-
Notifications
You must be signed in to change notification settings - Fork 0
/
Linear Regression.py
62 lines (37 loc) · 1.4 KB
/
Linear Regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import quandl
import numpy as np
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import pickle
import os
df = quandl.get('WIKI/GOOGL')
df = df[['Adj. Open', 'Adj. High', 'Adj. Low', 'Adj. Close', 'Adj. Volume']]
df['HL_Percent'] = ((df['Adj. High'] - df['Adj. Close']) / df['Adj. Close']) * 100
df['Percent_Change'] = ((df['Adj. Close'] - df['Adj. Open']) / df['Adj. Open']) * 100
df = df[['Adj. Close', 'HL_Percent', 'Percent_Change', 'Adj. Volume']]
forecast_col = 'Adj. Close'
df.fillna(-99999, inplace=True)
future_days = 10
df['label'] = df[forecast_col].shift(-future_days)
X = np.array(df.drop(['label'], 1))
X = preprocessing.scale(X)
predict_X = X[-future_days:]
X = X[:-future_days]
df.dropna(inplace=True)
y = np.array(df['label'])
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
pickle_file_name = 'linear_regression_sklearn.pickle'
if os.path.isfile('./' + pickle_file_name):
pickle_file = open(pickle_file_name, 'rb')
clf = pickle.load(pickle_file)
else:
clf = LinearRegression(n_jobs=-1)
clf.fit(X_train, y_train)
with open(pickle_file_name, 'wb') as f:
pickle.dump(clf, f)
accuracy = clf.score(X_test, y_test)
print('Accuracy on test data:', accuracy)
predictions = clf.predict(predict_X)
print('Predictions for next 10 days: ')
print(predictions)