-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmnist_hvd.py
251 lines (214 loc) · 7.97 KB
/
mnist_hvd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
##############################################################################################
# Reference: https://spell.ml/blog/distributed-model-training-using-horovod-XvqEGRUAACgAa5th #
##############################################################################################
import argparse
import time
import horovod.torch as hvd
import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data.distributed as dist
from torchvision import datasets, transforms
from net import Net
# Training settings
parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
parser.add_argument(
"--batch-size",
type=int,
default=64,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=1000,
metavar="N",
help="input batch size for testing (default: 1000)",
)
parser.add_argument(
"--epochs",
type=int,
default=14,
metavar="N",
help="number of epochs to train (default: 14)",
)
parser.add_argument(
"--lr", type=float, default=0.01, metavar="LR", help="learning rate (default: 0.01)"
)
parser.add_argument(
"--momentum",
type=float,
default=0.5,
metavar="M",
help="SGD momentum (default: 0.5)",
)
parser.add_argument(
"--no-cuda", action="store_true", default=False, help="disables CUDA training"
)
parser.add_argument(
"--seed", type=int, default=42, metavar="S", help="random seed (default: 42)"
)
parser.add_argument(
"--log-interval",
type=int,
default=10,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument(
"--fp16-allreduce",
action="store_true",
default=False,
help="use fp16 compression during allreduce",
)
parser.add_argument(
"--use-adasum",
action="store_true",
default=False,
help="use adasum algorithm to do reduction",
)
def train(model, train_sampler, train_loader, args, optimizer, epoch):
model.train()
# Horovod: set epoch to sampler for shuffling.
train_sampler.set_epoch(epoch)
for batch_idx, (data, target) in enumerate(train_loader):
if args.cuda:
data, target = data.cuda(), target.cuda()
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if hvd.rank() == 0:
if batch_idx % args.log_interval == 0:
# Horovod: use train_sampler to determine the number of examples in
# this worker's partition.
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
hvd.size() * batch_idx * len(data),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
def metric_average(val, name):
if type(val) is not torch.Tensor:
val = torch.tensor(val)
avg_tensor = hvd.allreduce(val, name=name)
return avg_tensor.item()
def test(model, test_sampler, test_loader, args):
model.eval()
test_loss = 0.0
test_accuracy = 0.0
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
output = model(data)
# sum up batch loss
test_loss += F.nll_loss(output, target, reduction="sum").item()
# get the index of the max log-probability
pred = output.data.max(1, keepdim=True)[1]
test_accuracy += pred.eq(target.data.view_as(pred)).cpu().float().sum()
# Horovod: use test_sampler to determine the number of examples in
# this worker's partition.
test_loss /= len(test_sampler)
test_accuracy /= len(test_sampler)
# Horovod: average metric values across workers.
test_loss = metric_average(test_loss, "avg_loss")
test_accuracy = metric_average(test_accuracy, "avg_accuracy")
# Horovod: print output only on first rank.
if hvd.rank() == 0:
print(
"\nTest set: Average loss: {:.4f}, Accuracy: {:.2f}%\n".format(
test_loss, 100.0 * test_accuracy
)
)
def main():
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
# Horovod: initialize library.
hvd.init()
torch.manual_seed(args.seed)
if args.cuda:
# Horovod: pin GPU to local rank.
torch.cuda.set_device(hvd.local_rank())
torch.cuda.manual_seed(args.seed)
# Horovod: limit # of CPU threads to be used per worker.
torch.set_num_threads(1)
kwargs = {"num_workers": 1, "pin_memory": True} if args.cuda else {}
# When supported, use 'forkserver' to spawn dataloader workers instead of 'fork' to prevent
# issues with Infiniband implementations that are not fork-safe
if (
kwargs.get("num_workers", 0) > 0
and hasattr(mp, "_supports_context")
and mp._supports_context
and "forkserver" in mp.get_all_start_methods()
):
kwargs["multiprocessing_context"] = "forkserver"
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
)
if hvd.rank() != 0:
# might be downloading mnist data, let rank 0 download first
hvd.barrier()
# train_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=True, download=True, transform=transform)
train_dataset = datasets.MNIST(
"./data", train=True, download=True, transform=transform
)
if hvd.rank() == 0:
# mnist data is downloaded, indicate other ranks can proceed
hvd.barrier()
# Horovod: use DistributedSampler to partition the training data.
train_sampler = dist.DistributedSampler(
train_dataset, num_replicas=hvd.size(), rank=hvd.rank()
)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, sampler=train_sampler, **kwargs
)
# test_dataset = datasets.MNIST('data-%d' % hvd.rank(), train=False, transform=transform)
test_dataset = datasets.MNIST("./data", train=False, transform=transform)
# Horovod: use DistributedSampler to partition the test data.
test_sampler = dist.DistributedSampler(
test_dataset, num_replicas=hvd.size(), rank=hvd.rank()
)
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.test_batch_size, sampler=test_sampler, **kwargs
)
model = Net()
# By default, Adasum doesn't need scaling up learning rate.
lr_scaler = hvd.size() if not args.use_adasum else 1
if args.cuda:
# Move model to GPU.
model.cuda()
# If using GPU Adasum allreduce, scale learning rate by local_size.
if args.use_adasum and hvd.nccl_built():
lr_scaler = hvd.local_size()
# Horovod: scale learning rate by lr_scaler.
optimizer = optim.SGD(
model.parameters(), lr=args.lr * lr_scaler, momentum=args.momentum
)
# Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
# Horovod: wrap optimizer with DistributedOptimizer.
optimizer = hvd.DistributedOptimizer(
optimizer,
named_parameters=model.named_parameters(),
compression=compression,
op=hvd.Adasum if args.use_adasum else hvd.Average,
)
total_time = 0.0
for epoch in range(1, args.epochs + 1):
start = time.time()
train(model, train_sampler, train_loader, args, optimizer, epoch)
total_time += time.time() - start
test(model, test_sampler, test_loader, args)
return hvd.rank(), total_time
if __name__ == "__main__":
rk, tt = main()
print(f"[{rk}] Total time elapsed: {tt} seconds")