-
-
Notifications
You must be signed in to change notification settings - Fork 49
/
Copy pathinterpolation_utils.jl
362 lines (319 loc) · 10.7 KB
/
interpolation_utils.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
function findRequiredIdxs!(A::LagrangeInterpolation, t, idx)
n = length(A.t) - 1
i_min, idx_min, idx_max = if t == A.t[idx]
A.idxs[1] = idx
2, idx, idx
else
1, idx + 1, idx
end
for i in i_min:(n + 1)
if idx_min == 1
A.idxs[i:end] .= range(idx_max + 1, idx_max + (n + 2 - i))
break
elseif idx_max == length(A.t)
A.idxs[i:end] .= (idx_min - 1):-1:(idx_min - (n + 2 - i))
break
else
left_diff = abs(t - A.t[idx_min - 1])
right_diff = abs(t - A.t[idx_max + 1])
left_expand = left_diff <= right_diff
end
if left_expand
idx_min -= 1
A.idxs[i] = idx_min
else
idx_max += 1
A.idxs[i] = idx_max
end
end
return idx
end
function spline_coefficients!(N, d, k, u::Number)
N .= zero(u)
if u == k[1]
N[1] = one(u)
return 1:1
elseif u == k[end]
N[end] = one(u)
return length(N):length(N)
else
i = findfirst(x -> x > u, k) - 1
N[i] = one(u)
for deg in 1:d
N[i - deg] = (k[i + 1] - u) / (k[i + 1] - k[i - deg + 1]) * N[i - deg + 1]
for j in (i - deg + 1):(i - 1)
N[j] = (u - k[j]) / (k[j + deg] - k[j]) * N[j] +
(k[j + deg + 1] - u) / (k[j + deg + 1] - k[j + 1]) * N[j + 1]
end
N[i] = (u - k[i]) / (k[i + deg] - k[i]) * N[i]
end
return (i - d):i
end
end
function spline_coefficients!(N, d, k, u::AbstractVector)
for i in 1:size(N)[2]
spline_coefficients!(view(N, i, :), d, k, u[i])
end
return nothing
end
function quadratic_spline_params(t::AbstractVector, sc::AbstractVector)
# Create knot vector
# Don't use x[end-1] as knot to match number of degrees of freedom with data
k = zeros(length(t) + 3)
k[1:3] .= t[1]
k[(end - 2):end] .= t[end]
k[4:(end - 3)] .= t[2:(end - 2)]
# Create linear system Ac = u, where:
# - A consists of basis function evaulations in t
# - c are 1D control points
n = length(t)
dtype_sc = typeof(t[1] / t[1])
diag = Vector{dtype_sc}(undef, n)
diag_hi = Vector{dtype_sc}(undef, n - 1)
diag_lo = Vector{dtype_sc}(undef, n - 1)
for (i, tᵢ) in enumerate(t)
spline_coefficients!(sc, 2, k, tᵢ)
diag[i] = sc[i]
(i > 1) && (diag_lo[i - 1] = sc[i - 1])
(i < n) && (diag_hi[i] = sc[i + 1])
end
A = Tridiagonal(diag_lo, diag, diag_hi)
return k, A
end
# helper function for data manipulation
function munge_data(u::AbstractVector, t::AbstractVector)
Tu = nonmissingtype(eltype(u))
Tt = nonmissingtype(eltype(t))
if Tu === eltype(u) && Tt === eltype(t)
return u, t
end
@assert length(t) == length(u)
non_missing_mask = map((ui, ti) -> !ismissing(ui) && !ismissing(ti), u, t)
u = convert(AbstractVector{Tu}, u[non_missing_mask])
t = convert(AbstractVector{Tt}, t[non_missing_mask])
return u, t
end
function munge_data(U::AbstractMatrix, t::AbstractVector)
TU = nonmissingtype(eltype(U))
Tt = nonmissingtype(eltype(t))
if TU === eltype(U) && Tt === eltype(t)
return U, t
end
@assert length(t) == size(U, 2)
non_missing_mask = map(
(uis, ti) -> !any(ismissing, uis) && !ismissing(ti), eachcol(U), t)
U = convert(AbstractMatrix{TU}, U[:, non_missing_mask])
t = convert(AbstractVector{Tt}, t[non_missing_mask])
return U, t
end
function munge_data(U::AbstractArray{T, N}, t) where {T, N}
TU = nonmissingtype(eltype(U))
Tt = nonmissingtype(eltype(t))
if TU === eltype(U) && Tt === eltype(t)
return U, t
end
@assert length(t) == size(U, N)
non_missing_mask = map(
(uis, ti) -> !any(ismissing, uis) && !ismissing(ti), eachslice(U; dims = N), t)
U = convert(AbstractArray{TU, N}, copy(selectdim(U, N, non_missing_mask)))
t = convert(AbstractVector{Tt}, t[non_missing_mask])
return U, t
end
seems_linear(assume_linear_t::Bool, _) = assume_linear_t
seems_linear(assume_linear_t::Number, t) = looks_linear(t; threshold = assume_linear_t)
"""
looks_linear(t; threshold = 1e-2)
Determine if the abscissae `t` are regularly distributed, taking the standard deviation of
the difference between the array of abscissae with respect to the straight line linking
its first and last elements, normalized by the range of `t`. If this standard deviation is
below the given `threshold`, the vector looks linear (return true). Internal function -
interface may change.
"""
function looks_linear(t; threshold = 1e-2)
length(t) <= 2 && return true
t_0, t_f = first(t), last(t)
t_span = t_f - t_0
tspan_over_N = t_span * length(t)^(-1)
norm_var = sum(
(t_i - t_0 - i * tspan_over_N)^2 for (i, t_i) in enumerate(t)
) / (length(t) * t_span^2)
norm_var < threshold^2
end
function get_idx(A::AbstractInterpolation, t, iguess::Union{<:Integer, Guesser}; lb = 1,
ub_shift = -1, idx_shift = 0, side = :last)
tvec = A.t
ub = length(tvec) + ub_shift
return if side == :last
clamp(searchsortedlastcorrelated(tvec, t, iguess) + idx_shift, lb, ub)
elseif side == :first
clamp(searchsortedfirstcorrelated(tvec, t, iguess) + idx_shift, lb, ub)
else
error("side must be :first or :last")
end
end
cumulative_integral(::AbstractInterpolation, ::Bool) = nothing
function cumulative_integral(A::AbstractInterpolation{<:Number}, cache_parameters::Bool)
Base.require_one_based_indexing(A.u)
idxs = cache_parameters ? (1:(length(A.t) - 1)) : (1:0)
return cumsum(_integral(A, idx, t1, t2)
for (idx, t1, t2) in zip(idxs, @view(A.t[begin:(end - 1)]), @view(A.t[(begin + 1):end])))
end
function get_parameters(A::LinearInterpolation, idx)
if A.cache_parameters
A.p.slope[idx]
else
linear_interpolation_parameters(A.u, A.t, idx)
end
end
function get_parameters(A::QuadraticInterpolation, idx)
if A.cache_parameters
A.p.α[idx], A.p.β[idx]
else
quadratic_interpolation_parameters(A.u, A.t, idx, A.mode)
end
end
function get_parameters(A::QuadraticSpline, idx)
if A.cache_parameters
A.p.α[idx], A.p.β[idx]
else
quadratic_spline_parameters(A.u, A.t, A.k, A.c, A.sc, idx)
end
end
function get_parameters(A::CubicSpline, idx)
if A.cache_parameters
A.p.c₁[idx], A.p.c₂[idx]
else
cubic_spline_parameters(A.u, A.h, A.z, idx)
end
end
function get_parameters(A::CubicHermiteSpline, idx)
if A.cache_parameters
A.p.c₁[idx], A.p.c₂[idx]
else
cubic_hermite_spline_parameters(A.du, A.u, A.t, idx)
end
end
function get_parameters(A::QuinticHermiteSpline, idx)
if A.cache_parameters
A.p.c₁[idx], A.p.c₂[idx], A.p.c₃[idx]
else
quintic_hermite_spline_parameters(A.ddu, A.du, A.u, A.t, idx)
end
end
function du_PCHIP(u, t)
h = diff(t)
δ = diff(u) ./ h
s = sign.(δ)
# Special handling of the slope at the endpoints, see
# Cleve Moler, Numerical Computing with MATLAB, Chap 3.6 (file pchiptx.m, function pchipend())
function _edge_case(h₁, h₂, δ₁, δ₂)
d = ((2 * h₁ + h₂) * δ₁ - h₁ * δ₂) / (h₁ + h₂)
if sign(d) != sign(δ₁)
zero(eltype(δ))
elseif sign(δ₁) != sign(δ₂) && abs(d) > 3 * abs(δ₁)
3 * δ₁
else
d
end
end
function _du(k)
sₖ₋₁, sₖ = if k == 1
s[1], s[2]
elseif k == lastindex(t)
s[end - 1], s[end]
else
s[k - 1], s[k]
end
if sₖ₋₁ == 0 && sₖ == 0
zero(eltype(δ))
elseif sₖ₋₁ == sₖ
if k == 1
_edge_case(h[1], h[2], δ[1], δ[2])
elseif k == lastindex(t)
_edge_case(h[end], h[end - 1], δ[end], δ[end - 1])
else
w₁ = 2h[k] + h[k - 1]
w₂ = h[k] + 2h[k - 1]
(w₁ + w₂) / (w₁ / δ[k - 1] + w₂ / δ[k])
end
else
if k == 1
_edge_case(h[1], h[2], δ[1], δ[2])
elseif k == lastindex(t)
_edge_case(h[end], h[end - 1], δ[end], δ[end - 1])
else
zero(eltype(δ))
end
end
end
return _du.(eachindex(t))
end
function integrate_cubic_polynomial(t1, t2, offset, a, b, c, d)
t1_rel = t1 - offset
t2_rel = t2 - offset
t_sum = t1_rel + t2_rel
t_sq_sum = t1_rel^2 + t2_rel^2
Δt = t2 - t1
Δt * (a + t_sum * (b / 2 + d * t_sq_sum / 4) + c * (t_sq_sum + t1_rel * t2_rel) / 3)
end
function integrate_quintic_polynomial(t1, t2, offset, a, b, c, d, e, f)
t1_rel = t1 - offset
t2_rel = t2 - offset
t_sum = t1_rel + t2_rel
t_sq_sum = t1_rel^2 + t2_rel^2
t_cb_sum = t1_rel^3 + t2_rel^3
Δt = t2 - t1
cube_diff_factor = t_sq_sum + t1_rel * t2_rel
Δt * (a + t_sum * (b / 2 + d * t_sq_sum / 4) +
cube_diff_factor * (c / 3 + f * t_cb_sum / 6)) +
e * (t2_rel^5 - t1_rel^5) / 5
end
function munge_extrapolation(extrapolation, extrapolation_left, extrapolation_right)
if extrapolation == ExtrapolationType.None
extrapolation_left, extrapolation_right
else
extrapolation, extrapolation
end
end
function transformation_periodic(A, t)
Δt = last(A.t) - first(A.t)
n, t_ = fldmod(t - first(A.t), Δt)
t_ += first(A.t)
(n > 0) && (n -= 1)
t_, n
end
function transformation_reflective(A, t)
Δt = last(A.t) - first(A.t)
n, t_ = fldmod(t - first(A.t), Δt)
t_ = isodd(n) ? last(A.t) - t_ : first(A.t) + t_
(n > 0) && (n -= 1)
t_, n
end
typed_nan(::AbstractArray{T}) where {T <: AbstractFloat} = T(NaN)
typed_nan(::AbstractArray{T}) where {T <: Integer} = zero(T)
# Should be replaceable by LinearAlgebra function soon: https://github.com/JuliaLang/LinearAlgebra.jl/pull/1234
function euclidean(x::AbstractArray, y::AbstractArray)
sqrt(mapreduce((xi, yi) -> abs2(yi - xi), +, x, y))
end
function smooth_arc_length_params_1!(Δu, u, d, j)
uⱼ = view(u, :, j)
uⱼ₊₁ = view(u, :, j + 1)
dⱼ = view(d, :, j)
dⱼ₊₁ = view(d, :, j + 1)
@. Δu = uⱼ₊₁ - uⱼ
d_inner = dot(dⱼ, dⱼ₊₁)
return uⱼ, uⱼ₊₁, dⱼ, dⱼ₊₁, d_inner
end
function smooth_arc_length_params_2(u_int, uⱼ, uⱼ₊₁)
dist₁ = euclidean(u_int, uⱼ)
dist₂ = euclidean(u_int, uⱼ₊₁)
Δt_line_seg = abs(dist₂ - dist₁)
short_side_left = false
δⱼ = if dist₁ < dist₂
short_side_left = true
dist₁
else
dist₂
end
return δⱼ, short_side_left, Δt_line_seg
end