-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevo_ai.py
249 lines (200 loc) · 10.3 KB
/
evo_ai.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
from __future__ import print_function
import multiprocessing
from re import search
import sys
import os.path
sys.path.insert(0, '')
import os
import neat
from neat.graphs import feed_forward_layers
from neat.six_util import itervalues
import threading
from snake import *
import concurrent.futures
from multiprocessing import Pool
from multiprocessing import cpu_count, get_context, Pool
from random import randint
from C_API import *
NR_C_THREADS = 3
NR_GAMES_PLAYED = 100
MIN_BOARD_SIZE = 15
MAX_BOARD_SIZE = 25
class NetworkScene(Scene):
def __init__(self,**kwargs):
Scene.__init__(self, **kwargs)
def construct(self):
random.seed(a=None, version=2)
load_search_type = "genetic_search"
load_search = 0
load_save = None
nr_threads = None
e = AI_Evolution(load_search_type, load_search, load_save, parallel_evaluation=False, nr_threads = nr_threads, manim_scene = self)
e.init_population()
e.runnn()
class AI_Evolution():
def __init__(self,search_type="training",load_search_index=None, load_save_index = None, parallel_evaluation = False, nr_threads = 1, manim_scene = None, **kwargs):
self.top_twenty_genomes = [0]*20
self.set_config_path()
self.generation = 0
self.parallel_evaluation = parallel_evaluation
self.nr_threads = nr_threads
self.fitness_history = []
self.search_type = search_type
self.load_save_index = load_save_index
self.load_search_index = load_search_index
self.load_save_file = None
self.set_checpoint_config()
self.manim_scene = manim_scene
self.C_API = CAPI()
#self.init_population()
def init_population(self):
if self.load_save_file is None:
self.p = neat.Population(self.config)
else:
self.p = neat.Checkpointer.restore_checkpoint(self.load_save_file)
self.p.add_reporter(neat.StdOutReporter(True))
stats = neat.StatisticsReporter()
self.p.add_reporter(stats)
self.p.add_reporter(neat.Checkpointer(30, filename_prefix='%s\\save-'%self.save_dir))
def set_config_path(self):
self.local_dir = os.path.dirname(__file__)
self.config_path = os.path.join(self.local_dir, 'config-feedforward')
config_file = self.config_path
self.config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,
neat.DefaultSpeciesSet, neat.DefaultStagnation,
config_file)
def set_config(self, confg):
self.custom_config = confg
self.config.genome_config.bias_mutate_power = confg["bias_mutate_power"]
self.config.genome_config.bias_mutate_rate = confg["bias_mutate_rate"]
self.config.genome_config.node_add_prob = confg["node_add_prob"]
self.config.genome_config.node_delete_prob = confg["node_delete_prob"]
self.config.genome_config.weight_mutate_power = confg["weight_mutate_power"]
self.config.genome_config.weight_mutate_rate = confg["weight_mutate_rate"]
self.config.genome_config.elitism = confg["elitism"]
self.config.genome_config.survival_threshold = confg["survival_threshold"]
# self.config.genome_config.activation_mutate_rate = confg["activation_mutate_rate"]
self.config.genome_config.activation_default = confg["activation_default"]
# self.config.genome_config.bias_init_stdev = confg["bias_init_stdev"]
# self.config.genome_config.weight_init_stdev = confg["weight_init_stdev"]
def set_checpoint_config(self):
if self.load_save_index is not None and self.load_search_index is not None:
self.save_dir = '%s\\checkpoints\\%s\\search-%d'%(self.local_dir, self.search_type, self.load_search_index)
self.load_save_file = '%s\\save-%d'%(self.save_dir, self.load_save_index)
elif self.load_search_index is not None:
self.save_dir = '%s\\checkpoints\\%s\\search-%d'%(self.local_dir, self.search_type, self.load_search_index)
max_index = max([int(x.split("save-")[1]) for x in os.listdir(self.save_dir)])
self.load_save_file = '%s\\save-%d'%(self.save_dir, max_index)
else:
self.save_dir = self.get_new_save_folder()
def get_new_save_folder(self):
existing_indexes = []
save_dir = "%s\\checkpoints\\%s"%(self.local_dir,self.search_type)
if not os.path.isdir(save_dir):
os.mkdir(save_dir)
for file in os.listdir(save_dir):
if "search-" in file:
index = int(file.split("search-")[1])
existing_indexes.append(index)
if len(existing_indexes)==0:
index = 0
else:
index = max(existing_indexes)+1
self.load_search_index = index
new_folder = "%s\\checkpoints\\%s\\search-%d"%(self.local_dir, self.search_type, index)
os.mkdir(new_folder)
return new_folder
def delete_save_folder(self):
pass
def eval_genomes_c(self, genomes, config):
max_genome_fitness = None
max_net = None
gen_c = self.C_API.c_create_c_generation(len(genomes), self.generation)
for _, genome in genomes:
genome.fitness = 0
net_c = C_FeedForwardNetwork.create_c_net(genome, config, self.C_API, False)
self.C_API.c_add_c_net(gen_c, net_c.neat_nn)
c_res_ptr = self.C_API.c_create_array(len(genomes))
self.C_API.c_play_c_generation(gen_c, c_res_ptr, len(genomes), MIN_BOARD_SIZE, MAX_BOARD_SIZE, NR_GAMES_PLAYED, NR_C_THREADS)
self.C_API.c_clean_gen_memory(gen_c)
i=0
for genome in genomes:
genome[1].fitness = c_res_ptr[i]
i+=1
self.C_API.c_clean_array(c_res_ptr)
best_genome = None
for genome in genomes:
fitness = genome[1].fitness
if (max_genome_fitness == None) or (fitness >= max_genome_fitness):
max_genome_fitness = fitness
best_genome = genome[1]
m=min(self.top_twenty_genomes)
if(fitness > m):
self.top_twenty_genomes.remove(m)
self.top_twenty_genomes.append(fitness)
######################## render best net in C console.. api is unfriendly for this :(
#can create api to play a single game, without having c_generation. just call play on net
# gen_c = c_create_c_generation(self.generation, 1)
# net_c = c_net.C_FeedForwardNetwork.create_c_net(best_genome, config, True)
# c_add_c_net(gen_c, net_c.neat_nn)
# c_res_ptr = c_create_array(1)
# c_play_c_generation(gen_c, c_res_ptr, 1, BOARD_WIDTH, BOARD_HEIGHT, 5, 1)
# c_clean_memory(gen_c)
############# render best net in python
# print("BEST GENOME FITNESS IS: ", best_genome.fitness)
# best_net = neat.nn.FeedForwardNetwork.create(best_genome, config)
# export_structure(best_net, best_genome, config)
# game = Game(self.manim_scene, best_net, self.generation, True, None, boardWidth = 15, boardHeight = 15, saveHistory=False)
# new_fit = game.play()
###########################
self.fitness_history.append(max_genome_fitness)
self.generation+=1
pruning_no_elit_experiment = { 40 : 1.5, 60: 4, 80: 8, 90: 10, 100: 15, 120: 25, 130: 35 }
#with this aggressive pruning, we eliminate the chance for latent configurations which may emerge later, with a better end game evolution
#but we explore more. do soft, check how graphs look after say 10-20 generations and then maybe add hard pruning
pruning_aggressive = { 40 : 2, 50: 4, 60: 8, 70: 10, 90: 15, 110: 20, 120: 30, 130: 35 }
# ~10% loss on good genomes
pruning_soft = { 70: 4, 80: 6, 90: 9, 110: 20, 120: 30, 130: 35 }
# current_gen_threshold = 0
# for gen_nr in sorted(pruning_aggressive.keys()):#sort to make sure on all py versions
# if gen_nr > self.generation:
# break
# current_gen_threshold = gen_nr
# if current_gen_threshold > 0 and max_genome_fitness < pruning_aggressive[current_gen_threshold]:
# for genome in genomes:
# genome[1].fitness = -1 # will cause break in population.run() overwritten library
def runnn(self, generations = 30000):
winner = self.p.run(self.eval_genomes_c, generations)
return [sum(self.top_twenty_genomes)/len(self.top_twenty_genomes),
self.fitness_history,
self.top_twenty_genomes,
self.custom_config,
"search_index: %d"%self.load_search_index,
len(self.fitness_history)]
def run_step(self):
self.p.run_step(self.eval_genomes)
def export_structure(net, genome, config):
# changing structure of the net so that we can draw it easier. could call this in render, but we need genome and config too
connections = [cg.key for cg in itervalues(genome.connections) if cg.enabled]
net.layers = [config.genome_config.input_keys] + [sorted(list(x)) for x in feed_forward_layers(config.genome_config.input_keys, config.genome_config.output_keys, connections) ]
for l in range(0,len(net.layers)-1):
to_remove_nodes = []
for nod in net.layers[l]:
if nod in net.output_nodes:
to_remove_nodes.append(nod)
for nod in to_remove_nodes:
net.layers[l].remove(nod)
net.layers[-1].append(nod)
net.layers[-1] = config.genome_config.output_keys.copy()
if __name__ == '__main__':
#random.seed(a=None, version=2)
load_search_type = "genetic_search"
load_search = 0
load_save = None
nr_threads = None
e = AI_Evolution(load_search_type, load_search, load_save, parallel_evaluation=False, nr_threads = nr_threads)
# e.p.config.pop_size = 200
# e.set_config({'bias_mutate_power': 0.0, 'bias_mutate_rate': 0.739276, 'node_add_prob': 0.446649, 'node_delete_prob': 0.665184, 'weight_mutate_power': 0.656472, 'weight_mutate_rate': 0.734493})
e.init_population() #call this here in order to have custom config. or can add config as optional param in constructor which will call set_config if set
e.runnn()
#TODO run python training, then load it in c and see if you get same results (or reverse)