-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_realtime.py
117 lines (91 loc) · 4.79 KB
/
model_realtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Code adapted from Tensorflow Object Detection Framework
# https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb
# Tensorflow Object Detection Detector
import numpy as np
import tensorflow as tf
import cv2
import time
cap = cv2.VideoCapture(0)
class DetectorAPI:
def __init__(self, path_to_ckpt):
self.path_to_ckpt = path_to_ckpt
# initialize a graph
self.detection_graph = tf.Graph()
# sets to default graph
with self.detection_graph.as_default():
# https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/core/framework/graph.proto
od_graph_def = tf.GraphDef()
# some sort of file wrapping of current model
with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid:
# get file content as a string
serialized_graph = fid.read()
# parse the string
od_graph_def.ParseFromString(serialized_graph)
# imports the specified graph into the default graph
tf.import_graph_def(od_graph_def, name='')
# NOTE: At this point the graph has been loaded from checkpoint that was specified
# returns a context manager to default_graph, not sure what that means
self.default_graph = self.detection_graph.as_default()
# create a session with the detection_graph
self.sess = tf.Session(graph=self.detection_graph)
# this specifies all of the operations that are being seeked
# Definite input and output Tensors for detection_graph
self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')
# NOTE: All of these operation should theoretically return some type of tensor
def processFrame(self, image):
# Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image, axis=0)
# Actual detection.
start_time = time.time()
# The session is run, printing this, the session would return the tensors collected by the image_tensor:0
# operation and others, since they are run in a list the output is a list which is then passed to the tuple
(boxes, scores, classes, num) = self.sess.run(
[self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],
feed_dict={self.image_tensor: image_np_expanded})
end_time = time.time()
print("Elapsed Time:", end_time - start_time)
im_height, im_width, _ = image.shape
boxes_list = [None for i in range(boxes.shape[1])]
for i in range(boxes.shape[1]):
boxes_list[i] = (int(boxes[0, i, 0] * im_height),
int(boxes[0, i, 1] * im_width),
int(boxes[0, i, 2] * im_height),
int(boxes[0, i, 3] * im_width))
return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0])
def close(self):
# closes the session
self.sess.close()
self.default_graph.close()
if __name__ == "__main__":
model_path = r'C:\models\research\object_detection\SSD_resnet50_FPN_GC3\frozen_inference_graph.pb'
odapi = DetectorAPI(path_to_ckpt=model_path)
threshold = 0.60
label_prev = np.zeros(5)
while True:
r, image = cap.read()
boxes, scores, classes, num = odapi.processFrame(image)
# Visualization of the results of a detection.
labels = np.zeros(5)
for i in range(len(boxes)):
for label in range(len(labels)):
if classes[i] == label and scores[i] > threshold:
box = boxes[i]
cv2.rectangle(image, (box[1], box[0]), (box[3], box[2]), (255, 0, 0), 2)
labels[label] += 1
print(labels)
# TODO call function to update
old_labels = labels
# delete row from csv at (count)
# delete blank rows from deleted csv rows
cv2.imshow('object detection', image)
key = cv2.waitKey(25)
if key & 0xFF == ord('q'):
cv2.destroyAllWindows()
break