-
Notifications
You must be signed in to change notification settings - Fork 0
/
Local Water Temperature.R
158 lines (132 loc) · 7.88 KB
/
Local Water Temperature.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#####
# N.D. McTigue, Q.A. Walker, and C.A. Currin 2021
# Refining estimates of greenhouse gas emissions from salt marsh “blue carbon” erosion and decomposition
# email: [email protected], [email protected]
#####
##### Run this script third #####
# this script reads in raw temperature data from a YSI near the coring location, #####
# and calculates the decomposition that would occur if sediment were incubated at those temperatures for a year
library(tidyverse)
library(lubridate)
# load in function to propagate error
source(file.path(getwd(),"mutate_with_error.R"))
## read in data
tempData <- read.csv(file.path(getwd(), 'data', "MHBTEMP2008-2016.csv")) %>%
rename(time = start_datetime, temp = result_value) %>% # rename cols
mutate(time = mdy_hm(time, tz = "est"), ## Change time from a character to a POSIXct
temp = as.numeric(temp), ## Change temp from a character to a numerical
temp = round(temp, 0)) %>% ## Round all temp data to the ones place
filter(!is.na(temp))
## Create a df to store each month of the sampling period and how many readings were made in that month
readingCounts <- data.frame(table(month(tempData$time), year(tempData$time)))
names(readingCounts) <- c("month", "year", "freq")
## sum the num of readings of next 11 months for each month giving us an idea of which series of 12 months had the most complete sampling regiments
for(i in 1:length(readingCounts$year)){
readingCounts$yearly[i] <- sum(readingCounts$freq[i:(i+11)], na.rm = T)
}
## store the names of the month which begins the top ten most complete yearly sampling periods
topYears <- paste(month.name[readingCounts[order(-readingCounts$yearly), ][1:10, "month"]], readingCounts[order(-readingCounts$yearly), ][1:10, "year"], sep = "")
## create a list to store the data of the most complete sampling periods
goodYears = list()
## loop through each of the top 10 yearly sampling periods
for(i in 1:length(topYears)){
# create a POSIXct var storing the first day of each yearly period
year <- myd(paste(topYears[i], "01", sep = ""), tz = "est")
# store the data from the raw data that fall between the first day and the first day plus one year
# I had to declare each entry into the list specifically as a df to get it to store both the time and temp data
goodYears[[i]] <- data.frame(time = tempData$time[(tempData$time>=year)&(tempData$time<(year+years(1)))],
temp = tempData$temp[(tempData$time>=year)&(tempData$time<(year+years(1)))])
}
names(goodYears) <- topYears # give the list a proper name
## create a df for storing the count of six minute periods at every temp from 0 to 40 degrees C for each of the top years
tempcountMHB <- data.frame(temp = -5:50, matrix(0, ncol = length(goodYears), nrow = length(-5:50)))
names(tempcountMHB) <- c("temp", names(goodYears)) # give the df a proper name
## loop through each of the top years to count the temperature periods
for(i in names(goodYears)){
# use table to count how many readings at each temperature were recorded
# I created a temporary df (x) each time through storing the table of individual counts
x <- data.frame(table(data.frame(goodYears[i])[, paste(i, "temp", sep = ".")]))
for(j in min(as.numeric(as.character(x$Var1))):max(as.numeric(as.character(x$Var1)))){
tempcountMHB[tempcountMHB$temp == j, i] <- x$Freq[x$Var1==j]
}
}
#### activation energy and total decomposition ####
finalRates <- filter(decompRate.summary, day == max(decompRate.summary$day)) %>%
arrange(Depth, Treatment)
# constants calculated from experiments
R <- .00831446 #kJ mol^-1 K^-1
K2 <- c(finalRates$slope[finalRates$Treatment == "IB 30"]) #mol C mol C^-1 d^-1 #changes based on deep, shallow sediment
K2.sd <- c(finalRates$sd[finalRates$Treatment == "IB 30"])
K1 <- c(finalRates$slope[finalRates$Treatment == "IB 20"]) #mol C mol C^-1 d^-1 #changes based on deep, shallow sediment
K1.sd <- c(finalRates$sd[finalRates$Treatment == "IB 20"])
T2 <- 30 + 273.15 #Kelvin
T1 <- 20 + 273.15 #Kelvin
#Create a data frame to feed to the error propagation function.
#Each object, even the constants needs to have an error, I used 0 for the constants
Kvals <- data.frame(temp = rep(-5:50, each = 2)+273.15, dtemp = 0,
temp.C = rep(-5:50, each = 2), dtemp = 0,
depth = c("deep", "shallow"),
K1, dK1 = K1.sd,
K2, dK2 = K2.sd,
R, dR = 0,
T1, dT1 = 0,
T2, dT2 = 0)
## calc activation energy and propagate the error
Kvals <- Kvals %>% mutate_with_error(Ea ~ (log(K2)-log(K1))*R/((1/T2)-(1/T1))*(-1))
# calc the K value at each temperature and propagate the error
Kvals <- Kvals %>% mutate_with_error(Ktemp ~ (-1*(Ea/R)*((1/temp)-(1/T1)))) %>%
mutate_with_error(Ktemp ~ exp(Ktemp+log(K1))) #not sure why but have to seperate these two steps
#create a dataframe from the arrhenius model
Amod <- data.frame(filter(Kvals, depth=="deep")[,c("temp", "temp.C")],
filter(Kvals, depth=="deep")[,c("Ktemp", "dKtemp")],
filter(Kvals, depth=="shallow")[,c("Ktemp", "dKtemp")])
names(Amod) <- c("temp", "temp.C",
"Ktemp.deep", "dKtemp.deep",
"Ktemp.shallow", "dKtemp.shallow")
## Plot K2 for each temperature
ggplot(Amod, aes(x = temp.C))+
geom_point(aes(y = Ktemp.deep, color = "deep"))+
geom_line(aes(y = Ktemp.deep, color = "deep"))+
geom_point(aes(y = Ktemp.shallow, color = "shallow"))+
geom_line(aes(y = Ktemp.shallow, color = "shallow"))+
coord_cartesian(xlim = c(-5, 50), expand = F)+
theme_bw()+
labs(x = "Temp (°C)", #degree = Alt + 0176
y = "mol CO2 · mol C-1 · d^-1", # dot operator = Alt + 0183
color = "Soil Horizon",
title = "K at each temperature and propagated error")
Ea.summary <- Kvals[1:2,c("depth", "K1", "dK1", "K2", "dK2", "Ea", "dEa")]
## New df to hold total decomp from each year at each sed depth
totalDecompMHB <- data.frame(matrix(0, ncol = length(topYears), nrow = 2), row.names = c("deep", "shallow"))
names(totalDecompMHB) <- topYears #desriptive names
## loop through the top years and calculate the decomp at each temp in each year
for(i in topYears){
## generate new columns for each year that calculate the amount of decomp that happened because of each temp. and then put the unit in mmol per days
tempcountMHB[, paste(i,"Decomp.deep", sep = "")] <- tempcountMHB[, i] * Ea.summary$K2[1] * 6/60/24 * 1000
## sum the total decomp from each temperature and add it to a new df
totalDecompMHB[1, i] <- sum(tempcountMHB[, paste(i,"Decomp.deep", sep = "")])
tempcountMHB[, paste(i,"Decomp.shallow", sep = "")] <- tempcountMHB[, i] * Ea.summary$K2[2] * 6/60/24 * 1000
## sum the total decomp from each temperature and add it to a new df
totalDecompMHB[2, i] <- sum(tempcountMHB[, paste(i,"Decomp.shallow", sep = "")])
}
decomp.list <- list()
for(i in topYears){
## generate new columns for each year that calculate the amount of decomp that happened because of each temp. and then put the unit in mmol per days
decomp.list[[i]] <- Amod %>%
mutate(year = i,
count = tempcountMHB[,i],
years = count * 6/60/24 * 1000,
dyears = 0) %>%
mutate_with_error(decomp.deep ~ years * Ktemp.deep) %>%
mutate_with_error(decomp.shallow ~ years * Ktemp.shallow)
}
# create a data frame to store the total decomposition in each of the top years
decomp.yearly <- data.frame()
for (i in names(decomp.list)) {
decomp.yearly <- bind_rows(decomp.yearly,
data.frame(year = i,
total.deep = sum(decomp.list[[i]]$decomp.deep),
sd.deep = sqrt(sum((decomp.list[[i]]$ddecomp.deep)^2)),
total.shallow = sum(decomp.list[[i]]$decomp.shallow),
sd.shallow = sqrt(sum((decomp.list[[i]]$ddecomp.shallow)^2))))
}