-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
Copy pathdynamicuniformbuffer.cpp
432 lines (362 loc) · 16.7 KB
/
dynamicuniformbuffer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
/*
* Vulkan Example - Dynamic uniform buffers
*
* Copyright (C) 2016-2023 by Sascha Willems - www.saschawillems.de
*
* This code is licensed under the MIT license (MIT) (http://opensource.org/licenses/MIT)
*
* Summary:
* Demonstrates the use of dynamic uniform buffers.
*
* Instead of using one uniform buffer per-object, this example allocates one big uniform buffer
* with respect to the alignment reported by the device via minUniformBufferOffsetAlignment that
* contains all matrices for the objects in the scene.
*
* The used descriptor type VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC then allows to set a dynamic
* offset used to pass data from the single uniform buffer to the connected shader binding point.
*/
#include "vulkanexamplebase.h"
#define OBJECT_INSTANCES 125
// Vertex layout for this example
struct Vertex {
float pos[3];
float color[3];
};
// Wrapper functions for aligned memory allocation
// There is currently no standard for this in C++ that works across all platforms and vendors, so we abstract this
void* alignedAlloc(size_t size, size_t alignment)
{
void *data = nullptr;
#if defined(_MSC_VER) || defined(__MINGW32__)
data = _aligned_malloc(size, alignment);
#else
int res = posix_memalign(&data, alignment, size);
if (res != 0)
data = nullptr;
#endif
return data;
}
void alignedFree(void* data)
{
#if defined(_MSC_VER) || defined(__MINGW32__)
_aligned_free(data);
#else
free(data);
#endif
}
class VulkanExample : public VulkanExampleBase
{
public:
vks::Buffer vertexBuffer;
vks::Buffer indexBuffer;
uint32_t indexCount{ 0 };
struct {
vks::Buffer view;
vks::Buffer dynamic;
} uniformBuffers;
struct {
glm::mat4 projection;
glm::mat4 view;
} uboVS;
// Store random per-object rotations
glm::vec3 rotations[OBJECT_INSTANCES];
glm::vec3 rotationSpeeds[OBJECT_INSTANCES];
// One big uniform buffer that contains all matrices
// Note that we need to manually allocate the data to cope for GPU-specific uniform buffer offset alignments
struct UboDataDynamic {
glm::mat4* model{ nullptr };
} uboDataDynamic;
VkPipeline pipeline{ VK_NULL_HANDLE };
VkPipelineLayout pipelineLayout{ VK_NULL_HANDLE };
VkDescriptorSet descriptorSet{ VK_NULL_HANDLE };
VkDescriptorSetLayout descriptorSetLayout{ VK_NULL_HANDLE };
float animationTimer{ 0.0f };
size_t dynamicAlignment{ 0 };
VulkanExample() : VulkanExampleBase()
{
title = "Dynamic uniform buffers";
camera.type = Camera::CameraType::lookat;
camera.setPosition(glm::vec3(0.0f, 0.0f, -30.0f));
camera.setRotation(glm::vec3(0.0f));
camera.setPerspective(60.0f, (float)width / (float)height, 0.1f, 256.0f);
}
~VulkanExample()
{
if (device) {
if (uboDataDynamic.model) {
alignedFree(uboDataDynamic.model);
}
vkDestroyPipeline(device, pipeline, nullptr);
vkDestroyPipelineLayout(device, pipelineLayout, nullptr);
vkDestroyDescriptorSetLayout(device, descriptorSetLayout, nullptr);
vertexBuffer.destroy();
indexBuffer.destroy();
uniformBuffers.view.destroy();
uniformBuffers.dynamic.destroy();
}
}
void buildCommandBuffers()
{
VkCommandBufferBeginInfo cmdBufInfo = vks::initializers::commandBufferBeginInfo();
VkClearValue clearValues[2];
clearValues[0].color = defaultClearColor;
clearValues[1].depthStencil = { 1.0f, 0 };
VkRenderPassBeginInfo renderPassBeginInfo = vks::initializers::renderPassBeginInfo();
renderPassBeginInfo.renderPass = renderPass;
renderPassBeginInfo.renderArea.offset.x = 0;
renderPassBeginInfo.renderArea.offset.y = 0;
renderPassBeginInfo.renderArea.extent.width = width;
renderPassBeginInfo.renderArea.extent.height = height;
renderPassBeginInfo.clearValueCount = 2;
renderPassBeginInfo.pClearValues = clearValues;
for (int32_t i = 0; i < drawCmdBuffers.size(); ++i)
{
renderPassBeginInfo.framebuffer = frameBuffers[i];
VK_CHECK_RESULT(vkBeginCommandBuffer(drawCmdBuffers[i], &cmdBufInfo));
vkCmdBeginRenderPass(drawCmdBuffers[i], &renderPassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);
VkViewport viewport = vks::initializers::viewport((float)width, (float)height, 0.0f, 1.0f);
vkCmdSetViewport(drawCmdBuffers[i], 0, 1, &viewport);
VkRect2D scissor = vks::initializers::rect2D(width, height, 0, 0);
vkCmdSetScissor(drawCmdBuffers[i], 0, 1, &scissor);
vkCmdBindPipeline(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
VkDeviceSize offsets[1] = { 0 };
vkCmdBindVertexBuffers(drawCmdBuffers[i], 0, 1, &vertexBuffer.buffer, offsets);
vkCmdBindIndexBuffer(drawCmdBuffers[i], indexBuffer.buffer, 0, VK_INDEX_TYPE_UINT32);
// Render multiple objects using different model matrices by dynamically offsetting into one uniform buffer
for (uint32_t j = 0; j < OBJECT_INSTANCES; j++)
{
// One dynamic offset per dynamic descriptor to offset into the ubo containing all model matrices
uint32_t dynamicOffset = j * static_cast<uint32_t>(dynamicAlignment);
// Bind the descriptor set for rendering a mesh using the dynamic offset
vkCmdBindDescriptorSets(drawCmdBuffers[i], VK_PIPELINE_BIND_POINT_GRAPHICS, pipelineLayout, 0, 1, &descriptorSet, 1, &dynamicOffset);
vkCmdDrawIndexed(drawCmdBuffers[i], indexCount, 1, 0, 0, 0);
}
drawUI(drawCmdBuffers[i]);
vkCmdEndRenderPass(drawCmdBuffers[i]);
VK_CHECK_RESULT(vkEndCommandBuffer(drawCmdBuffers[i]));
}
}
void generateCube()
{
// Setup vertices indices for a colored cube
std::vector<Vertex> vertices = {
{ { -1.0f, -1.0f, 1.0f },{ 1.0f, 0.0f, 0.0f } },
{ { 1.0f, -1.0f, 1.0f },{ 0.0f, 1.0f, 0.0f } },
{ { 1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, 1.0f, 1.0f },{ 0.0f, 0.0f, 0.0f } },
{ { -1.0f, -1.0f, -1.0f },{ 1.0f, 0.0f, 0.0f } },
{ { 1.0f, -1.0f, -1.0f },{ 0.0f, 1.0f, 0.0f } },
{ { 1.0f, 1.0f, -1.0f },{ 0.0f, 0.0f, 1.0f } },
{ { -1.0f, 1.0f, -1.0f },{ 0.0f, 0.0f, 0.0f } },
};
std::vector<uint32_t> indices = {
0,1,2, 2,3,0, 1,5,6, 6,2,1, 7,6,5, 5,4,7, 4,0,3, 3,7,4, 4,5,1, 1,0,4, 3,2,6, 6,7,3,
};
indexCount = static_cast<uint32_t>(indices.size());
// Create buffers
// For the sake of simplicity we won't stage the vertex data to the gpu memory
// Vertex buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&vertexBuffer,
vertices.size() * sizeof(Vertex),
vertices.data()));
// Index buffer
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&indexBuffer,
indices.size() * sizeof(uint32_t),
indices.data()));
}
void setupDescriptors()
{
// Pool
std::vector<VkDescriptorPoolSize> poolSizes = {
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1),
// Dynamic uniform buffer
vks::initializers::descriptorPoolSize(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1)
};
VkDescriptorPoolCreateInfo descriptorPoolInfo = vks::initializers::descriptorPoolCreateInfo(poolSizes, 2);
VK_CHECK_RESULT(vkCreateDescriptorPool(device, &descriptorPoolInfo, nullptr, &descriptorPool));
// Layout
std::vector<VkDescriptorSetLayoutBinding> setLayoutBindings = {
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, VK_SHADER_STAGE_VERTEX_BIT, 0),
// Dynamic uniform buffer
vks::initializers::descriptorSetLayoutBinding(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, VK_SHADER_STAGE_VERTEX_BIT, 1)
};
VkDescriptorSetLayoutCreateInfo descriptorLayout = vks::initializers::descriptorSetLayoutCreateInfo(setLayoutBindings);
VK_CHECK_RESULT(vkCreateDescriptorSetLayout(device, &descriptorLayout, nullptr, &descriptorSetLayout));
// Set
VkDescriptorSetAllocateInfo allocInfo = vks::initializers::descriptorSetAllocateInfo(descriptorPool, &descriptorSetLayout, 1);
VK_CHECK_RESULT(vkAllocateDescriptorSets(device, &allocInfo, &descriptorSet));
std::vector<VkWriteDescriptorSet> writeDescriptorSets = {
// Binding 0 : Projection/View matrix as uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 0, &uniformBuffers.view.descriptor),
// Binding 1 : Instance matrix as dynamic uniform buffer
vks::initializers::writeDescriptorSet(descriptorSet, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1, &uniformBuffers.dynamic.descriptor),
};
vkUpdateDescriptorSets(device, static_cast<uint32_t>(writeDescriptorSets.size()), writeDescriptorSets.data(), 0, nullptr);
}
void preparePipelines()
{
// Layout
VkPipelineLayoutCreateInfo pipelineLayoutCreateInfo = vks::initializers::pipelineLayoutCreateInfo(&descriptorSetLayout, 1);
VK_CHECK_RESULT(vkCreatePipelineLayout(device, &pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
// Pipeline
VkPipelineInputAssemblyStateCreateInfo inputAssemblyState = vks::initializers::pipelineInputAssemblyStateCreateInfo(VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, 0, VK_FALSE);
VkPipelineRasterizationStateCreateInfo rasterizationState = vks::initializers::pipelineRasterizationStateCreateInfo(VK_POLYGON_MODE_FILL, VK_CULL_MODE_NONE, VK_FRONT_FACE_COUNTER_CLOCKWISE, 0);
VkPipelineColorBlendAttachmentState blendAttachmentState = vks::initializers::pipelineColorBlendAttachmentState(0xf, VK_FALSE);
VkPipelineColorBlendStateCreateInfo colorBlendState = vks::initializers::pipelineColorBlendStateCreateInfo(1, &blendAttachmentState);
VkPipelineDepthStencilStateCreateInfo depthStencilState = vks::initializers::pipelineDepthStencilStateCreateInfo(VK_TRUE, VK_TRUE, VK_COMPARE_OP_LESS_OR_EQUAL);
VkPipelineViewportStateCreateInfo viewportState = vks::initializers::pipelineViewportStateCreateInfo(1, 1, 0);
VkPipelineMultisampleStateCreateInfo multisampleState = vks::initializers::pipelineMultisampleStateCreateInfo(VK_SAMPLE_COUNT_1_BIT, 0);
std::vector<VkDynamicState> dynamicStateEnables = { VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR };
VkPipelineDynamicStateCreateInfo dynamicState = vks::initializers::pipelineDynamicStateCreateInfo(dynamicStateEnables);
std::array<VkPipelineShaderStageCreateInfo, 2> shaderStages;
// Vertex bindings and attributes
VkVertexInputBindingDescription vertexInputBinding = {
vks::initializers::vertexInputBindingDescription(0, sizeof(Vertex), VK_VERTEX_INPUT_RATE_VERTEX)
};
std::vector<VkVertexInputAttributeDescription> vertexInputAttributes = {
vks::initializers::vertexInputAttributeDescription(0, 0, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, pos)), // Location 0 : Position
vks::initializers::vertexInputAttributeDescription(0, 1, VK_FORMAT_R32G32B32_SFLOAT, offsetof(Vertex, color)), // Location 1 : Color
};
VkPipelineVertexInputStateCreateInfo vertexInputStateCI = vks::initializers::pipelineVertexInputStateCreateInfo();
vertexInputStateCI.vertexBindingDescriptionCount = 1;
vertexInputStateCI.pVertexBindingDescriptions = &vertexInputBinding;
vertexInputStateCI.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertexInputAttributes.size());
vertexInputStateCI.pVertexAttributeDescriptions = vertexInputAttributes.data();
shaderStages[0] = loadShader(getShadersPath() + "dynamicuniformbuffer/base.vert.spv", VK_SHADER_STAGE_VERTEX_BIT);
shaderStages[1] = loadShader(getShadersPath() + "dynamicuniformbuffer/base.frag.spv", VK_SHADER_STAGE_FRAGMENT_BIT);
VkGraphicsPipelineCreateInfo pipelineCreateInfo = vks::initializers::pipelineCreateInfo(pipelineLayout, renderPass, 0);
pipelineCreateInfo.pVertexInputState = &vertexInputStateCI;
pipelineCreateInfo.pInputAssemblyState = &inputAssemblyState;
pipelineCreateInfo.pRasterizationState = &rasterizationState;
pipelineCreateInfo.pColorBlendState = &colorBlendState;
pipelineCreateInfo.pMultisampleState = &multisampleState;
pipelineCreateInfo.pViewportState = &viewportState;
pipelineCreateInfo.pDepthStencilState = &depthStencilState;
pipelineCreateInfo.pDynamicState = &dynamicState;
pipelineCreateInfo.stageCount = static_cast<uint32_t>(shaderStages.size());
pipelineCreateInfo.pStages = shaderStages.data();
VK_CHECK_RESULT(vkCreateGraphicsPipelines(device, pipelineCache, 1, &pipelineCreateInfo, nullptr, &pipeline));
}
// Prepare and initialize uniform buffer containing shader uniforms
void prepareUniformBuffers()
{
// Allocate data for the dynamic uniform buffer object
// We allocate this manually as the alignment of the offset differs between GPUs
// Calculate required alignment based on minimum device offset alignment
size_t minUboAlignment = vulkanDevice->properties.limits.minUniformBufferOffsetAlignment;
dynamicAlignment = sizeof(glm::mat4);
if (minUboAlignment > 0) {
dynamicAlignment = (dynamicAlignment + minUboAlignment - 1) & ~(minUboAlignment - 1);
}
size_t bufferSize = OBJECT_INSTANCES * dynamicAlignment;
uboDataDynamic.model = (glm::mat4*)alignedAlloc(bufferSize, dynamicAlignment);
assert(uboDataDynamic.model);
std::cout << "minUniformBufferOffsetAlignment = " << minUboAlignment << std::endl;
std::cout << "dynamicAlignment = " << dynamicAlignment << std::endl;
// Vertex shader uniform buffer block
// Static shared uniform buffer object with projection and view matrix
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT,
&uniformBuffers.view,
sizeof(uboVS)));
// Uniform buffer object with per-object matrices
VK_CHECK_RESULT(vulkanDevice->createBuffer(
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
&uniformBuffers.dynamic,
bufferSize));
// Override descriptor range to [base, base + dynamicAlignment]
uniformBuffers.dynamic.descriptor.range = dynamicAlignment;
// Map persistent
VK_CHECK_RESULT(uniformBuffers.view.map());
VK_CHECK_RESULT(uniformBuffers.dynamic.map());
// Prepare per-object matrices with offsets and random rotations
std::default_random_engine rndEngine(benchmark.active ? 0 : (unsigned)time(nullptr));
std::normal_distribution<float> rndDist(-1.0f, 1.0f);
for (uint32_t i = 0; i < OBJECT_INSTANCES; i++) {
rotations[i] = glm::vec3(rndDist(rndEngine), rndDist(rndEngine), rndDist(rndEngine)) * 2.0f * (float)M_PI;
rotationSpeeds[i] = glm::vec3(rndDist(rndEngine), rndDist(rndEngine), rndDist(rndEngine));
}
updateUniformBuffers();
updateDynamicUniformBuffer();
}
void updateUniformBuffers()
{
// Fixed ubo with projection and view matrices
uboVS.projection = camera.matrices.perspective;
uboVS.view = camera.matrices.view;
memcpy(uniformBuffers.view.mapped, &uboVS, sizeof(uboVS));
}
void updateDynamicUniformBuffer()
{
// Update at max. 60 fps
animationTimer += frameTimer;
if (animationTimer <= 1.0f / 60.0f) {
return;
}
// Dynamic ubo with per-object model matrices indexed by offsets in the command buffer
uint32_t dim = static_cast<uint32_t>(pow(OBJECT_INSTANCES, (1.0f / 3.0f)));
glm::vec3 offset(5.0f);
for (uint32_t x = 0; x < dim; x++)
{
for (uint32_t y = 0; y < dim; y++)
{
for (uint32_t z = 0; z < dim; z++)
{
uint32_t index = x * dim * dim + y * dim + z;
// Aligned offset
glm::mat4* modelMat = (glm::mat4*)(((uint64_t)uboDataDynamic.model + (index * dynamicAlignment)));
// Update rotations
rotations[index] += animationTimer * rotationSpeeds[index];
// Update matrices
glm::vec3 pos = glm::vec3(-((dim * offset.x) / 2.0f) + offset.x / 2.0f + x * offset.x, -((dim * offset.y) / 2.0f) + offset.y / 2.0f + y * offset.y, -((dim * offset.z) / 2.0f) + offset.z / 2.0f + z * offset.z);
*modelMat = glm::translate(glm::mat4(1.0f), pos);
*modelMat = glm::rotate(*modelMat, rotations[index].x, glm::vec3(1.0f, 1.0f, 0.0f));
*modelMat = glm::rotate(*modelMat, rotations[index].y, glm::vec3(0.0f, 1.0f, 0.0f));
*modelMat = glm::rotate(*modelMat, rotations[index].z, glm::vec3(0.0f, 0.0f, 1.0f));
}
}
}
animationTimer = 0.0f;
memcpy(uniformBuffers.dynamic.mapped, uboDataDynamic.model, uniformBuffers.dynamic.size);
// Flush to make changes visible to the host
VkMappedMemoryRange memoryRange = vks::initializers::mappedMemoryRange();
memoryRange.memory = uniformBuffers.dynamic.memory;
memoryRange.size = uniformBuffers.dynamic.size;
vkFlushMappedMemoryRanges(device, 1, &memoryRange);
}
void prepare()
{
VulkanExampleBase::prepare();
generateCube();
prepareUniformBuffers();
setupDescriptors();
preparePipelines();
buildCommandBuffers();
prepared = true;
}
void draw()
{
VulkanExampleBase::prepareFrame();
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &drawCmdBuffers[currentBuffer];
VK_CHECK_RESULT(vkQueueSubmit(queue, 1, &submitInfo, VK_NULL_HANDLE));
VulkanExampleBase::submitFrame();
}
virtual void render()
{
if (!prepared)
return;
updateUniformBuffers();
updateDynamicUniformBuffer();
draw();
}
};
VULKAN_EXAMPLE_MAIN()