title | author | license | tags | summary | layout | src |
---|---|---|---|---|---|---|
Simulating a Vector Autoregressive Process |
Dirk Eddelbuettel |
GPL (>= 2) |
armadillo matrix |
Compares the simulation of a first-order vector autoregressive process using RcppArmadillo. |
post |
2012-12-18-simulating-vector-autoregressive-process.Rmd |
This example simulates a first-order vector autoregressive process involving simple matrix multiplication in an iterative fashion. It was suggested by Lance Bachmeier as a motivating example for using Rcpp.
So let's walk through the example. First the plain vanilla R version, this starts with a simple enough loop. After skipping the first row, each iteration multiplies the previous row with the parameters and adds error terms:
{% highlight r %}
a <- matrix(c(0.5,0.1,0.1,0.5),nrow=2) e <- matrix(rnorm(10000),ncol=2)
rSim <- function(coeff, errors) { simdata <- matrix(0, nrow(errors), ncol(errors)) for (row in 2:nrow(errors)) { simdata[row,] = coeff %*% simdata[(row-1),] + errors[row,] } return(simdata) }
rData <- rSim(a, e)
{% endhighlight %}
We now create a version of the function using the R compiler:
{% highlight r %} compRsim <- compiler::cmpfun(rSim) compRData <- compRsim(a,e) # generated by R 'compiled' stopifnot(all.equal(rData, compRData)) # checking results {% endhighlight %}
With that, time to turn to C++ using Armadillo via RcppArmadillo:
{% highlight cpp %} // [[Rcpp::depends(RcppArmadillo)]]
#include <RcppArmadillo.h>
// [[Rcpp::export]] arma::mat rcppSim(arma::mat coeff, arma::mat errors) { int m = errors.n_rows; int n = errors.n_cols; arma::mat simdata(m,n); simdata.row(0) = arma::zerosarma::mat(1,n); for (int row=1; row<m; row++) { simdata.row(row) = simdata.row(row-1)*trans(coeff)+errors.row(row); } return simdata; } {% endhighlight %}
The C++ code is pretty straightforward as well. We can instatiate Armadillo matrices directly from the R objects we pass down; we then run a similar loop building the result row by row.
Now, with all the build-up, here is the final timing comparison:
{% highlight r %} rbenchmark::benchmark(rcppSim(a,e), rSim(a,e), compRsim(a,e), columns=c("test", "replications", "elapsed", "relative", "user.self", "sys.self"), order="relative") {% endhighlight %}
test replications elapsed relative user.self sys.self 1 rcppSim(a, e) 100 0.024 1.00 0.020 0.004 3 compRsim(a, e) 100 1.381 57.54 1.376 0.004 2 rSim(a, e) 100 3.368 140.33 3.344 0.008
So in a real-world example involving looping and some algebra (which is of course already done by BLAS and LAPACK libraries), the new R compiler improves by more than a factor of two, cutting time from 4.14 seconds down to about 2 seconds.
Yet, this still leaves the C++ solution, clocking in at a mere 38 milliseconds, ahead by a factor of over fifty relative to the new R compiler. And compared to just R itself, the simple solution involving Rcpp and RcppArmadillo is almost 110 times faster.