Skip to content

Commit cef087b

Browse files
committed
N-Queens
1 parent f8619c8 commit cef087b

File tree

2 files changed

+53
-0
lines changed

2 files changed

+53
-0
lines changed

Backtracking/51-N-Queens.py

+52
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,52 @@
1+
'''Leetcode- https://leetcode.com/problems/n-queens/ '''
2+
'''
3+
The n-queens puzzle is the problem of placing n queens on an n x n chessboard such that no two queens attack each other.
4+
5+
Given an integer n, return all distinct solutions to the n-queens puzzle. You may return the answer in any order.
6+
7+
Each solution contains a distinct board configuration of the n-queens' placement, where 'Q' and '.' both indicate a queen and an empty space, respectively.
8+
9+
Example 1:
10+
11+
Input: n = 4
12+
Output: [[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
13+
'''
14+
15+
16+
def solveNQueens(n):
17+
18+
cols = set()
19+
pos = set()
20+
neg = set()
21+
22+
res = []
23+
board = [["."] * n for i in range(n)]
24+
25+
def backtrack(r):
26+
if r == n:
27+
copy = ["".join(row) for row in board]
28+
res.append(copy)
29+
return
30+
31+
for c in range(n):
32+
if c in cols or (r + c) in pos or (r - c) in neg:
33+
continue
34+
35+
cols.add(c)
36+
pos.add(r+c)
37+
neg.add(r-c)
38+
board[r][c] = "Q"
39+
40+
backtrack(r+1)
41+
42+
cols.remove(c)
43+
pos.remove(r+c)
44+
neg.remove(r-c)
45+
board[r][c] = "."
46+
47+
backtrack(0)
48+
49+
return res
50+
51+
#T:O(n!)
52+
#S:O(N^2)

README.md

+1
Original file line numberDiff line numberDiff line change
@@ -20,5 +20,6 @@ Check the notes for the explaination - [Notes](https://stingy-shallot-4ea.notion
2020
- [x] [Palindrome Partitioning](Backtracking/131-Palindrome-Partitioning.py)
2121
- [x] [Letter Combinations of a Phone Number](Backtracking/17-Letter-Combinations-of-a-Phone-Number.py)
2222
- [x] [Generalized Abbreviation](Backtracking/320-Generalized-Abbreviation.py)
23+
- [x] [N-Queens](Backtracking/51-N-Queens.py)
2324

2425

0 commit comments

Comments
 (0)