-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_image_intent_classification.py
198 lines (155 loc) · 8.5 KB
/
run_image_intent_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import argparse
import platform
from glob import glob
import torch
import torch.optim as optim
from torch.optim import Adam
import torch.nn.functional as F
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping
class ImageIntentClassification(pl.LightningModule):
def __init__(self,
domain,
image_reader,
num_intents,
learning_rate: float=3e-5,
):
super().__init__()
self.save_hyperparameters()
# prepare image reader
from utils import get_image_reader
image_reader = get_image_reader(self.hparams.image_reader, num_intents)
self.image_reader = image_reader
def forward(self, b_img_tensor, b_labels):
logit_v_intent, last_hidden_state = self.image_reader(b_img_tensor, b_labels)
return logit_v_intent, last_hidden_state
def training_step(self, batch, batch_idx):
b_img_tensor, b_labels = batch
logits, _ = self(b_img_tensor, b_labels)
loss = F.cross_entropy(logits, b_labels)
result = {"loss": loss}
return result
def validation_step(self, batch, batch_idx):
b_img_tensor, b_labels = batch
logits, _ = self(b_img_tensor, b_labels)
loss = F.cross_entropy(logits, b_labels)
preds = torch.argmax(logits, dim=1)
labels = b_labels
result = {"loss": loss, "preds": preds, "labels": labels}
return result
def validation_epoch_end(self, outputs):
preds = torch.cat([x["preds"] for x in outputs])
labels = torch.cat([x["labels"] for x in outputs])
loss = torch.stack([x["loss"] for x in outputs]).mean()
correct_count = torch.sum(labels == preds)
val_acc = correct_count.float() / float(len(labels))
self.log("val_loss", loss, prog_bar=True)
self.log("val_acc", val_acc, prog_bar=True)
return loss
def test_step(self, batch, batch_idx):
b_img_tensor, b_labels = batch
logits, _ = self(b_img_tensor, b_labels)
preds = torch.argmax(logits, dim=1)
labels = b_labels
result = {"preds": preds, "labels": labels}
return result
def test_epoch_end(self, outputs):
preds = torch.cat([x["preds"] for x in outputs])
labels = torch.cat([x["labels"] for x in outputs])
correct_count = torch.sum(labels == preds)
test_acc = correct_count.float() / float(len(labels))
self.log("test_acc", test_acc, prog_bar=True)
return test_acc
def configure_optimizers(self):
param_optimizer = list(self.named_parameters())
optimizer_grouped_parameters = [{"params": [p for n, p in param_optimizer]}]
optimizer = Adam(optimizer_grouped_parameters, lr=self.hparams.learning_rate)
max_grad_norm = 1.0
# scheduler
# scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer,
# 'min',
# factor=0.99,
# verbose=True)
# return optimizer, scheduler
return optimizer
@staticmethod
def add_model_specific_args(parent_parser):
parser = argparse.ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument('--learning_rate', type=float, default=3e-5)
return parser
def main():
pl.seed_everything(42) # set seed
# Argument Setting -------------------------------------------------------------------------------------------------
parser = argparse.ArgumentParser()
# domain ---------------------------------------------------------------------------------------
parser.add_argument("--domain", help="What domain do you want?", default="weather")
# mode specific --------------------------------------------------------------------------------
parser.add_argument("--do_train", action='store_true',
help="Whether to train intent classifier.")
parser.add_argument("--do_test", action='store_true',
help="Whether to evaluate on test set.")
# model specific -------------------------------------------------------------------------------
parser.add_argument("--image_reader", help="cnn, resnet, vgg, others, ...", default="cnn") # cnn fixed for now
# experiment settings --------------------------------------------------------------------------
parser.add_argument("--batch_size", help="batch_size", default=50)
parser.add_argument("--gpu_id", help="gpu device id", default="0", type=int)
# params about generated vector movements ------------------------------------------------------
parser.add_argument("--num_samples", help="number of generated perturbation's samples", type=int, default=50)
# params about converted representation --------------------------------------------------------
parser.add_argument("--base_text_reader", default="bert",
help="when generating vector movement, what text reader was used ?") # fixed to bert in this version
parser.add_argument("--rep_type", default="graph",
help="experiment type : graph, flatted_bar, circular_bar") # fixed to graph in this version
parser.add_argument("--need_edges", action='store_true',
help="experiment type : graph_with_edge, graph_wo_edge")
parser.add_argument("--top_n", help='number of nodes about graph, others',
default=10)
parser = pl.Trainer.add_argparse_args(parser)
parser = ImageIntentClassification.add_model_specific_args(parser)
args = parser.parse_args()
# ------------------------------------------------------------------------------------------------------------------
# Dataset ----------------------------------------------------------------------------------------------------------
from dataset import Image_Intent_Classification_Data_Module
need_edges = args.need_edges
edge_flag = "with_edge" if need_edges else "wo_edge"
data_dir = os.path.join("./", "images", args.domain, args.base_text_reader,
"{}_{}".format(args.rep_type, args.num_samples), "top_{}_{}".format(args.top_n, edge_flag))
dm = Image_Intent_Classification_Data_Module(data_dir, args.batch_size)
dm.prepare_data()
# ------------------------------------------------------------------------------------------------------------------
# Model Checkpoint -------------------------------------------------------------------------------------------------
from pytorch_lightning.callbacks import ModelCheckpoint
image_reader_model_name = '{}'.format(args.image_reader)
model_folder = './model/{}/{}_{}/top_{}_{}/{}'.format(args.domain, args.rep_type, args.num_samples,
args.top_n, edge_flag, image_reader_model_name)
checkpoint_callback = ModelCheckpoint(monitor='val_loss',
dirpath=model_folder,
filename='{epoch:02d}-{val_loss:.2f}')
# ------------------------------------------------------------------------------------------------------------------
# Early Stopping ---------------------------------------------------------------------------------------------------
early_stop_callback = EarlyStopping(
monitor="val_loss",
patience=3,
verbose=True
)
# ------------------------------------------------------------------------------------------------------------------
# Trainer ----------------------------------------------------------------------------------------------------------
trainer = pl.Trainer(
gpus=args.gpu_id if platform.system() != 'Windows' else 1, # <-- for dev. pc
checkpoint_callback=checkpoint_callback,
callbacks=[early_stop_callback]
)
# ------------------------------------------------------------------------------------------------------------------
# Do train !
if args.do_train:
model = ImageIntentClassification(args.domain, args.image_reader, dm.num_intents)
trainer.fit(model, dm)
# Do test and dump !
if args.do_test:
model_files = glob(os.path.join(model_folder, '*.ckpt'))
best_fn = model_files[-1]
model = ImageIntentClassification.load_from_checkpoint(best_fn)
trainer.test(model, test_dataloaders=[dm.test_dataloader()])
if __name__ == '__main__':
main()