-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefine_structure.py
225 lines (210 loc) · 8.09 KB
/
define_structure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
from config_prob import *
from config import *
def setup_domain():
x_dom = x_min, Length, Nx
y_dom = y_min, Height, Ny
# create points
lin_x = np.linspace(x_dom[0], x_dom[1], x_dom[2])
lin_y = np.linspace(y_dom[0], y_dom[1], y_dom[2])
dom = np.zeros((Nx * Ny, 2))
c = 0
for x in np.nditer(lin_x):
tb = y_dom[2] * c
te = tb + y_dom[2]
c += 1
dom[tb:te, 0] = x
dom[tb:te, 1] = lin_y
print(dom.shape)
np.meshgrid(lin_x, lin_y)
fig = plt.figure(figsize=(5, 1))
ax = fig.add_subplot(111)
ax.scatter(dom[:, 0], dom[:, 1], s=0.005, facecolor='blue')
ax.set_xlabel('X', fontsize=3)
ax.set_ylabel('Y', fontsize=3)
ax.tick_params(labelsize=4)
# ------------------------------------ BOUNDARY ----------------------------------------
# Left boundary condition (Dirichlet BC)
bcl_u_pts_idx = np.where(dom[:, 0] == x_min)
bcl_u_pts = dom[bcl_u_pts_idx, :][0]
bcl_u = np.ones(np.shape(bcl_u_pts)) * [known_left_ux, known_left_uy]
# Right boundary condition (Neumann BC)
bcr_t_pts_idx = np.where(dom[:, 0] == Length)
bcr_t_pts = dom[bcr_t_pts_idx, :][0]
bcr_t = np.ones(np.shape(bcr_t_pts)) * [known_right_tx, known_right_ty]
ax.scatter(dom[:, 0], dom[:, 1], s=0.005, facecolor='blue')
ax.scatter(bcl_u_pts[:, 0], bcl_u_pts[:, 1], s=0.5, facecolor='red')
ax.scatter(bcr_t_pts[:, 0], bcr_t_pts[:, 1], s=0.5, facecolor='green')
plt.show()
# exit()
boundary_neumann = {
# condition on the right
"neumann_1": {
"coord": bcr_t_pts,
"known_value": bcr_t,
"penalty": bc_right_penalty
}
# adding more boundary condition here ...
}
boundary_dirichlet = {
# condition on the left
"dirichlet_1": {
"coord": bcl_u_pts,
"known_value": bcl_u,
"penalty": bc_left_penalty
}
# adding more boundary condition here ...
}
return dom, boundary_neumann, boundary_dirichlet
# -----------------------------------------------------------------------------------------------------
# prepare inputs for testing the model
# -----------------------------------------------------------------------------------------------------
def get_datatest(Nx=num_test_x, Ny=num_test_y):
x_dom_test = x_min, Length, Nx
y_dom_test = y_min, Height, Ny
# create points
x_space = np.linspace(x_dom_test[0], x_dom_test[1], x_dom_test[2])
y_space = np.linspace(y_dom_test[0], y_dom_test[1], y_dom_test[2])
xGrid, yGrid = np.meshgrid(x_space, y_space)
data_test = np.concatenate(
(np.array([xGrid.flatten()]).T, np.array([yGrid.flatten()]).T), axis=1)
return x_space, y_space, data_test
# ------------------------------------
# Author: [email protected]
# Initial date: 09.09.2019
# an additional functionality : get interior points without taking boundary points
# ------------------------------------
def setup_domain_v2(interData=False):
Nx_temp, Ny_temp = 2000, 500
x_dom = x_min, Length, Nx_temp
y_dom = y_min, Height, Ny_temp
# create points
lin_x = np.linspace(x_dom[0], x_dom[1], x_dom[2])
lin_y = np.linspace(y_dom[0], y_dom[1], y_dom[2])
dom = np.zeros((Nx_temp * Ny_temp, 2))
c = 0
for x in np.nditer(lin_x):
tb = y_dom[2] * c
te = tb + y_dom[2]
c += 1
dom[tb:te, 0] = x
dom[tb:te, 1] = lin_y
print(dom.shape)
np.meshgrid(lin_x, lin_y)
fig = plt.figure(figsize=(30, 1))
ax = fig.add_subplot(111)
ax.scatter(dom[:, 0], dom[:, 1], s=0.005, facecolor='blue')
ax.set_xlabel('X', fontsize=3)
ax.set_ylabel('Y', fontsize=3)
ax.tick_params(labelsize=4)
# ------------------------------------ BOUNDARY ----------------------------------------
# Left boundary condition (Neumann BC)
bcl_u_pts_idx = np.where(dom[:, 0] == x_min)
bcl_u_pts = dom[bcl_u_pts_idx, :][0]
bcl_u = np.ones(np.shape(bcl_u_pts)) * [known_left_ux, known_left_uy]
# Right boundary condition (Neumann BC)
bcr_t_pts_idx = np.where(dom[:, 0] == Length)
bcr_t_pts = dom[bcr_t_pts_idx, :][0]
bcr_t = np.ones(np.shape(bcr_t_pts)) * [known_right_tx, known_right_ty]
# Top boundary condition (Neumann BC)
bct_t_pts_idx = np.where(dom[:, 1] == Height)
bct_t_pts = dom[bct_t_pts_idx, :][0]
bct_t = np.ones(np.shape(bct_t_pts)) * [known_right_tx, known_right_ty]
# Bottom boundary condition (Neumann BC)
bcb_t_pts_idx = np.where(dom[:, 1] == y_min)
bcb_t_pts = dom[bcb_t_pts_idx, :][0]
bcb_t = np.ones(np.shape(bcb_t_pts)) * [known_right_tx, known_right_ty]
ax.scatter(dom[:, 0], dom[:, 1], s=0.005, facecolor='blue')
ax.scatter(bcl_u_pts[:, 0], bcl_u_pts[:, 1], s=0.5, facecolor='red')
ax.scatter(bcr_t_pts[:, 0], bcr_t_pts[:, 1], s=0.5, facecolor='green')
ax.scatter(bct_t_pts[:, 0], bct_t_pts[:, 1], s=0.5, facecolor='grey')
ax.scatter(bcb_t_pts[:, 0], bcb_t_pts[:, 1], s=0.5, facecolor='black')
plt.show()
if interData == 1:
x_dom = x_min, Length, Nx
y_dom = y_min, Height, Ny
# create points
lin_x = np.linspace(x_dom[0], x_dom[1], x_dom[2])
lin_y = np.linspace(y_dom[0], y_dom[1], y_dom[2])
dom = np.zeros((Nx * Ny, 2))
c = 0
for x in np.nditer(lin_x):
tb = y_dom[2] * c
te = tb + y_dom[2]
c += 1
dom[tb:te, 0] = x
dom[tb:te, 1] = lin_y
id1 = np.where((dom[:, 1] > y_min))
dom = dom[id1, :][0]
id2 = np.where((dom[:, 1] < Height))
dom = dom[id2, :][0]
id3 = np.where((dom[:, 0] > x_min))
dom = dom[id3, :][0]
id4 = np.where((dom[:, 0] < Length))
dom = dom[id4, :][0]
fig = plt.figure(figsize=(30, 1))
ax = fig.add_subplot(111)
ax.scatter(dom[:, 0], dom[:, 1], s=0.005, facecolor='blue')
plt.show()
# exit()
boundary_neumann = {
# condition on the right
"neumann_1": {
"coord": bcr_t_pts,
"known_value": bcr_t,
"penalty": bc_right_penalty
},
# condition on the left
"neumann_2": {
"coord": bcl_u_pts,
"known_value": bcl_u,
"penalty": bc_left_penalty
},
# condition on the top
"neumann_3": {
"coord": bct_t_pts,
"known_value": bct_t,
"penalty": bc_top_penalty
},
# condition on the bottom
"neumann_4": {
"coord": bcb_t_pts,
"known_value": bcb_t,
"penalty": bc_bottom_penalty
}
# adding more boundary condition here ...
}
boundary_dirichlet = {
# condition on the left
# adding more boundary condition here ...
}
return dom, boundary_neumann, boundary_dirichlet
def get_datatest_v2(Nx=num_test_x, Ny=num_test_y, interData=False):
x_dom_test = x_min, Length, Nx
y_dom_test = y_min, Height, Ny
# create points
x_space = np.linspace(x_dom_test[0], x_dom_test[1], x_dom_test[2])
y_space = np.linspace(y_dom_test[0], y_dom_test[1], y_dom_test[2])
xGrid, yGrid = np.meshgrid(x_space, y_space)
data_test = np.concatenate(
(np.array([xGrid.flatten()]).T, np.array([yGrid.flatten()]).T), axis=1)
if interData == 1:
id1 = np.where((data_test[:, 1] > y_min))
data_test = data_test[id1, :][0]
id2 = np.where((data_test[:, 1] < Height))
data_test = data_test[id2, :][0]
id3 = np.where((data_test[:, 0] > x_min))
data_test = data_test[id3, :][0]
id4 = np.where((data_test[:, 0] < Length))
data_test = data_test[id4, :][0]
fig = plt.figure(figsize=(30, 1))
ax = fig.add_subplot(111)
ax.scatter(data_test[:, 0], data_test[:, 1], s=0.005, facecolor='blue')
plt.show()
return x_space[1:-1], y_space[1:-1], data_test
fig = plt.figure(figsize=(30, 1))
ax = fig.add_subplot(111)
ax.scatter(data_test[:, 0], data_test[:, 1], s=0.005, facecolor='blue')
plt.show()
return x_space, y_space, data_test
if __name__ == '__main__':
setup_domain()