-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpoints_generator.py
33 lines (29 loc) · 1.11 KB
/
points_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
"""Docstring: Programm to generate random points. """
__author__ = "Tobias Marzell"
__credits__ = ""
__email__ = "[email protected]"
import numpy as np
import pandas as pd
from sklearn.datasets.samples_generator import make_blobs
def generate_points():
""" Generate random points. """
centers = []
centers.append([[ 0.75,-0.75]])
centers.append([[-0.75,-0.75]])
centers.append([[ 0.75, 0.75]])
datas = [None] * len(centers)
labels_true = [None] * len(centers)
datas[0], labels_true[0] = make_blobs(n_samples=40, centers=centers[0], cluster_std=0.4)
datas[1], labels_true[1] = make_blobs(n_samples=15, centers=centers[1], cluster_std=0.10)
datas[2], labels_true[2] = make_blobs(n_samples=25, centers=centers[2], cluster_std=0.20)
print(datas[0])
print(len(datas))
for i in range(len(datas)-1):
data = np.append(datas[0], datas[i+1], axis=0)
data = pd.DataFrame(data, columns=['x','y'])
filee = open("./datasets/test.txt", "w", newline = '')
data.to_csv(filee, sep = ',', index = False)
def main():
generate_points()
if __name__ == "__main__":
main()