title | author | license | tags | summary | layout | src |
---|---|---|---|---|---|---|
A simple array class with specialized linear algebra routines |
Fabian Scheipl |
GPL (>= 2) |
modeling armadillo |
Define a simple array class for implementing Currie/Durban/Eilers "generalized linear array models". |
post |
2014-03-21-simple-array-class.Rmd |
Currie, Durban and Eilers write:
Data with an array structure are common in statistics, and the design or regression matrix for analysis of such data can often be written as a Kronecker product. Factorial designs, contingency tables and smoothing of data on multidimensional grids are three such general classes of data and models. In such a setting, we develop an arithmetic of arrays which allows us to define the expectation of the data array as a sequence of nested matrix operations on a coefficient array. We show how this arithmetic leads to low storage, high speed computation in the scoring algorithm of the generalized linear model.
For example, they show that if a design matrix X
has the Kronecker
structure X = kronecker(Xd, ..., X2, X1)
with X<i>
a partial model matrix
with n<i>
rows and c<i>
columns, linear functions X%*%theta
of X
and
a coefficient vector theta
can be efficiently computed based only on the
partial model matrices where the entries in the vector X%*%theta
(with
nd*...*n2*n1
entries) are the same as the entries in the array with
dimension c(n1, n2, ..., nd)
returned by RH(Xd, ... , RH(X2, RH(X1, Theta))...)
.
Theta
is an array with dimensions c(c1, c2, ..., cd)
containing theta
and RH(X, A)
-- the "rotated H-transform" -- is an operation generalizing
transposed pre-multiplication t(X %*% A)
of a matrix A
by a matrix X
to
the case of higher dimensional array-valued A
.
The code below implements a simple array class for numeric arrays and the
rotated H-transform in RcppArmadillo
and compares the performance to both
the naive straight forward matrix multiplication based on the full model
matrix and an R
-implementation of RH()
:
{% highlight cpp %} // [[Rcpp::depends(RcppArmadillo)]] #include <RcppArmadillo.h> using namespace Rcpp ;
/*
Offset and Array classes based on code by Romain Francois copied from http://comments.gmane.org/gmane.comp.lang.r.rcpp/5932 on 2014-01-07.
*/
class Offset{ private: IntegerVector dim ;
public: Offset( IntegerVector dim ) : dim(dim) {}
int operator()( IntegerVector ind ){
int ret = ind[0] ;
int offset = 1 ;
for(int d=1; d < dim.size(); d++) {
offset = offset * dim[d-1] ;
ret = ret + ind[d] * offset ;
}
return ret ;
} ;
IntegerVector getDims() const {
return(dim) ;
};
} ;
class Array : public NumericVector { private: // NumericVector value; Offset dims ;
public: //Rcpp:as Array( SEXP x) : NumericVector(x), dims( (IntegerVector)((RObject)x).attr("dim") ) {}
Array( NumericVector x, Offset d ): NumericVector(x),
dims(d) {}
Array( Dimension d ): NumericVector( d ), dims( d ) {}
IntegerVector getDims() const {
return(dims.getDims());
};
NumericVector getValue() const {
return(*((NumericVector*)(this)));
};
inline double& operator()( IntegerVector ind) {
int vecind = dims(ind);
NumericVector value = this->getValue();
return value(vecind);
} ;
// change dims without changing order of elements (!= aperm)
void resize(IntegerVector newdim) {
int n = std::accumulate((this->getDims()).begin(), (this->getDims()).end(), 1,
std::multiplies<int>());
int nnew = std::accumulate(newdim.begin(), newdim.end(), 1,
std::multiplies<int>());
if(n != nnew) stop("old and new old dimensions don't match.");
this->dims = Offset(newdim);
} ;
} ;
namespace Rcpp { // wrap(): converter from Array to an R array template <> SEXP wrap(const Array& A) { IntegerVector dims = A.getDims(); //Dimension dims = A.getDims(); Vector x = A; x.attr( "dim" ) = wrap(dims); return x; } }
// [[Rcpp::export]]
Array rotate(Array A){
/*
Re-dimension an array from dim to c(dim[-1], dim[1]).
Example: for a 234 array, indices 1:24 are shuffled into
1 3 5 ... 21 23 2 4 6 ... 20 22 24
i.e., a sequence of length prod(dims[-1])=12 from 1 to prod(dims)=24
("baseseq") repeated twice ("space" = dims[1]) and shifted by 1 each time.
*/
IntegerVector dims = A.getDims() ;
int ndims = dims.size() ;
int space = dims[0] ;
int length = std::accumulate(dims.begin(),dims.end(), 1,
std::multiplies<int>()) / space ;
IntegerVector baseseq = (seq_len(length) - 1) * space ;
NumericVector old = A.getValue() ;
NumericVector ret(space*length) ;
for(int r=0; r < space; r++) {
for(int j=0; j < length; j++){
ret[ r * length + j ] = old[ baseseq[j] + r ] ;
} ;
} ;
IntegerVector newdim(ndims) ;
for(int d=0; d < ndims; d++){
newdim(d) = dims[d+1] ;
} ;
newdim[ndims-1] = dims[0] ;
Array rA = Array(ret, Offset(newdim)) ; return rA; }
// [[Rcpp::export]] Array RH(const arma::mat& X, Array A){ /* Rotated H-transform of Array A by matrix X. H-transform generalizes premultiplication of A by X to array-valued A. For A with dimensions (c1, c2, ..., cd) and X with dim=(n, c1), H(X, A) is array(XAflat, dim=c(n, c2, ..., cd)), where Aflat is array(A, c(c1, c2c3*..*cd). */ IntegerVector olddims = A.getDims() ; int n = A.getDims()[0] ; int d = std::accumulate(A.getDims().begin(), A.getDims().end(), 1, std::multiplies()) / n ;
arma::mat Amod((A.getValue()).begin(), n, d, false) ;
arma::vec tmp = vectorise(X * Amod);
IntegerVector newdims = clone(A.getDims());
newdims[0] = X.n_rows;
Array ret = rotate(Array(as<NumericVector>(wrap(tmp)), Offset(newdims)));
return ret ;
} {% endhighlight %}
Set up test case:
Let's look at a 3-dimensional example where X = X3 %x% X2 %x% X1
and
each X<i>
is a B-spline basis over seq(0, 1, len=n<i>)
:
{% highlight r %} library(splines) set.seed(11212)
n1 <- 30; n2 <- 40; n3 <- 50 c1 <- 5; c2 <- 10; c3 <- 15 n <- n1n2n3 c <- c1c2c3
X1 <- bs(seq(0, 1, len=n1), df=c1) X2 <- bs(seq(0, 1, len=n2), df=c2) X3 <- bs(seq(0, 1, len=n3), df=c3) X <- X3 %x% X2 %x% X1
theta_vec <- runif(c) Theta <- array(theta_vec, dim=c(c1, c2, c3))
RH_r <- function(X, A){ ## H-transform: A_flat <- array(A, dim=c(dim(A)[1], prod(dim(A)[-1]))) ret <- array(X %*% A_flat, dim=c(nrow(X), dim(A)[-1])) ## Rotate: aperm(ret, c(2:length(dim(A)), 1)) } {% endhighlight %}
Note that X
is fairly large, with 6 × 104 rows and 750 columns.
Check correctness:
{% highlight r %} all.equal( array(X%*%theta_vec, dim=c(n1, n2, n3)), # RH(X3, RH(X2, RH(X1, Theta))): Reduce(RH_r, list(X3, X2, X1), init=Theta, right=TRUE)) {% endhighlight %}
[1] TRUE
{% highlight r %}
all.equal( array(X%*%theta_vec, dim=c(n1, n2, n3)), # RH(X3, RH(X2, RH(X1, Theta))): Reduce(RH, list(X3, X2, X1), init=Theta, right=TRUE)) {% endhighlight %}
[1] TRUE
Check performance:
{% highlight r %} library(rbenchmark) benchmark( array(X%*%theta_vec, dim=c(n1, n2, n3)), Reduce(RH_r, list(X3, X2, X1), Theta, TRUE), Reduce(RH, list(X3, X2, X1), Theta, TRUE), replications = 100)[,c(1,3:4)] {% endhighlight %}
test elapsed relative 1 array(X %*% theta_vec, dim = c(n1, n2, n3)) 27.252 198.920 3 Reduce(RH, list(X3, X2, X1), Theta, TRUE) 0.137 1.000 2 Reduce(RH_r, list(X3, X2, X1), Theta, TRUE) 0.325 2.372
Note: An alternative version with proper formula notation can be found here.