-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDevelopment period.py
288 lines (229 loc) · 9.13 KB
/
Development period.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import json
import os
from collections import Counter
from datetime import datetime
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import linregress
import numpy as np
folder_mono = "E://Json files (Mono)/DB branching"
folder_multi = "E://Json files (Multi)/DB branching"
count = 0
dev_period = []
a_week = 0
a_month = 0
three_month = 0
six_month = 0
nine_month = 0
a_year = 0
two_years = 0
more_than_2_years = 0
more_50 = 0
data = pd.DataFrame(
columns=['Development period', 'Team size'])
dict_list = []
languages = []
dict_list_mono = []
dict_list_multi = []
""" ****************************** Mono Repository ***************************************"""
# for each_file in os.listdir(folder_mono):
# count += 1
# print(len(os.listdir(folder_mono)) - count)
# if '.json' in each_file:
# with open(folder_mono + '/' + each_file, 'r', encoding="utf8") as file:
# file_content = json.load(file)
#
# start = datetime.fromisoformat(file_content['created_at'][:-1])
# end = datetime.fromisoformat(file_content['last_update'][:-1])
#
# delta = end - start
# dev_period.append(delta.days)
#
# if delta.days < 7:
# a_week += 1
# elif 7 < delta.days < 31:
# a_month += 1
# elif 30 < delta.days < 90:
# three_month += 1
# elif 90 < delta.days < 120:
# six_month += 1
# elif 120 < delta.days < 180:
# nine_month += 1
# elif 180 < delta.days < 365:
# a_year += 1
# elif 365 < delta.days < 730:
# two_years += 1
# elif delta.days > 730:
# more_than_2_years += 1
""" ****************************** Multi Repository ***************************************"""
# for each_file in os.listdir(folder_multi):
# count += 1
# print(len(os.listdir(folder_multi)) - count)
# if '.json' in each_file:
# with open(folder_multi + '/' + each_file, 'r', encoding="utf8") as file:
# file_content = json.load(file)
#
# start1 = datetime.fromisoformat(file_content['Front Repositories']['created_at'][:-1])
# start2 = datetime.fromisoformat(file_content['Back Repositories']['created_at'][:-1])
#
# end1 = datetime.fromisoformat(file_content['Front Repositories']['last_update'][:-1])
# end2 = datetime.fromisoformat(file_content['Back Repositories']['last_update'][:-1])
#
# if start1 < start2:
# start = start1
# else:
# start = start2
#
# if end1 > end2:
# end = end1
# else:
# end = end2
#
# delta = end - start
# dev_period.append(delta.days)
#
# if delta.days < 7:
# a_week += 1
# elif 7 < delta.days < 31:
# a_month += 1
# elif 30 < delta.days < 90:
# three_month += 1
# elif 90 < delta.days < 120:
# six_month += 1
# elif 120 < delta.days < 180:
# nine_month += 1
# elif 180 < delta.days < 365:
# a_year += 1
# elif 365 < delta.days < 730:
# two_years += 1
# elif delta.days > 730:
# more_than_2_years += 1
""" ****************************** Mono Repository (Deep analyses) ***************************************"""
for each_file in os.listdir(folder_mono):
count += 1
print(len(os.listdir(folder_mono)) - count)
if '.json' in each_file:
with open(folder_mono + '/' + each_file, 'r', encoding="utf8") as file:
file_content = json.load(file)
start = datetime.fromisoformat(file_content['created_at'][:-1])
end = datetime.fromisoformat(file_content['last_update'][:-1])
delta = end - start
contributors = []
for each_contributor in file_content['contributors']:
contributors.append(each_contributor['contributor_name'])
if 2 < len(contributors) < 50 and delta.days < 2500:
dict1 = {'Development period': delta.days, 'Team size': len(contributors)}
dict_list.append(dict1)
dict_list_mono.append(dict1)
""" ****************************** Multi Repository (Deep analyses) ***************************************"""
count = 0
for each_file in os.listdir(folder_multi):
count += 1
print(len(os.listdir(folder_multi)) - count)
if '.json' in each_file:
with open(folder_multi + '/' + each_file, 'r', encoding="utf8") as file:
file_content = json.load(file)
contributors = []
start1 = datetime.fromisoformat(file_content['Front Repositories']['created_at'][:-1])
start2 = datetime.fromisoformat(file_content['Back Repositories']['created_at'][:-1])
end1 = datetime.fromisoformat(file_content['Front Repositories']['last_update'][:-1])
end2 = datetime.fromisoformat(file_content['Back Repositories']['last_update'][:-1])
if start1 < start2:
start = start1
else:
start = start2
if end1 > end2:
end = end1
else:
end = end2
delta = end - start
for each_contributor in file_content['Front Repositories']['contributors']:
contributors.append(each_contributor['contributor_name'])
for each_contributor in file_content['Back Repositories']['contributors']:
contributors.append(each_contributor['contributor_name'])
contributors = list(dict.fromkeys(contributors))
if 2 < len(contributors) < 50 and delta.days < 2500:
dict1 = {'Development period': delta.days, 'Team size': len(contributors)}
dict_list.append(dict1)
dict_list_multi.append(dict1)
""" ******************************************** Simple chart **************************************"""
# df = pd.DataFrame.from_records(dict_list)
# print(df.head(10))
#
# sorted_df = df.sort_values('Development period')
# print(sorted_df.head(10))
#
# correlation = sorted_df['Team size'].corr(sorted_df['Development period'])
# print(f"Correlation between columns Development period and Team size: {correlation}")
#
# # Create a line chart
# plt.scatter(sorted_df['Development period'], sorted_df['Team size'])
#
# # Set the chart title and labels
# plt.xlabel('Development period')
# plt.ylabel('Team size')
#
# # Display the chart
# plt.show()
# print(Counter(dev_period))
#
# print(a_week)
# print(a_month)
# print(three_month)
# print(six_month)
# print(nine_month)
# print(a_year)
# print(two_years)
# print(more_than_2_years)
""" ******************************************** Double chart ***************************************"""
# df_mono = pd.DataFrame.from_records(dict_list_mono)
# df_multi = pd.DataFrame.from_records(dict_list_multi)
#
# sorted_df_mono = df_mono.sort_values('Development period')
# sorted_df_multi = df_multi.sort_values('Development period')
#
# # Create the scatter plot
# plt.scatter(sorted_df_mono['Development period'], sorted_df_mono['Team size'], label='Mono repository projects', s=10)
# plt.scatter(sorted_df_multi['Development period'], sorted_df_multi['Team size'], label='Multi repository projects', s=10)
#
# # Set labels and title
# plt.xlabel('Development period')
# plt.ylabel('Team size')
# # plt.title('Scatter Plot of Two')
#
# # Add legend
# plt.legend()
#
# # Show the plot
# plt.show()
""" **************************************** Double Scatter plot (Linear regression) ******************************************** """
df_mono = pd.DataFrame.from_records(dict_list_mono)
df_multi = pd.DataFrame.from_records(dict_list_multi)
sorted_df_mono = df_mono.sort_values('Development period')
sorted_df_multi = df_multi.sort_values('Development period')
# Scatter plot data for sorted_df_mono
x_mono = sorted_df_mono['Development period']
y_mono = sorted_df_mono['Team size']
# Scatter plot data for sorted_df_multi
x_multi = sorted_df_multi['Development period']
y_multi = sorted_df_multi['Team size']
# Perform linear regression for sorted_df_mono
slope_mono, intercept_mono, r_value_mono, p_value_mono, std_err_mono = linregress(x_mono, y_mono)
line_mono = slope_mono * np.array(x_mono) + intercept_mono
# Perform linear regression for sorted_df_multi
slope_multi, intercept_multi, r_value_multi, p_value_multi, std_err_multi = linregress(x_multi, y_multi)
line_multi = slope_multi * np.array(x_multi) + intercept_multi
# Create the scatter plot
plt.scatter(x_mono, y_mono, label='Mono repository projects', s=10)
plt.scatter(x_multi, y_multi, label='Multi repository projects', s=10)
# Plot linear regression lines
plt.plot(x_mono, line_mono, color='green', label='Linear regression (Mono)')
plt.plot(x_multi, line_multi, color='red', label='Linear regression (Multi)')
# Set labels and title
plt.xlabel('Development period')
plt.ylabel('Team size')
plt.title('Scatter Plot with Linear Regression')
# Add legend
plt.legend()
# Show the plot
plt.show()