Skip to content

Commit 4d1dcf0

Browse files
STY, DOC: Fix issues from prettier and linters
1 parent 3138209 commit 4d1dcf0

File tree

6 files changed

+15
-29
lines changed

6 files changed

+15
-29
lines changed

doc/source/regression/dwt-idwt.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -91,6 +91,7 @@ function:
9191
# for documentation tests -->
9292
<!-- though the doctests might not be needed anymore because MyST is testing -->
9393
<!-- these by executing the notebooks? -->
94+
9495
```{code-cell}
9596
int(pywt.dwt_coeff_len(data_len=len(x), filter_len=w.dec_len, mode='symmetric'))
9697
```
@@ -143,10 +144,9 @@ print(pywt.idwt(cA, cD, 'sym3', 'periodization'))
143144
### Passing `None` instead of coefficients data to {func}`idwt`
144145

145146
Now, we showcase some tips & tricks. Passing `None` as one of the coefficient
146-
arrays parameters is similar to passing a *zero-filled* array. The results are
147+
arrays parameters is similar to passing a _zero-filled_ array. The results are
147148
simply the same:
148149

149-
150150
```{code-cell}
151151
print(pywt.idwt([1,2,0,1], None, 'db2', 'symmetric'))
152152
```

doc/source/regression/gotchas.md

+3-2
Original file line numberDiff line numberDiff line change
@@ -41,17 +41,18 @@ The results are:
4141
```{code-cell}
4242
numpy.all(numpy.isnan(cA))
4343
```
44-
<!-- True -->
4544

45+
<!-- True -->
4646

4747
```{code-cell}
4848
numpy.all(numpy.isnan(cD))
4949
```
50-
<!-- True -->
5150

51+
<!-- True -->
5252

5353
```{code-cell}
5454
rec = pywt.idwt(cA, cD, wavelet, mode)
5555
numpy.all(numpy.isnan(rec))
5656
```
57+
5758
<!-- True -->

doc/source/regression/multilevel.md

-2
Original file line numberDiff line numberDiff line change
@@ -94,8 +94,6 @@ cA2
9494
cD2
9595
```
9696

97-
98-
9997
```{code-cell}
10098
[(cA2, cD2)] = pywt.swt(cA1, db1, level=1, start_level=1)
10199
```

doc/source/regression/wavelet.md

+4-6
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ kernelspec:
2727
## Wavelet families and builtin Wavelets names
2828

2929
{class}`Wavelet` objects are really a handy carriers of a bunch of DWT-specific
30-
data like *quadrature mirror filters* and some general properties associated
30+
data like _quadrature mirror filters_ and some general properties associated
3131
with them.
3232

3333
At first let's go through the methods of creating a {class}`Wavelet` object.
@@ -108,6 +108,7 @@ print(w.family_name)
108108

109109
<!-- # int() is for normalizing longs and ints for doctest -->
110110
<!-- TODO: FIXME: note: might not be needed anymore -->
111+
111112
```{code-cell}
112113
int(w.dec_len)
113114
```
@@ -122,21 +123,18 @@ int(w.rec_len)
122123
w.orthogonal
123124
```
124125

125-
126126
```{code-cell}
127127
w.biorthogonal
128128
```
129129

130-
131130
3. Symmetry ({attr}`~Wavelet.symmetry`):
132131

133132
```{code-cell}
134133
print(w.symmetry)
135134
```
136135

137-
138136
4. Number of vanishing moments for the scaling function `phi` ({attr}`~Wavelet.vanishing_moments_phi`)
139-
and the wavelet function `psi` ({attr}`~Wavelet.vanishing_moments_psi`), associated with the filters:
137+
and the wavelet function `psi` ({attr}`~Wavelet.vanishing_moments_psi`), associated with the filters:
140138

141139
```{code-cell}
142140
w.vanishing_moments_phi
@@ -150,7 +148,7 @@ Now when we know a bit about the builtin Wavelets, let's see how to create
150148
{ref}`custom Wavelets <custom-wavelets>` objects. These can be done in two ways:
151149

152150
1. Passing the filter bank object that implements the `filter_bank` attribute. The
153-
attribute must return four filters coefficients.
151+
attribute must return four filters coefficients.
154152

155153
```{code-cell}
156154
class MyHaarFilterBank(object):

doc/source/regression/wp.md

+2-6
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,7 @@ kernelspec:
2323
```
2424

2525
<!-- not sure if this is needed anymore? -->
26+
2627
```{code-cell}
2728
---
2829
tags: [hide-input]
@@ -51,7 +52,6 @@ def format_array(a):
5152
return numpy.array2string(a, precision=5, separator=' ', suppress_small=True)
5253
```
5354

54-
5555
## Create Wavelet Packet structure
5656

5757
Okay, let's create a sample {class}`WaveletPacket` object:
@@ -115,7 +115,6 @@ print(wp['a'].data)
115115
print(wp['a'].path)
116116
```
117117

118-
119118
- 2nd level:
120119

121120
```{code-cell}
@@ -126,7 +125,6 @@ print(wp['aa'].data)
126125
print(wp['aa'].path)
127126
```
128127

129-
130128
- 3rd level:
131129

132130
```{code-cell}
@@ -225,7 +223,6 @@ print([node.path for node in wp.get_level(3, 'freq')])
225223
Note that {meth}`WaveletPacket.get_level` also performs automatic decomposition
226224
until it reaches the specified `level`.
227225

228-
229226
## Reconstructing data from Wavelet Packets
230227

231228
```{code-cell}
@@ -284,7 +281,6 @@ print([n.path for n in new_wp.get_leaf_nodes(False)])
284281
print([n.path for n in new_wp.get_leaf_nodes(True)])
285282
```
286283

287-
288284
## Removing nodes from Wavelet Packet tree
289285

290286
Let's create some sample data:
@@ -366,7 +362,7 @@ print(wp.a)
366362
**Remember that you should not rely on the attribute access.**
367363

368364
2. At the first attempt to access the node, it is computed via the decomposition
369-
of its parent node (which is the `wp` object itself).
365+
of its parent node (which is the `wp` object itself).
370366

371367
```{code-cell}
372368
print(wp['a'])

doc/source/regression/wp2d.md

+4-11
Original file line numberDiff line numberDiff line change
@@ -27,6 +27,7 @@ kernelspec:
2727
## Import pywt
2828

2929
<!-- TODO: check if needed anymore -->
30+
3031
```{code-cell}
3132
from __future__ import print_function
3233
import pywt
@@ -159,6 +160,7 @@ print(wp['aaaa'].data)
159160
```
160161

161162
<!-- not sure what "Ups" means in the next sentence -->
163+
162164
Ups, we have reached the maximum level of decomposition for the `'aaaa'` path,
163165
which, by the way, was:
164166

@@ -186,42 +188,34 @@ just like with {class}`Node` and {class}`WaveletPacket` for the 1D case.).
186188
print(wp['av'].data)
187189
```
188190

189-
190191
```{code-cell}
191192
print(wp['av'].path)
192193
```
193194

194-
195195
```{code-cell}
196196
print(wp['av'].node_name)
197197
```
198198

199-
200199
```{code-cell}
201200
print(wp['av'].parent.path)
202201
```
203202

204-
205203
```{code-cell}
206204
print(wp['av'].parent.data)
207205
```
208206

209-
210207
```{code-cell}
211208
print(wp['av'].level)
212209
```
213210

214-
215211
```{code-cell}
216212
print(wp['av'].maxlevel)
217213
```
218214

219-
220215
```{code-cell}
221216
print(wp['av'].mode)
222217
```
223218

224-
225219
### Collecting nodes
226220

227221
We can get all nodes on the particular level using the
@@ -247,7 +241,6 @@ len(wp.get_level(1))
247241
print([node.path for node in wp.get_level(1)])
248242
```
249243

250-
251244
- 2nd level of decomposition:
252245

253246
```{code-cell}
@@ -314,7 +307,7 @@ Note: just remember to not assign to the `node.data parameter directly (TODO).
314307

315308
And reconstruct the data from the `a`, `d`, `vh`, `vv`, `vd` and `h`
316309
packets (Note that `va` node was not set and the WP tree is "not complete"
317-
\- the `va` branch will be treated as *zero-array*):
310+
\- the `va` branch will be treated as _zero-array_):
318311

319312
```{code-cell}
320313
print(new_wp.reconstruct(update=False))
@@ -371,7 +364,7 @@ print([n.path for n in new_wp.get_leaf_nodes()])
371364
```
372365

373366
Passing the `decompose = True` parameter to the method will force the WP
374-
object to do a full decomposition up to the *maximum level* of decomposition:
367+
object to do a full decomposition up to the _maximum level_ of decomposition:
375368

376369
```{code-cell}
377370
paths = [n.path for n in new_wp.get_leaf_nodes(decompose=True)]

0 commit comments

Comments
 (0)