Skip to content

Files

Latest commit

 

History

History
292 lines (228 loc) · 8.47 KB

2014-03-21-simple-array-class.md

File metadata and controls

292 lines (228 loc) · 8.47 KB
title author license tags summary layout src
A simple array class with specialized linear algebra routines
Fabian Scheipl
GPL (>= 2)
modeling armadillo
Define a simple array class for implementing Currie/Durban/Eilers "generalized linear array models".
post
2014-03-21-simple-array-class.Rmd

Currie, Durban and Eilers write:

Data with an array structure are common in statistics, and the design or regression matrix for analysis of such data can often be written as a Kronecker product. Factorial designs, contingency tables and smoothing of data on multidimensional grids are three such general classes of data and models. In such a setting, we develop an arithmetic of arrays which allows us to define the expectation of the data array as a sequence of nested matrix operations on a coefficient array. We show how this arithmetic leads to low storage, high speed computation in the scoring algorithm of the generalized linear model.

For example, they show that if a design matrix X has the Kronecker structure X = kronecker(Xd, ..., X2, X1) with X<i> a partial model matrix with n<i> rows and c<i> columns, linear functions X%*%theta of X and a coefficient vector theta can be efficiently computed based only on the partial model matrices where the entries in the vector X%*%theta (with nd*...*n2*n1 entries) are the same as the entries in the array with dimension c(n1, n2, ..., nd) returned by RH(Xd, ... , RH(X2, RH(X1, Theta))...).
Theta is an array with dimensions c(c1, c2, ..., cd) containing theta and RH(X, A) -- the "rotated H-transform" -- is an operation generalizing transposed pre-multiplication t(X %*% A) of a matrix A by a matrix X to the case of higher dimensional array-valued A.

The code below implements a simple array class for numeric arrays and the rotated H-transform in RcppArmadillo and compares the performance to both the naive straight forward matrix multiplication based on the full model matrix and an R-implementation of RH():

{% highlight cpp %} // [[Rcpp::depends(RcppArmadillo)]] #include <RcppArmadillo.h> using namespace Rcpp ;

/*


Offset and Array classes based on code by Romain Francois copied from http://comments.gmane.org/gmane.comp.lang.r.rcpp/5932 on 2014-01-07.


*/

class Offset{ private: IntegerVector dim ;

public: Offset( IntegerVector dim ) : dim(dim) {}

 int operator()( IntegerVector ind ){
     int ret = ind[0] ;
     int offset = 1 ;
     for(int d=1; d < dim.size(); d++) {
         offset = offset * dim[d-1] ; 
         ret = ret + ind[d] * offset ;
     }
     return ret ;
 } ;
 
 IntegerVector getDims() const {
     return(dim) ;
 };

} ;

class Array : public NumericVector { private: // NumericVector value; Offset dims ;

public: //Rcpp:as Array( SEXP x) : NumericVector(x), dims( (IntegerVector)((RObject)x).attr("dim") ) {}

Array( NumericVector x,  Offset d ): NumericVector(x), 
                                            dims(d) {}

Array( Dimension d ): NumericVector( d ), dims( d ) {}

IntegerVector getDims() const {
    return(dims.getDims());
};
 
NumericVector getValue()  const {
    return(*((NumericVector*)(this)));
};
 
 inline double& operator()( IntegerVector ind) {
     int vecind = dims(ind);
     NumericVector value = this->getValue();  
     return value(vecind);
 } ;
 
 // change dims without changing order of elements (!= aperm)
 void resize(IntegerVector newdim) {
     int n = std::accumulate((this->getDims()).begin(), (this->getDims()).end(), 1, 
                             std::multiplies<int>());
     int nnew = std::accumulate(newdim.begin(), newdim.end(), 1, 
                             std::multiplies<int>());
     if(n != nnew)  stop("old and new old dimensions don't match.");
     this->dims = Offset(newdim);
 } ;

} ;

namespace Rcpp { // wrap(): converter from Array to an R array template <> SEXP wrap(const Array& A) { IntegerVector dims = A.getDims(); //Dimension dims = A.getDims(); Vector x = A; x.attr( "dim" ) = wrap(dims); return x; } }

// [[Rcpp::export]] Array rotate(Array A){ /* Re-dimension an array from dim to c(dim[-1], dim[1]). Example: for a 234 array, indices 1:24 are shuffled into
1 3 5 ... 21 23 2 4 6 ... 20 22 24
i.e., a sequence of length prod(dims[-1])=12 from 1 to prod(dims)=24 ("baseseq") repeated twice ("space" = dims[1]) and shifted by 1 each time. */

IntegerVector dims = A.getDims() ;
int ndims = dims.size() ;
int space = dims[0] ;
int length = std::accumulate(dims.begin(),dims.end(), 1, 
                             std::multiplies<int>()) / space ;
IntegerVector baseseq = (seq_len(length) - 1) * space ;

NumericVector old = A.getValue() ; 
NumericVector ret(space*length) ; 

for(int r=0; r < space; r++) {
    for(int j=0; j < length; j++){
        ret[ r * length + j ] = old[ baseseq[j] + r ] ;
    } ;
} ;

IntegerVector newdim(ndims) ;
for(int d=0; d < ndims; d++){
    newdim(d) = dims[d+1] ;
} ; 
newdim[ndims-1] = dims[0] ;  

Array rA = Array(ret, Offset(newdim)) ; return rA; }

// [[Rcpp::export]] Array RH(const arma::mat& X, Array A){ /* Rotated H-transform of Array A by matrix X. H-transform generalizes premultiplication of A by X to array-valued A. For A with dimensions (c1, c2, ..., cd) and X with dim=(n, c1), H(X, A) is array(XAflat, dim=c(n, c2, ..., cd)), where Aflat is array(A, c(c1, c2c3*..*cd). */ IntegerVector olddims = A.getDims() ; int n = A.getDims()[0] ; int d = std::accumulate(A.getDims().begin(), A.getDims().end(), 1, std::multiplies()) / n ;

arma::mat Amod((A.getValue()).begin(), n, d, false) ;
arma::vec tmp = vectorise(X * Amod);
 
IntegerVector newdims = clone(A.getDims());
newdims[0] = X.n_rows; 

Array ret  = rotate(Array(as<NumericVector>(wrap(tmp)), Offset(newdims)));

return ret ; 

} {% endhighlight %}

Set up test case:

Let's look at a 3-dimensional example where X = X3 %x% X2 %x% X1 and each X<i> is a B-spline basis over seq(0, 1, len=n<i>):

{% highlight r %} library(splines) set.seed(11212)

n1 <- 30; n2 <- 40; n3 <- 50 c1 <- 5; c2 <- 10; c3 <- 15 n <- n1n2n3 c <- c1c2c3

X1 <- bs(seq(0, 1, len=n1), df=c1) X2 <- bs(seq(0, 1, len=n2), df=c2) X3 <- bs(seq(0, 1, len=n3), df=c3) X <- X3 %x% X2 %x% X1

theta_vec <- runif(c) Theta <- array(theta_vec, dim=c(c1, c2, c3))

RH_r <- function(X, A){ ## H-transform: A_flat <- array(A, dim=c(dim(A)[1], prod(dim(A)[-1]))) ret <- array(X %*% A_flat, dim=c(nrow(X), dim(A)[-1])) ## Rotate: aperm(ret, c(2:length(dim(A)), 1)) } {% endhighlight %}

Note that X is fairly large, with 6 × 104 rows and 750 columns.

Check correctness:

{% highlight r %} all.equal( array(X%*%theta_vec, dim=c(n1, n2, n3)), # RH(X3, RH(X2, RH(X1, Theta))): Reduce(RH_r, list(X3, X2, X1), init=Theta, right=TRUE)) {% endhighlight %}

[1] TRUE

{% highlight r %}

all.equal( array(X%*%theta_vec, dim=c(n1, n2, n3)), # RH(X3, RH(X2, RH(X1, Theta))): Reduce(RH, list(X3, X2, X1), init=Theta, right=TRUE)) {% endhighlight %}

[1] TRUE

Check performance:

{% highlight r %} library(rbenchmark) benchmark( array(X%*%theta_vec, dim=c(n1, n2, n3)), Reduce(RH_r, list(X3, X2, X1), Theta, TRUE), Reduce(RH, list(X3, X2, X1), Theta, TRUE), replications = 100)[,c(1,3:4)] {% endhighlight %}

                                         test elapsed relative
1 array(X %*% theta_vec, dim = c(n1, n2, n3))  27.252  198.920
3   Reduce(RH, list(X3, X2, X1), Theta, TRUE)   0.137    1.000
2 Reduce(RH_r, list(X3, X2, X1), Theta, TRUE)   0.325    2.372

Note: An alternative version with proper formula notation can be found here.