020): Study on the Import of Liquid Renewable Energy: Technology Cost Assessment, https://www.gie.eu/wp-content/uploads/filr/2598/DNV-GL_Study-GLE-Technologies-and-costs-analysis-on-imports-of-liquid-renewable-energy.pdf .", -H2 liquefaction,electricity-input,0.203,MWh_el/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.","6.78 kWh/kg_H2, considering H2 with LHV of 33.3333 MWh/t" -H2 liquefaction,hydrogen-input,1.017,MWh_H2/MWh_H2,"Heuser et al. (2019): Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen (https://doi.org/10.1016/j.ijhydene.2018.12.156), table 1.",corresponding to 1.65% losses during liquefaction -H2 liquefaction,investment,870.5602,EUR/kW_H2,"IRENA (2022): Global Hydrogen Trade to Meet the 1.5° Climate Goal: Technology Review of Hydrogen Carriers, https://www.irena.org/publications/2022/Apr/Global-hydrogen-trade-Part-II , pg. 62f.","Assumption for a 200t/d facility (Pessimistic long-term or optimistic short-term value).; and -Assumption for a large >300t/d, e.g. 2500 t/d facility (Optimistic long-term value without change in base technology mentioned in report)." -H2 liquefaction,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -H2 pipeline,FOM,3.0,%/year,TODO, from old pypsa cost assumptions -H2 pipeline,investment,267.0,EUR/MW/km,Welder et al https://doi.org/10.1016/j.energy.2018.05.059, from old pypsa cost assumptions -H2 pipeline,lifetime,40.0,years,TODO, from old pypsa cost assumptions -HVAC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVAC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,investment,162364.824,EUR/MW,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC inverter pair,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,FOM,2.0,%/year,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,investment,432.9729,EUR/MW/km,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC overhead,lifetime,40.0,years,"Hagspiel et al. (2014): doi:10.1016/j.energy.2014.01.025 , table A.2 .", -HVDC submarine,FOM,0.35,%/year,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -HVDC submarine,investment,932.3337,EUR/MW/km,Härtel et al. (2017): https://doi.org/10.1016/j.epsr.2017.06.008 .,Table 1 -HVDC submarine,lifetime,40.0,years,Purvins et al. (2018): https://doi.org/10.1016/j.jclepro.2018.03.095 .,"Based on estimated costs for a NA-EU connector (bidirectional,4 GW, 3000km length and ca. 3000m depth). Costs in return based on existing/currently under construction undersea cables." -Haber-Bosch,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -Haber-Bosch,VOM,0.02,EUR/MWh_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Variable O&M -Haber-Bosch,electricity-input,0.2473,MWh_el/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), table 11.",Assume 5 GJ/t_NH3 for compressors and NH3 LHV = 5.16666 MWh/t_NH3. -Haber-Bosch,hydrogen-input,1.1484,MWh_H2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.","178 kg_H2 per t_NH3, LHV for both assumed." -Haber-Bosch,investment,1586.2889,EUR/kW_NH3,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -Haber-Bosch,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -Haber-Bosch,nitrogen-input,0.1597,t_N2/MWh_NH3,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), pg. 57.",".33 MWh electricity are required for ASU per t_NH3, considering 0.4 MWh are required per t_N2 and LHV of NH3 of 5.1666 Mwh." -HighT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -HighT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-charger,investment,170186.3718,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -HighT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'salthight'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -HighT-Molten-Salt-discharger,efficiency,0.4444,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -HighT-Molten-Salt-discharger,investment,680745.4871,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -HighT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -HighT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -HighT-Molten-Salt-store,investment,101949.0686,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -HighT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['salthight'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Hydrogen fuel cell (passenger cars),Efficiency (carrier to wheel),48.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),FOM,1.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),investment,55000.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (passenger cars) -Hydrogen fuel cell (trucks),Efficiency (carrier to wheel),56.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),FOM,10.1,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),investment,151574.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen fuel cell (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Hydrogen fuel cell (trucks) -Hydrogen-charger,FOM,0.46,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on charger']}" -Hydrogen-charger,efficiency,0.6963,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,investment,1181390.354,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['Electrolyzer']}" -Hydrogen-charger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['elec', 'h2cavern'], 'technology_type': ['charger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-discharger,FOM,0.4801,%/year,"Viswanathan_2022, NULL","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Guesstimate, 50% on discharger']}" -Hydrogen-discharger,efficiency,0.4869,per unit,"Viswanathan_2022, p.111 (p.133) include inverter 0.98 & transformer efficiency 0.98 ","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,investment,1146506.0562,EUR/MW,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['Fuel Cell']}" -Hydrogen-discharger,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern', 'elec'], 'technology_type': ['discharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Hydrogen-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB =(C38+C39)*0.43/4","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Hydrogen-store,investment,4329.3505,EUR/MWh,"Viswanathan_2022, p.113 (p.135)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['Cavern Storage']}" -Hydrogen-store,lifetime,30.0,years,"Viswanathan_2022, p.111 (p.133)","{'carrier': ['h2cavern'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LNG storage tank,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LNG storage tank,investment,611.5857,EUR/m^3,"Hurskainen 2019, https://cris.vtt.fi/en/publications/liquid-organic-hydrogen-carriers-lohc-concept-evaluation-and-tech pg. 46 (59).",Currency year and technology year assumed based on publication date. -LNG storage tank,lifetime,20.0,years,"Guesstimate, based on H2 (l) storage tank with comparable requirements.",Currency year and technology year assumed based on publication date. -LOHC chemical,investment,2264.327,EUR/t,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC chemical,lifetime,20.0,years,"Runge et al 2020, pg.7, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation,investment,50728.0303,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 1000 MW capacity. Calculated based on base CAPEX of 30 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC dehydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC dehydrogenation (small scale),FOM,3.0,%/year,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC dehydrogenation (small scale),investment,759908.1494,EUR/MW_H2,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514",MW of H2 LHV. For a small plant of 0.9 MW capacity. -LOHC dehydrogenation (small scale),lifetime,20.0,years,"Runge et al 2020, pg.8, https://papers.ssrn.com/abstract=3623514", -LOHC hydrogenation,FOM,3.0,%/year,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,electricity-input,0.004,MWh_el/t_HLOHC,Niermann et al. (2019): (https://doi.org/10.1039/C8EE02700E). 6A .,"Flow in figures shows 0.2 MW for 114 MW_HHV = 96.4326 MW_LHV = 2.89298 t hydrogen. At 5.6 wt-% effective H2 storage for loaded LOHC (H18-DBT, HLOHC), corresponds to 51.6604 t loaded LOHC ." -LOHC hydrogenation,hydrogen-input,1.867,MWh_H2/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514",Considering 5.6 wt-% H2 in loaded LOHC (HLOHC) and LHV of H2. -LOHC hydrogenation,investment,51259.544,EUR/MW_H2,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.",per MW H2 (LHV). For a large plant of 2000 MW capacity. Calculated based on base CAPEX of 40 MEUR for 300 t/day capacity and a scale factor of 0.6. -LOHC hydrogenation,lifetime,20.0,years,"Reuß et al 2017, https://doi.org/10.1016/j.apenergy.2017.05.050 , Table 9.", -LOHC hydrogenation,lohc-input,0.944,t_LOHC/t_HLOHC,"Runge et al 2020, pg. 7, https://papers.ssrn.com/abstract=3623514","Loaded LOHC (H18-DBT, HLOHC) has loaded only 5.6%-wt H2 as rate of discharge is kept at ca. 90%." -LOHC loaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC loaded DBT storage,investment,149.2688,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3." -LOHC loaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC transport ship,FOM,5.0,%/year,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,capacity,75000.0,t_LOHC,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,investment,31700578.344,EUR,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC transport ship,lifetime,15.0,years,"Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514", -LOHC unloaded DBT storage,FOM,6.25,%/year,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -LOHC unloaded DBT storage,investment,132.2635,EUR/t,"Density via Wissenschaftliche Dienste des Deutschen Bundestages 2020, https://www.bundestag.de/resource/blob/816048/454e182d5956d45a664da9eb85486f76/WD-8-058-20-pdf-data.pdf , pg. 11.","Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared. Density of loaded LOHC H18-DBT is 0.91 t/m^3, density of unloaded LOHC H0-DBT is 1.04 t/m^3 but unloading is only to 90% (depth-of-discharge), assume density via linearisation of 1.027 t/m^3." -LOHC unloaded DBT storage,lifetime,30.0,years,,"Based on storage “General liquid hydrocarbon storage (crude)”, as similar properties are shared." -Lead-Acid-bicharger,FOM,2.4064,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lead-Acid-bicharger,efficiency,0.8832,per unit,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.78^0.5']}" -Lead-Acid-bicharger,investment,135616.1853,EUR/MW,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lead-Acid-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['elec', 'lead', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lead-Acid-store,FOM,0.2386,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lead-Acid-store,investment,330854.2753,EUR/MWh,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lead-Acid-store,lifetime,12.0,years,"Viswanathan_2022, p.33 (p.55)","{'carrier': ['lead'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Liquid fuels ICE (passenger cars),Efficiency (carrier to wheel),21.5,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),FOM,1.6,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),investment,23561.0,EUR/PKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (passenger cars),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (passenger cars) -Liquid fuels ICE (trucks),Efficiency (carrier to wheel),37.3,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),FOM,18.0,%,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),investment,99772.0,EUR/LKW,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid fuels ICE (trucks),lifetime,15.0,years,PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html,Liquid fuels ICE (trucks) -Liquid-Air-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Liquid-Air-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-charger,investment,456183.7659,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Liquid-Air-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'lair'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Liquid-Air-discharger,efficiency,0.55,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.545 assume 99% for charge and other for discharge']}" -Liquid-Air-discharger,investment,320299.2399,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Liquid-Air-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Liquid-Air-store,FOM,0.328,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Liquid-Air-store,investment,169144.4199,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Liquid Air SB and BOS']}" -Liquid-Air-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['lair'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Lithium-Ion-LFP-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-LFP-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-LFP-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-LFP-bicharger,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'lfp', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-LFP-store,FOM,0.0447,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-LFP-store,investment,294988.1555,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-LFP-store,lifetime,16.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['lfp'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Lithium-Ion-NMC-bicharger,efficiency,0.9193,per unit,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.8452^0.5']}" -Lithium-Ion-NMC-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Lithium-Ion-NMC-bicharger,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['elec', 'nmc', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Lithium-Ion-NMC-store,FOM,0.0379,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Lithium-Ion-NMC-store,investment,337033.2923,EUR/MWh,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Lithium-Ion-NMC-store,lifetime,13.0,years,"Viswanathan_2022, p.24 (p.46)","{'carrier': ['nmc'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -LowT-Molten-Salt-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -LowT-Molten-Salt-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-charger,investment,135293.0994,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -LowT-Molten-Salt-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'saltlowt'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -LowT-Molten-Salt-discharger,efficiency,0.5394,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -LowT-Molten-Salt-discharger,investment,541172.3976,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -LowT-Molten-Salt-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -LowT-Molten-Salt-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -LowT-Molten-Salt-store,investment,62877.4884,EUR/MWh,"Viswanathan_2022, p.98 (p.120)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -LowT-Molten-Salt-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['saltlowt'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -MeOH transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,capacity,75000.0,t_MeOH,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,investment,31700578.344,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -MeOH transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .", -Methanol steam reforming,FOM,4.0,%/year,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,investment,16318.4311,EUR/MW_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.","For high temperature steam reforming plant with a capacity of 200 MW_H2 output (6t/h). Reference plant of 1 MW (30kg_H2/h) costs 150kEUR, scale factor of 0.6 assumed." -Methanol steam reforming,lifetime,20.0,years,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.", -Methanol steam reforming,methanol-input,1.201,MWh_MeOH/MWh_H2,"Niermann et al. (2021): Liquid Organic Hydrogen Carriers and alternatives for international transport of renewable hydrogen (https://doi.org/10.1016/j.rser.2020.110171), table 4.",Assuming per 1 t_H2 (with LHV 33.3333 MWh/t): 4.5 MWh_th and 3.2 MWh_el are required. We assume electricity can be substituted / provided with 1:1 as heat energy. -NH3 (l) storage tank incl. liquefaction,FOM,2.0,%/year,"Guesstimate, based on H2 (l) storage tank.", -NH3 (l) storage tank incl. liquefaction,investment,161.932,EUR/MWh_NH3,"Calculated based on Morgan E. 2013: doi:10.7275/11KT-3F59 , Fig. 55, Fig 58.","Based on estimated for a double-wall liquid ammonia tank (~ambient pressure, -33°C), inner tank from stainless steel, outer tank from concrete including installations for liquefaction/condensation, boil-off gas recovery and safety installations; the necessary installations make only a small fraction of the total cost. The total cost are driven by material and working time on the tanks. -While the costs do not scale strictly linearly, we here assume they do (good approximation c.f. ref. Fig 55.) and take the costs for a 9 kt NH3 (l) tank = 8 M$2010, which is smaller 4-5x smaller than the largest deployed tanks today. -We assume an exchange rate of 1.17$ to 1 €. -The investment value is given per MWh NH3 store capacity, using the LHV of NH3 of 5.18 MWh/t." -NH3 (l) storage tank incl. liquefaction,lifetime,20.0,years,"Morgan E. 2013: doi:10.7275/11KT-3F59 , pg. 290", -NH3 (l) transport ship,FOM,4.0,%/year,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,capacity,53000.0,t_NH3,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,investment,74461941.3377,EUR,"Cihlar et al 2020 based on IEA 2019, Table 3-B", -NH3 (l) transport ship,lifetime,20.0,years,"Guess estimated based on H2 (l) tanker, but more mature technology", -Ni-Zn-bicharger,FOM,2.0701,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Ni-Zn-bicharger,efficiency,0.9,per unit,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['((0.75-0.87)/2)^0.5 mean value of range efficiency is not RTE but single way AC-store conversion']}" -Ni-Zn-bicharger,investment,86573.5473,EUR/MW,"Viswanathan_2022, p.59 (p.81) same as Li-LFP","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Ni-Zn-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'nizn', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Ni-Zn-store,FOM,0.2238,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Ni-Zn-store,investment,312321.7116,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Ni-Zn-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['nizn'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -OCGT,FOM,1.7772,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Fixed O&M -OCGT,VOM,4.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Variable O&M -OCGT,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","52 OCGT - Natural gas: Electricity efficiency, annual average" -OCGT,investment,453.96,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Specific investment -OCGT,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",52 OCGT - Natural gas: Technical lifetime -PHS,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,efficiency,0.75,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -PHS,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -Pumped-Heat-charger,FOM,0.366,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Pumped-Heat-charger,efficiency,0.99,per unit,"Viswanathan_2022, NULL","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Charger']}" -Pumped-Heat-charger,investment,731096.174,EUR/MW,"Georgiou_2018, Figure 9 of reference roughly 80% of capital cost are power related 47%/80% of costs are required for liquefaction (charging)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Pumped-Heat-charger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'phes'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-discharger,FOM,0.5212,%/year,"Viswanathan_2022, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Pumped-Heat-discharger,efficiency,0.63,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE 0.62 assume 99% for charge and other for discharge']}" -Pumped-Heat-discharger,investment,513322.8456,EUR/MW,"Georgiou_2018, NULL","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Pumped-Heat-discharger,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Heat-store,FOM,0.0615,%/year,"Viswanathan_2022, p.103 (p.125)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Pumped-Heat-store,investment,28343.7836,EUR/MWh,"Viswanathan_2022, p.92 (p.114)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['Molten Salt based SB and BOS']}" -Pumped-Heat-store,lifetime,33.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['phes'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,FOM,0.9951,%/year,"Viswanathan_2022, Figure 4.16","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-bicharger,efficiency,0.8944,per unit,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['AC-AC efficiency at transformer level 0.8^0.5']}" -Pumped-Storage-Hydro-bicharger,investment,1265422.2926,EUR/MW,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['Powerhouse Construction & Infrastructure']}" -Pumped-Storage-Hydro-bicharger,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['elec', 'phs', 'elec'], 'technology_type': ['bicharger'], 'type': ['mechanical'], 'note': ['NULL']}" -Pumped-Storage-Hydro-store,FOM,0.43,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['derived']}" -Pumped-Storage-Hydro-store,investment,51693.7369,EUR/MWh,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['Reservoir Construction & Infrastructure']}" -Pumped-Storage-Hydro-store,lifetime,60.0,years,"Viswanathan_2022, p.68 (p.90)","{'carrier': ['phs'], 'technology_type': ['store'], 'type': ['mechanical'], 'note': ['NULL']}" -SMR,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,efficiency,0.76,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR,investment,493470.3997,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,FOM,5.0,%/year,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,capture_rate,0.9,EUR/MW_CH4,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",wide range: capture rates betwen 54%-90% -SMR CC,efficiency,0.69,per unit (in LHV),"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -SMR CC,investment,572425.6636,EUR/MW_CH4,Danish Energy Agency,"Technology data for renewable fuels, in pdf on table 3 p.311" -SMR CC,lifetime,30.0,years,"IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050", -Sand-charger,FOM,1.075,%/year,"Viswanathan_2022, NULL","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on charger']}" -Sand-charger,efficiency,0.99,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-charger,investment,138236.7705,EUR/MW,"Georgiou_2018, Guesstimate that charge is 20% of capital costs of power components for sensible thermal storage","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['Power Equipment Charge']}" -Sand-charger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['elec', 'sand'], 'technology_type': ['charger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-discharger,FOM,0.2688,%/year,"Viswanathan_2022, NULL","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Guesstimate, 50% on discharger']}" -Sand-discharger,efficiency,0.53,per unit,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['RTE assume 99% for charge and other for discharge']}" -Sand-discharger,investment,552947.0821,EUR/MW,"Georgiou_2018, Guesstimate that charge is 80% of capital costs of power components for sensible thermal storage","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['Power Equipment Discharge']}" -Sand-discharger,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand', 'elec'], 'technology_type': ['discharger'], 'type': ['thermal'], 'note': ['NULL']}" -Sand-store,FOM,0.3308,%/year,"Viswanathan_2022, p 104 (p.126)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['not provided calculated as for hydrogen']}" -Sand-store,investment,7259.2007,EUR/MWh,"Viswanathan_2022, p.100 (p.122)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['SB and BOS 0.85 of 2021 value']}" -Sand-store,lifetime,35.0,years,"Viswanathan_2022, p.107 (p.129)","{'carrier': ['sand'], 'technology_type': ['store'], 'type': ['thermal'], 'note': ['NULL']}" -Steam methane reforming,FOM,3.0,%/year,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,investment,470085.4701,EUR/MW_H2,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). Currency conversion 1.17 USD = 1 EUR. -Steam methane reforming,lifetime,30.0,years,"International Energy Agency (2015): Technology Roadmap Hydrogen and Fuel Cells , table 15.",Large scale SMR facility (150-300 MW). -Steam methane reforming,methane-input,1.483,MWh_CH4/MWh_H2,"Keipi et al (2018): Economic analysis of hydrogen production by methane thermal decomposition (https://doi.org/10.1016/j.enconman.2017.12.063), table 2.","Large scale SMR plant producing 2.5 kg/s H2 output (assuming 33.3333 MWh/t H2 LHV), with 6.9 kg/s CH4 input (feedstock) and 2 kg/s CH4 input (energy). Neglecting water consumption." -Vanadium-Redox-Flow-bicharger,FOM,2.4028,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['30% assumed of power components every 10 years']}" -Vanadium-Redox-Flow-bicharger,efficiency,0.8062,per unit,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['AC-AC efficiency at transformer level 0.65^0.5']}" -Vanadium-Redox-Flow-bicharger,investment,135814.5241,EUR/MW,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Vanadium-Redox-Flow-bicharger,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['elec', 'vanadium', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Vanadium-Redox-Flow-store,FOM,0.2335,%/year,"Viswanathan_2022, p.28 (p.50)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['0.43 % of SB']}" -Vanadium-Redox-Flow-store,investment,287672.9532,EUR/MWh,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Vanadium-Redox-Flow-store,lifetime,12.0,years,"Viswanathan_2022, p.42 (p.64)","{'carrier': ['vanadium'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Air-bicharger,efficiency,0.7937,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.63)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Air-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Air-bicharger,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znair', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Air-store,FOM,0.1893,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Air-store,investment,176526.0342,EUR/MWh,"Viswanathan_2022, p.48 (p.70) text below Table 4.12","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Air-store,lifetime,25.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znair'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-bicharger,FOM,2.475,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Flow-bicharger,efficiency,0.8307,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25 ","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['(0.69)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Flow-bicharger,investment,121637.3372,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Flow-bicharger,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['elec', 'znbrflow', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Flow-store,FOM,0.2849,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Flow-store,investment,431692.9606,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Flow-store,lifetime,10.0,years,"Viswanathan_2022, p.59 (p.81) Table 4.27","{'carrier': ['znbrflow'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-bicharger,FOM,2.4395,%/year,"Viswanathan_2022, p.51-52 in section 4.4.2","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Guesstimate 30% assumed of power components every 10 years ']}" -Zn-Br-Nonflow-bicharger,efficiency,0.8888,per unit,"Viswanathan_2022, p.59 (p.81) Table 4.25","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': [' (0.79)^0.5 efficiency is not RTE but single way AC-store conversion']}" -Zn-Br-Nonflow-bicharger,investment,116860.1539,EUR/MW,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['Power Equipment']}" -Zn-Br-Nonflow-bicharger,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['elec', 'znbr', 'elec'], 'technology_type': ['bicharger'], 'type': ['electrochemical'], 'note': ['NULL']}" -Zn-Br-Nonflow-store,FOM,0.2481,%/year,"Viswanathan_2022, 0.43 % of SB","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['derived']}" -Zn-Br-Nonflow-store,investment,250772.9587,EUR/MWh,"Viswanathan_2022, p.59 (p.81) Table 4.14","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['DC storage block']}" -Zn-Br-Nonflow-store,lifetime,15.0,years,"Viswanathan_2022, p.59 (p.81)","{'carrier': ['znbr'], 'technology_type': ['store'], 'type': ['electrochemical'], 'note': ['NULL']}" -air separation unit,FOM,3.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Fixed O&M -air separation unit,electricity-input,0.25,MWh_el/t_N2,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), p.288.","For consistency reasons use value from Danish Energy Agency. DEA also reports range of values (0.2-0.4 MWh/t_N2) on pg. 288. Other efficienices reported are even higher, e.g. 0.11 Mwh/t_N2 from Morgan (2013): Techno-Economic Feasibility Study of Ammonia Plants Powered by Offshore Wind ." -air separation unit,investment,891679.1058,EUR/t_N2/h,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Specific investment -air separation unit,lifetime,30.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",103 Hydrogen to Ammonia: Technical lifetime -battery inverter,FOM,0.2,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -battery inverter,efficiency,0.95,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -battery inverter,investment,270.0,EUR/kW,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -battery inverter,lifetime,10.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -battery storage,investment,232.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -battery storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -biogas,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas,FOM,11.3822,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas,fuel,59.0,EUR/MWhth,JRC and Zappa, from old pypsa cost assumptions -biogas,investment,1710.692,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas CC,CO2 stored,0.0868,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biogas CC,FOM,11.3822,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Total O&M" -biogas CC,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biogas CC,efficiency,1.0,per unit,Assuming input biomass is already given in biogas output, -biogas CC,investment,1710.692,EUR/kW,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Specific investment" -biogas CC,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","81 Biogas Plant, Basic conf.: Technical lifetime" -biogas plus hydrogen,FOM,4.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Fixed O&M -biogas plus hydrogen,investment,907.2,EUR/kW_CH4,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Specific investment -biogas plus hydrogen,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",99 SNG from methan. of biogas: Technical lifetime -biogas upgrading,FOM,2.5059,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Fixed O&M " -biogas upgrading,VOM,3.6909,EUR/MWh input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Variable O&M" -biogas upgrading,investment,423.0,EUR/kW input,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: investment (upgrading, methane redution and grid injection)" -biogas upgrading,lifetime,15.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","82 Biogas, upgrading: Technical lifetime" -biomass,FOM,4.5269,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,efficiency,0.468,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,fuel,7.0,EUR/MWhth,IEA2011b, from old pypsa cost assumptions -biomass,investment,2209.0,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass,lifetime,30.0,years,ECF2010 in DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -biomass CHP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass CHP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass CHP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass CHP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass CHP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass CHP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass CHP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass CHP capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,electricity-input,0.03,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,heat-output,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,investment,3300000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass CHP capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.a Post comb - small CHP -biomass EOP,FOM,3.6081,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Fixed O&M" -biomass EOP,VOM,2.1064,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Variable O&M " -biomass EOP,c_b,0.4544,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cb coefficient" -biomass EOP,c_v,1.0,40°C/80°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Cv coefficient" -biomass EOP,efficiency,0.2994,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Electricity efficiency, net, annual average" -biomass EOP,efficiency-heat,0.7093,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Heat efficiency, net, annual average" -biomass EOP,investment,3381.2717,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Nominal investment " -biomass EOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw, Large, 40 degree: Technical lifetime" -biomass HOP,FOM,5.8029,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Fixed O&M, heat output" -biomass HOP,VOM,2.113,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Variable O&M heat output -biomass HOP,efficiency,1.0323,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09c Straw HOP: Total efficiency , net, annual average" -biomass HOP,investment,875.4246,EUR/kW_th - heat output,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Nominal investment -biomass HOP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",09c Straw HOP: Technical lifetime -biomass boiler,FOM,7.3854,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Fixed O&M" -biomass boiler,efficiency,0.82,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Heat efficiency, annual average, net" -biomass boiler,investment,682.6741,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Specific investment" -biomass boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","204 Biomass boiler, automatic: Technical lifetime" -biomass boiler,pelletizing cost,9.0,EUR/MWh_pellets,Assumption based on doi:10.1016/j.rser.2019.109506, -biomass-to-methanol,C in fuel,0.3926,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,C stored,0.6074,per unit,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,CO2 stored,0.2227,tCO2/MWh_th,"Stoichiometric calculation, doi:10.1016/j.apenergy.2022.120016", -biomass-to-methanol,FOM,1.1111,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Fixed O&M -biomass-to-methanol,VOM,20.4043,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Variable O&M -biomass-to-methanol,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -biomass-to-methanol,efficiency,0.58,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Methanol Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-electricity,0.02,MWh_e/MWh_th,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: Electricity Output, MWh/MWh Total Input" -biomass-to-methanol,efficiency-heat,0.22,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx","97 Methanol from biomass gasif.: District heat Output, MWh/MWh Total Input" -biomass-to-methanol,investment,5258.0331,EUR/kW_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Specific investment -biomass-to-methanol,lifetime,20.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",97 Methanol from biomass gasif.: Technical lifetime -cement capture,FOM,3.0,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,capture_rate,0.9,per unit,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-electricity-input,0.1,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,compression-heat-output,0.16,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,electricity-input,0.025,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-input,0.833,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,heat-output,1.65,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,investment,3000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -cement capture,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",401.c Post comb - Cement kiln -central air-sourced heat pump,FOM,0.2102,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Fixed O&M" -central air-sourced heat pump,VOM,2.19,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Variable O&M" -central air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Total efficiency , net, annual average" -central air-sourced heat pump,investment,951.3853,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Specific investment" -central air-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Comp. hp, airsource 3 MW: Technical lifetime" -central coal CHP,FOM,1.6316,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Fixed O&M -central coal CHP,VOM,2.9,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Variable O&M -central coal CHP,c_b,0.84,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cb coefficient -central coal CHP,c_v,0.15,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Cv coefficient -central coal CHP,efficiency,0.485,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","01 Coal CHP: Electricity efficiency, condensation mode, net" -central coal CHP,investment,1900.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Nominal investment -central coal CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",01 Coal CHP: Technical lifetime -central gas CHP,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP,c_v,0.17,per unit,DEA (loss of fuel for additional heat), from old pypsa cost assumptions -central gas CHP,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central gas CHP CC,FOM,3.3051,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Fixed O&M" -central gas CHP CC,VOM,4.4,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Variable O&M" -central gas CHP CC,c_b,0.96,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Cb coefficient" -central gas CHP CC,efficiency,0.4,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Electricity efficiency, annual average" -central gas CHP CC,investment,590.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Nominal investment" -central gas CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","04 Gas turb. simple cycle, L: Technical lifetime" -central gas boiler,FOM,3.25,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Fixed O&M -central gas boiler,VOM,1.1,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Variable O&M -central gas boiler,efficiency,1.03,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","44 Natural Gas DH Only: Total efficiency , net, annual average" -central gas boiler,investment,60.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Nominal investment -central gas boiler,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",44 Natural Gas DH Only: Technical lifetime -central ground-sourced heat pump,FOM,0.3546,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Fixed O&M" -central ground-sourced heat pump,VOM,0.982,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Variable O&M" -central ground-sourced heat pump,efficiency,1.71,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Total efficiency , net, annual average" -central ground-sourced heat pump,investment,564.0,EUR/kW_th excluding drive energy,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Nominal investment" -central ground-sourced heat pump,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","40 Absorption heat pump, DH: Technical lifetime" -central hydrogen CHP,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -central hydrogen CHP,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -central hydrogen CHP,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -central hydrogen CHP,investment,1300.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -central hydrogen CHP,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -central resistive heater,FOM,1.5286,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Fixed O&M -central resistive heater,VOM,0.9,EUR/MWh_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Variable O&M -central resistive heater,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","41 Electric Boilers: Total efficiency , net, annual average" -central resistive heater,investment,70.0,EUR/kW_th,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Nominal investment; 10/15 kV; >10 MW -central resistive heater,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",41 Electric Boilers: Technical lifetime -central solar thermal,FOM,1.4,%/year,HP, from old pypsa cost assumptions -central solar thermal,investment,140000.0,EUR/1000m2,HP, from old pypsa cost assumptions -central solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -central solid biomass CHP,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP,p_nom_ratio,1.0,per unit,, from old pypsa cost assumptions -central solid biomass CHP CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP CC,investment,5449.8023,EUR/kW_e,Combination of central solid biomass CHP CC and solid biomass boiler steam, -central solid biomass CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central solid biomass CHP powerboost CC,FOM,2.8857,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Fixed O&M" -central solid biomass CHP powerboost CC,VOM,4.6015,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Variable O&M " -central solid biomass CHP powerboost CC,c_b,0.3489,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cb coefficient" -central solid biomass CHP powerboost CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Cv coefficient" -central solid biomass CHP powerboost CC,efficiency,0.2689,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Electricity efficiency, net, annual average" -central solid biomass CHP powerboost CC,efficiency-heat,0.8255,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Heat efficiency, net, annual average" -central solid biomass CHP powerboost CC,investment,3534.6459,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Nominal investment " -central solid biomass CHP powerboost CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","09a Wood Chips, Large 50 degree: Technical lifetime" -central water tank storage,FOM,0.5176,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Fixed O&M -central water tank storage,investment,0.5796,EUR/kWhCapacity,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Specific investment -central water tank storage,lifetime,20.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",140 PTES seasonal: Technical lifetime -clean water tank storage,FOM,2.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,investment,67.626,EUR/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -clean water tank storage,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -coal,CO2 intensity,0.3361,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -coal,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,fuel,8.15,EUR/MWh_th,BP 2019, -coal,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -coal,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -csp-tower,FOM,1.0,%/year,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),Ratio between CAPEX and FOM from ATB database for “moderate” scenario. -csp-tower,investment,144.8807,"EUR/kW_th,dp",ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include solar field and solar tower as well as EPC cost for the default installation size (104 MWe plant). Total costs (223,708,924 USD) are divided by active area (heliostat reflective area, 1,269,054 m2) and multiplied by design point DNI (0.95 kW/m2) to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower,lifetime,30.0,years,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power),- -csp-tower TES,FOM,1.0,%/year,see solar-tower.,- -csp-tower TES,investment,19.4098,EUR/kWh_th,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the TES incl. EPC cost for the default installation size (104 MWe plant, 2.791 MW_th TES). Total costs (69390776.7 USD) are divided by TES size to obtain EUR/kW_th. Exchange rate: 1.16 USD to 1 EUR." -csp-tower TES,lifetime,30.0,years,see solar-tower.,- -csp-tower power block,FOM,1.0,%/year,see solar-tower.,- -csp-tower power block,investment,1014.9348,EUR/kW_e,ATB CSP data (https://atb.nrel.gov/electricity/2021/concentrating_solar_power) and NREL SAM v2021.12.2 (https://sam.nrel.gov/).,"Based on NREL’s SAM (v2021.12.2) numbers for a CSP power plant, 2020 numbers. CAPEX degression (=learning) taken from ATB database (“moderate”) scenario. Costs include the power cycle incl. BOP and EPC cost for the default installation size (104 MWe plant). Total costs (135185685.5 USD) are divided by power block nameplate capacity size to obtain EUR/kW_e. Exchange rate: 1.16 USD to 1 EUR." -csp-tower power block,lifetime,30.0,years,see solar-tower.,- -decentral CHP,FOM,3.0,%/year,HP, from old pypsa cost assumptions -decentral CHP,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral CHP,investment,1400.0,EUR/kWel,HP, from old pypsa cost assumptions -decentral CHP,lifetime,25.0,years,HP, from old pypsa cost assumptions -decentral air-sourced heat pump,FOM,2.9578,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Fixed O&M -decentral air-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral air-sourced heat pump,efficiency,3.4,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.3 Air to water existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral air-sourced heat pump,investment,940.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Specific investment -decentral air-sourced heat pump,lifetime,18.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.3 Air to water existing: Technical lifetime -decentral gas boiler,FOM,6.5595,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Fixed O&M -decentral gas boiler,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral gas boiler,efficiency,0.97,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","202 Natural gas boiler: Total efficiency, annual average, net" -decentral gas boiler,investment,312.0796,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Specific investment -decentral gas boiler,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",202 Natural gas boiler: Technical lifetime -decentral gas boiler connection,investment,195.0498,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Possible additional specific investment -decentral gas boiler connection,lifetime,50.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",: Technical lifetime -decentral ground-sourced heat pump,FOM,1.8535,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Fixed O&M -decentral ground-sourced heat pump,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral ground-sourced heat pump,efficiency,3.8,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","207.7 Ground source existing: Heat efficiency, annual average, net, radiators, existing one family house" -decentral ground-sourced heat pump,investment,1500.0,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Specific investment -decentral ground-sourced heat pump,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",207.7 Ground source existing: Technical lifetime -decentral oil boiler,FOM,2.0,%/year,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,efficiency,0.9,per unit,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral oil boiler,investment,156.0141,EUR/kWth,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf) (+eigene Berechnung), from old pypsa cost assumptions -decentral oil boiler,lifetime,20.0,years,Palzer thesis (https://energiesysteme-zukunft.de/fileadmin/user_upload/Publikationen/PDFs/ESYS_Materialien_Optimierungsmodell_REMod-D.pdf), from old pypsa cost assumptions -decentral resistive heater,FOM,2.0,%/year,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral resistive heater,efficiency,0.9,per unit,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,investment,100.0,EUR/kWhth,Schaber thesis, from old pypsa cost assumptions -decentral resistive heater,lifetime,20.0,years,Schaber thesis, from old pypsa cost assumptions -decentral solar thermal,FOM,1.3,%/year,HP, from old pypsa cost assumptions -decentral solar thermal,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral solar thermal,investment,270000.0,EUR/1000m2,HP, from old pypsa cost assumptions -decentral solar thermal,lifetime,20.0,years,HP, from old pypsa cost assumptions -decentral water tank storage,FOM,1.0,%/year,HP, from old pypsa cost assumptions -decentral water tank storage,discount rate,0.04,per unit,Palzer thesis, from old pypsa cost assumptions -decentral water tank storage,investment,18.3761,EUR/kWh,IWES Interaktion, from old pypsa cost assumptions -decentral water tank storage,lifetime,20.0,years,HP, from old pypsa cost assumptions -digestible biomass,fuel,15.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOAGRW1, ENS_Ref for 2040", -digestible biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -digestible biomass to hydrogen,efficiency,0.39,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -digestible biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -direct air capture,FOM,4.95,%/year,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-electricity-input,0.15,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,compression-heat-output,0.2,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,electricity-input,0.4,MWh_el/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","0.4 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 0.182 MWh based on Breyer et al (2019). Should already include electricity for water scrubbing and compression (high quality CO2 output)." -direct air capture,heat-input,1.6,MWh_th/t_CO2,"Beuttler et al (2019): The Role of Direct Air Capture in Mitigation of Antropogenic Greenhouse Gas emissions (https://doi.org/10.3389/fclim.2019.00010), alternative: Breyer et al (2019).","Thermal energy demand. Provided via air-sourced heat pumps. 1.6 MWh based on Beuttler et al (2019) for Climeworks LT DAC, alternative value: 1.102 MWh based on Breyer et al (2019)." -direct air capture,heat-output,1.25,MWh/tCO2,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,investment,7000000.0,EUR/(tCO2/h),"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct air capture,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_carbon_capture_transport_storage.xlsx",403.a Direct air capture -direct firing gas,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing gas CC,FOM,1.2121,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Fixed O&M -direct firing gas CC,VOM,0.2825,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Variable O&M -direct firing gas CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.a Direct firing Natural Gas: Total efficiency, net, annual average" -direct firing gas CC,investment,15.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Nominal investment -direct firing gas CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.a Direct firing Natural Gas: Technical lifetime -direct firing solid fuels,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct firing solid fuels CC,FOM,1.5455,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Fixed O&M -direct firing solid fuels CC,VOM,0.3253,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Variable O&M -direct firing solid fuels CC,efficiency,1.0,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","312.b Direct firing Sold Fuels: Total efficiency, net, annual average" -direct firing solid fuels CC,investment,220.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Nominal investment -direct firing solid fuels CC,lifetime,15.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",312.b Direct firing Sold Fuels: Technical lifetime -direct iron reduction furnace,FOM,11.3,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","55.28 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ OPEX here to estimate DRI furnace cost." -direct iron reduction furnace,electricity-input,1.03,MWh_el/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘DRI-EAF_100% green H2’ reduced by electricity demand of process ‘EAF’. -direct iron reduction furnace,hydrogen-input,2.1,MWh_H2/t_hbi,"Mission Possible Partnership (2022): Steel Model Documentation (https://mpp.gitbook.io/mpp-steel-model/model-overview/model-components/technologies, accessed: 2022-12-05). ","63 kg H2/t steel for process ‘DRI-EAF_100% green H2’ according to documentation (raw input files for MPP model list 73 kg H2 / t steel, which seems to high and is probably incorrect)." -direct iron reduction furnace,investment,3874587.7907,EUR/t_HBI/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","488.34 EUR/t_HBI output/a. MPP steel tool uses CAPEX/OPEX for technology ‘DRI-EAF_100% green H2’, substract ‘EAF’ CAPEX here to estimate DRI furnace cost." -direct iron reduction furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -direct iron reduction furnace,ore-input,1.59,t_ore/t_hbi,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03). ",Based on process ‘DRI-EAF_100% green H2’. -dry bulk carrier Capesize,FOM,4.0,%/year,"Based on https://www.hellenicshippingnews.com/capesize-freight-returns-below-operating-expense-levels-but-shipowners-reject-lay-ups/, accessed: 2022-12-03.","5000 USD/d OPEX, exchange rate: 1.15 USD = 1 EUR; absolute value calculate relative to investment cost." -dry bulk carrier Capesize,capacity,180000.0,t,-,"DWT; corresponds to size of Capesize bulk carriers which have previously docked at the habour in Hamburg, Germany. Short of 200 kt limit for VLBCs." -dry bulk carrier Capesize,investment,36229232.3932,EUR,"Based on https://www.hellenicshippingnews.com/dry-bulk-carriers-in-high-demand-as-rates-keep-rallying/, accessed: 2022-12-03.","See figure for ‘Dry Bulk Newbuild Prices’, Capesize at end of 2020. Exchange rate: 1.15 USD = 1 EUR." -dry bulk carrier Capesize,lifetime,25.0,years,"Based on https://mfame.guru/fall-life-expectancy-bulk-carriers/, accessed: 2022-12-03.",Expected lifetime. -electric arc furnace,FOM,30.0,%/year,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.","EAF has high OPEX of 62.99 EUR/year/t_steel, presumably because of electrode corrosion." -electric arc furnace,electricity-input,0.6395,MWh_el/t_steel,"Mission Possible Partnership (2022): Steel Model (https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/Technology%20Business%20Cases.csv, accessed: 2022-12-03).",Based on process ‘EAF’. -electric arc furnace,hbi-input,1.0,t_hbi/t_steel,-,Assume HBI instead of scrap as input.Scrap would require higher input (in tonnes) as steel content is lower. -electric arc furnace,investment,1666182.3978,EUR/t_steel/h,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",210 EUR/t_steel output/a. MPP steel tool uses CAPEX/OPEX for technology ‘EAF’. -electric arc furnace,lifetime,40.0,years,"Model assumptions from MPP Steel Transition Tool: https://github.com/missionpossiblepartnership/mpp-steel-model/blob/9eca52db92bd2d9715f30e98ccaaf36677fdb516/mppsteel/data/import_data/CAPEX%20OPEX%20Per%20Technology.xlsx, accessed: 2022-12-05.",MPP steel model distinguishes between plant lifetime (40 years) and investment cycle (20 years). Choose plant lifetime. -electric boiler steam,FOM,1.3375,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Fixed O&M -electric boiler steam,VOM,0.865,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Variable O&M -electric boiler steam,efficiency,0.99,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","310.1 Electric boiler steam : Total efficiency, net, annual average" -electric boiler steam,investment,80.0,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Nominal investment -electric boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",310.1 Electric boiler steam : Technical lifetime -electric steam cracker,FOM,3.0,%/year,Guesstimate, -electric steam cracker,VOM,180.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -electric steam cracker,carbondioxide-output,0.55,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), ",The report also references another source with 0.76 t_CO2/t_HVC -electric steam cracker,electricity-input,2.7,MWh_el/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.",Assuming electrified processing. -electric steam cracker,investment,10512000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -electric steam cracker,lifetime,30.0,years,Guesstimate, -electric steam cracker,naphtha-input,14.8,MWh_naphtha/t_HVC,"Lechtenböhmer et al. (2016): 10.1016/j.energy.2016.07.110, Section 4.3, page 6.", -electricity distribution grid,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity distribution grid,investment,500.0,EUR/kW,TODO, from old pypsa cost assumptions -electricity distribution grid,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electricity grid connection,FOM,2.0,%/year,TODO, from old pypsa cost assumptions -electricity grid connection,investment,140.0,EUR/kW,DEA, from old pypsa cost assumptions -electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions -electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation, -electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels, -electrobiofuels,VOM,4.6618,EUR/MWh_th,combination of BtL and electrofuels, -electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation, -electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation, -electrobiofuels,investment,517844.1334,EUR/kW_th,combination of BtL and electrofuels, -electrolysis,FOM,2.0,%/year,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Fixed O&M -electrolysis,efficiency,0.665,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Hydrogen -electrolysis,efficiency-heat,0.1839,per unit,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: - hereof recoverable for district heating -electrolysis,investment,588.725,EUR/kW_e,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Specific investment -electrolysis,lifetime,25.0,years,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",86 AEC 100MW: Technical lifetime -fuel cell,FOM,5.0,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Fixed O&M -fuel cell,c_b,1.25,50oC/100oC,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Cb coefficient -fuel cell,efficiency,0.5,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","12 LT-PEMFC CHP: Electricity efficiency, annual average" -fuel cell,investment,1300.0,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Nominal investment -fuel cell,lifetime,10.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",12 LT-PEMFC CHP: Technical lifetime -gas,CO2 intensity,0.198,tCO2/MWh_th,Stoichiometric calculation with 50 GJ/t CH4, -gas,fuel,20.1,EUR/MWh_th,BP 2019, -gas boiler steam,FOM,3.6667,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Fixed O&M -gas boiler steam,VOM,1.1,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Variable O&M -gas boiler steam,efficiency,0.92,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1c Steam boiler Gas: Total efficiency, net, annual average" -gas boiler steam,investment,54.5455,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Nominal investment -gas boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1c Steam boiler Gas: Technical lifetime -gas storage,FOM,3.5919,%,Danish Energy Agency,"150 Underground Storage of Gas, Operation and Maintenace, salt cavern (units converted)" -gas storage,investment,0.0329,EUR/kWh,Danish Energy Agency,"150 Underground Storage of Gas, Establishment of one cavern (units converted)" -gas storage,lifetime,100.0,years,TODO no source,"estimation: most underground storage are already build, they do have a long lifetime" -gas storage charger,investment,14.3389,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -gas storage discharger,investment,4.7796,EUR/kW,Danish Energy Agency,"150 Underground Storage of Gas, Process equipment (units converted)" -geothermal,CO2 intensity,0.12,tCO2/MWh_th,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551",Likely to be improved; Average of 85 percent of global egs power plant capacity -geothermal,FOM,2.0,%/year,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551","Both for flash, binary and ORC plants. See Supplemental Material for details" -geothermal,district heating cost,0.25,%,Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben,"If capital cost of electric generation from EGS is 100%, district heating adds additional 25%" -geothermal,efficiency electricity,0.1,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,efficiency residential heat,0.8,per unit,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551; Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/","This is a rough estimate, depends on local conditions" -geothermal,lifetime,30.0,years,"Aghahosseini, Breyer 2020: From hot rock to useful energy: A global estimate of enhanced geothermal systems potential, https://www.sciencedirect.com/science/article/pii/S0306261920312551", -helmeth,FOM,3.0,%/year,no source, from old pypsa cost assumptions -helmeth,efficiency,0.8,per unit,HELMETH press release, from old pypsa cost assumptions -helmeth,investment,2000.0,EUR/kW,no source, from old pypsa cost assumptions -helmeth,lifetime,25.0,years,no source, from old pypsa cost assumptions -home battery inverter,FOM,0.2,%/year,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Fixed O&M -home battery inverter,efficiency,0.95,per unit,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Round trip efficiency DC -home battery inverter,investment,377.0,EUR/kW,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Output capacity expansion cost investment -home battery inverter,lifetime,10.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx, Note K.",: Technical lifetime -home battery storage,investment,323.5316,EUR/kWh,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Energy storage expansion cost investment -home battery storage,lifetime,20.0,years,"Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019, Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: Technical lifetime -hydro,FOM,1.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,investment,2208.1616,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -hydro,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -hydrogen storage compressor,FOM,4.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage compressor,compression-electricity-input,0.05,MWh_el/MWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",1.707 kWh/kg. -hydrogen storage compressor,investment,79.4235,EUR/kW_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.","2923 EUR/kg_H2. For a 206 kg/h compressor. Base CAPEX 40 528 EUR/kW_el with scale factor 0.4603. kg_H2 converted to MWh using LHV. Pressure range: 30 bar in, 250 bar out." -hydrogen storage compressor,lifetime,15.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.4.",- -hydrogen storage tank type 1,FOM,2.0,%/year,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,investment,12.2274,EUR/kWh_H2,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.","450 EUR/kg_H2 converted with LHV to MWh. For a type 1 hydrogen storage tank (steel, 15-250 bar). Currency year assumed 2020 for initial publication of reference; observe note in SI.4.3 that no currency year is explicitly stated in the reference." -hydrogen storage tank type 1,lifetime,20.0,years,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1,min_fill_level,6.0,%,"Based on Stöckl et al (2021): https://doi.org/10.48550/arXiv.2005.03464, table SI.9.",- -hydrogen storage tank type 1 including compressor,FOM,1.0526,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Fixed O&M -hydrogen storage tank type 1 including compressor,investment,57.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Specific investment -hydrogen storage tank type 1 including compressor,lifetime,25.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151a Hydrogen Storage - Tanks: Technical lifetime -hydrogen storage underground,FOM,0.0,%/year,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Fixed O&M -hydrogen storage underground,VOM,0.0,EUR/MWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Variable O&M -hydrogen storage underground,investment,3.0,EUR/kWh,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Specific investment -hydrogen storage underground,lifetime,100.0,years,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",151c Hydrogen Storage - Caverns: Technical lifetime -industrial heat pump high temperature,FOM,0.0928,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Fixed O&M -industrial heat pump high temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Variable O&M -industrial heat pump high temperature,efficiency,2.95,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.b High temp. hp Up to 150: Total efficiency, net, annual average" -industrial heat pump high temperature,investment,1045.44,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Nominal investment -industrial heat pump high temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.b High temp. hp Up to 150: Technical lifetime -industrial heat pump medium temperature,FOM,0.1113,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Fixed O&M -industrial heat pump medium temperature,VOM,3.26,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Variable O&M -industrial heat pump medium temperature,efficiency,2.55,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","302.a High temp. hp Up to 125 C: Total efficiency, net, annual average" -industrial heat pump medium temperature,investment,871.2,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Nominal investment -industrial heat pump medium temperature,lifetime,20.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",302.a High temp. hp Up to 125 C: Technical lifetime -iron ore DRI-ready,commodity,97.73,EUR/t,"Model assumptions from MPP Steel Transition Tool: https://missionpossiblepartnership.org/action-sectors/steel/, accessed: 2022-12-03.","DRI ready assumes 65% iron content, requiring no additional benefication." -lignite,CO2 intensity,0.4069,tCO2/MWh_th,Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2018, -lignite,FOM,1.6,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,fuel,2.9,EUR/MWh_th,DIW, -lignite,investment,3845.5066,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -lignite,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -methanation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.2.3.1", -methanation,carbondioxide-input,0.198,t_CO2/MWh_CH4,"Götz et al. (2016): Renewable Power-to-Gas: A technological and economic review (https://doi.org/10.1016/j.renene.2015.07.066), Fig. 11 .",Additional H2 required for methanation process (2x H2 amount compared to stochiometric conversion). -methanation,efficiency,0.8,per unit,Palzer and Schaber thesis, from old pypsa cost assumptions -methanation,hydrogen-input,1.282,MWh_H2/MWh_CH4,,Based on ideal conversion process of stochiometric composition (1 t CH4 contains 750 kg of carbon). -methanation,investment,718.9542,EUR/kW_CH4,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 6: “Reference scenario”.", -methanation,lifetime,20.0,years,Guesstimate.,"Based on lifetime for methanolisation, Fischer-Tropsch plants." -methane storage tank incl. compressor,FOM,1.9,%/year,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank type 1 including compressor (by DEA). -methane storage tank incl. compressor,investment,8629.2,EUR/m^3,Storage costs per l: https://www.compositesworld.com/articles/pressure-vessels-for-alternative-fuels-2014-2023 (2021-02-10).,"Assume 5USD/l (= 4.23 EUR/l at 1.17 USD/EUR exchange rate) for type 1 pressure vessel for 200 bar storage and 100% surplus costs for including compressor costs with storage, based on similar assumptions by DEA for compressed hydrogen storage tanks." -methane storage tank incl. compressor,lifetime,30.0,years,"Guesstimate, based on hydrogen storage tank type 1 including compressor by DEA.",Based on assumptions for hydrogen storage tank 1 including compressor (by DEA). -methanol,CO2 intensity,0.2482,tCO2/MWh_th,, -methanol-to-kerosene,hydrogen-input,0.0279,MWh_H2/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-kerosene,methanol-input,1.0764,MWh_MeOH/MWh_kerosene,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 6.","Assuming LHV 11.94 kWh/kg for kerosene, 5.54 kWh/kg for methanol, 33.3 kWh/kg for hydrogen." -methanol-to-olefins/aromatics,FOM,3.0,%/year,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,VOM,30.0,€/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35", -methanol-to-olefins/aromatics,carbondioxide-output,0.6107,t_CO2/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 0.4 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 1.13 t_CO2/t_BTX for 15.7 Mt of BTX. The report also references process emissions of 0.55 t_MeOH/t_ethylene+propylene elsewhere. " -methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), page 69",5 GJ/t_HVC -methanol-to-olefins/aromatics,investment,2628000.0,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a). -methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker -methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. " -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,VOM,6.2687,EUR/MWh_MeOH,"Danish Energy Agency, data_sheets_for_renewable_fuels.xlsx",98 Methanol from power: Variable O&M -methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", -methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", -methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH -methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH -methanolisation,investment,757400.9996,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M -micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net" -micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net" -micro CHP,investment,10045.3136,EUR/kW_th,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Specific investment -micro CHP,lifetime,20.0,years,"Danish Energy Agency, technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Technical lifetime -nuclear,FOM,1.4,%/year,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,VOM,3.5,EUR/MWh_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,efficiency,0.33,per unit,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,investment,7940.4514,EUR/kW_e,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -nuclear,lifetime,40.0,years,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -offwind,FOM,2.5093,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Fixed O&M [EUR/MW_e/y, 2020]" -offwind,VOM,0.02,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -offwind,investment,1804.7687,"EUR/kW_e, 2020","Danish Energy Agency, technology_data_for_el_and_dh.xlsx","21 Offshore turbines: Nominal investment [MEUR/MW_e, 2020] grid connection costs substracted from investment costs" -offwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",21 Offshore turbines: Technical lifetime [years] -offwind-ac-connection-submarine,investment,2685.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-connection-underground,investment,1342.0,EUR/MW/km,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-ac-station,investment,250.0,EUR/kWel,DEA https://ens.dk/en/our-services/projections-and-models/technology-data, from old pypsa cost assumptions -offwind-dc-connection-submarine,investment,2000.0,EUR/MW/km,DTU report based on Fig 34 of https://ec.europa.eu/energy/sites/ener/files/documents/2014_nsog_report.pdf, from old pypsa cost assumptions -offwind-dc-connection-underground,investment,1000.0,EUR/MW/km,Haertel 2017; average + 13% learning reduction, from old pypsa cost assumptions -offwind-dc-station,investment,400.0,EUR/kWel,Haertel 2017; assuming one onshore and one offshore node + 13% learning reduction, from old pypsa cost assumptions -oil,CO2 intensity,0.2571,tCO2/MWh_th,Stoichiometric calculation with 44 GJ/t diesel and -CH2- approximation of diesel, -oil,FOM,2.5656,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Fixed O&M -oil,VOM,6.0,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Variable O&M -oil,efficiency,0.35,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","50 Diesel engine farm: Electricity efficiency, annual average" -oil,fuel,50.0,EUR/MWhth,IEA WEM2017 97USD/boe = http://www.iea.org/media/weowebsite/2017/WEM_Documentation_WEO2017.pdf, from old pypsa cost assumptions -oil,investment,343.0,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Specific investment -oil,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",50 Diesel engine farm: Technical lifetime -onwind,FOM,1.2514,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Fixed O&M -onwind,VOM,1.5,EUR/MWh,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Variable O&M -onwind,investment,1118.775,EUR/kW,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Nominal investment -onwind,lifetime,27.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",20 Onshore turbines: Technical lifetime -ror,FOM,2.0,%/year,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,efficiency,0.9,per unit,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,investment,3312.2424,EUR/kWel,DIW DataDoc http://hdl.handle.net/10419/80348, from old pypsa cost assumptions -ror,lifetime,80.0,years,IEA2010, from old pypsa cost assumptions -seawater RO desalination,electricity-input,0.003,MWHh_el/t_H2O,"Caldera et al. (2016): Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.",Desalination using SWRO. Assume medium salinity of 35 Practical Salinity Units (PSUs) = 35 kg/m^3. -seawater desalination,FOM,4.0,%/year,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -seawater desalination,electricity-input,3.0348,kWh/m^3-H2O,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Fig. 4.", -seawater desalination,investment,40219.7802,EUR/(m^3-H2O/h),"Caldera et al 2017: Learning Curve for Seawater Reverse Osmosis Desalination Plants: Capital Cost Trend of the Past, Present, and Future (https://doi.org/10.1002/2017WR021402), Table 4.", -seawater desalination,lifetime,30.0,years,"Caldera et al 2016: Local cost of seawater RO desalination based on solar PV and windenergy: A global estimate. (https://doi.org/10.1016/j.desal.2016.02.004), Table 1.", -shipping fuel methanol,CO2 intensity,0.2482,tCO2/MWh_th,-,Based on stochiometric composition. -shipping fuel methanol,fuel,72.0,EUR/MWh_th,"Based on (source 1) Hampp et al (2022), https://arxiv.org/abs/2107.01092, and (source 2): https://www.methanol.org/methanol-price-supply-demand/; both accessed: 2022-12-03.",400 EUR/t assuming range roughly in the long-term range for green methanol (source 1) and late 2020+beyond values for grey methanol (source 2). -solar,FOM,1.578,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,VOM,0.01,EUR/MWhel,RES costs made up to fix curtailment order, from old pypsa cost assumptions -solar,investment,733.4715,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop' and 50% 'solar-utility' -solar-rooftop,FOM,1.1471,%/year,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,discount rate,0.04,per unit,standard for decentral, from old pypsa cost assumptions -solar-rooftop,investment,957.4695,EUR/kW_e,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop,lifetime,35.0,years,Calculated. See 'further description'.,Mixed investment costs based on average of 50% 'solar-rooftop commercial' and 50% 'solar-rooftop residential' -solar-rooftop commercial,FOM,1.2152,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop commercial,investment,790.0797,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Nominal investment [2020-MEUR/MW_e] -solar-rooftop commercial,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV commercial: Technical lifetime [years] -solar-rooftop residential,FOM,1.079,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Fixed O&M [2020-EUR/MW_e/y] -solar-rooftop residential,investment,1124.8592,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Nominal investment [2020-MEUR/MW_e] -solar-rooftop residential,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Rooftop PV residential: Technical lifetime [years] -solar-utility,FOM,2.0089,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Fixed O&M [2020-EUR/MW_e/y] -solar-utility,investment,509.4736,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Nominal investment [2020-MEUR/MW_e] -solar-utility,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV: Technical lifetime [years] -solar-utility single-axis tracking,FOM,1.8605,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Fixed O&M [2020-EUR/MW_e/y] -solar-utility single-axis tracking,investment,589.0441,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Nominal investment [2020-MEUR/MW_e] -solar-utility single-axis tracking,lifetime,35.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx",22 Utility-scale PV tracker: Technical lifetime [years] -solid biomass,CO2 intensity,0.3667,tCO2/MWh_th,Stoichiometric calculation with 18 GJ/t_DM LHV and 50% C-content for solid biomass, -solid biomass,fuel,12.0,EUR/MWh_th,"JRC ENSPRESO ca avg for MINBIOWOOW1 (secondary forest residue wood chips), ENS_Ref for 2040", -solid biomass boiler steam,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass boiler steam CC,FOM,5.4515,%/year,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Fixed O&M -solid biomass boiler steam CC,VOM,2.779,EUR/MWh,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Variable O&M -solid biomass boiler steam CC,efficiency,0.89,per unit,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx","311.1e Steam boiler Wood: Total efficiency, net, annual average" -solid biomass boiler steam CC,investment,618.1818,EUR/kW,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Nominal investment -solid biomass boiler steam CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_industrial_process_heat.xlsx",311.1e Steam boiler Wood: Technical lifetime -solid biomass to hydrogen,FOM,4.25,%/year,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006, -solid biomass to hydrogen,efficiency,0.56,per unit,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -solid biomass to hydrogen,investment,4000.0,EUR/kW_th,"Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014", -uranium,fuel,2.6,EUR/MWh_th,Lazard s Levelized Cost of Energy Analysis - Version 13.0, -waste CHP,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -waste CHP CC,FOM,2.4016,%/year,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Fixed O&M" -waste CHP CC,VOM,27.2767,EUR/MWh_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Variable O&M " -waste CHP CC,c_b,0.2826,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cb coefficient" -waste CHP CC,c_v,1.0,50°C/100°C,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Cv coefficient" -waste CHP CC,efficiency,0.2021,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Electricity efficiency, net, annual average" -waste CHP CC,efficiency-heat,0.7635,per unit,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Heat efficiency, net, annual average" -waste CHP CC,investment,8577.6998,EUR/kW_e,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Nominal investment " -waste CHP CC,lifetime,25.0,years,"Danish Energy Agency, technology_data_for_el_and_dh.xlsx","08 WtE CHP, Large, 50 degree: Technical lifetime" -water tank charger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency) -water tank discharger,efficiency,0.8367,per unit,"Danish Energy Agency, technology_data_catalogue_for_energy_storage.xlsx",: efficiency from sqr(Round trip efficiency)