-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmuextremalPlots2.nb
512 lines (495 loc) · 21.7 KB
/
muextremalPlots2.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.2' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 22048, 502]
NotebookOptionsPosition[ 21064, 476]
NotebookOutlinePosition[ 21424, 492]
CellTagsIndexPosition[ 21381, 489]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"uh_", ",", "z_", ",", "\[Theta]_"}], "]"}], ":=",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Sqrt", "[",
RowBox[{"2",
RowBox[{"(",
RowBox[{"2", "-", "\[Theta]"}], ")"}],
RowBox[{"(",
RowBox[{"2", "+", "z", "-", "\[Theta]"}], ")"}]}], "]"}], "/",
"uh"}], "/",
RowBox[{"(",
RowBox[{"z", "-", "\[Theta]"}], ")"}]}],
RowBox[{"Exp", "[",
RowBox[{"-",
RowBox[{"Sqrt", "[",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"z", "-", "1", "+",
RowBox[{"\[Theta]", "/", "2"}]}], ")"}], "/", "2"}], "/",
RowBox[{"(",
RowBox[{"2", "-", "\[Theta]"}], ")"}]}], "]"}]}], "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[", "\"\<1<=z<2 case\>\"", "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"0.1", ",", "1.75", ",", "\[Theta]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "1.5"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Mu]ext"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[", "\"\<z>2 case\>\"", "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"0.1", ",", "3", ",", "\[Theta]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "0", ",", "2"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\[Theta]", ",", "\[Mu]ext"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], "]"}], ";"}]}], "Input",\
CellChangeTimes->{{3.768914609181758*^9,
3.768914621755783*^9}},ExpressionUUID->"75456f59-f966-423f-a8b5-\
ae2d3d8c25ec"],
Cell[CellGroupData[{
Cell[BoxData["\<\"1<=z<2 case\"\>"], "Print",
CellChangeTimes->{
3.768914635985751*^9},ExpressionUUID->"fb06d8ad-baf6-4c0c-8084-\
7d425670967e"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13k4lFsYAHAlW0RdEonbZoiPmbFkKd6TFopQt2SJStEuqSRLskaiKCK7
kkQUIUQoWy6Vq1AUY74xxpKlmZHEPfPXPL/nzHOW97zfOe9Z43pur9tCISEh
tEBISPA7bemRanvusKn5iTcbBl8QKPyYmvp7iimoWIg7FWK3jjFPRVOsgZ3N
ibuMPV689eYZigv8mYiQF8cOlp9adZDiAXp+umc3FBOopXEX+Q/lKsi9u2p/
9jmBzmV4N9tQYkBPaVJ95imBam/erNxNSYNXwafr1HIIJCLqJTZ0qhDOFjnY
lycSaGfgkbASuzJwFTuytjiKQGVX3HqzP1ZDi7Kk18FAAnU7nqZ6XX4D5Qxp
9mUvAi0zj3avRY3w6U9tJtudQEs73IoMnFrgo6EHbciRQOtWn8kNc30PsyWj
xoU2BDLsPduyJe4j3Cv9rli+Hc9n5ppVR/J/4K7HLQ3cRKATr5uaqoM/QaKM
emaoDoGSjuasXH64Ex71+7O2ahBIy76fN+fWDQaxjd9+riHQtymbNrTzK5g1
rCA/ryTQ5HdFmvz+XpA6pMH8Ikug23m+xw8c+A7/SNddb1xCIIqM+G6f5D4Y
LEww/iJOoPzxoEcR6X2wbKY9oAFbp/33fOKDPng5tOd9ETbE/ygqz+uDlRGU
1Chse6VOhd+VfbC9OY5pgn1D7REzoKcPSIcq1WwxAo3BNv8Q5X6oDB2MuipK
oItrqj/dWdMPrp31aWewZxYaUh+q9sOeh4drHLHFGjQZb7Xw/w9/pRpgr7aS
tRA17YdjJf/UjIsQaK89QzbSpR+8fJqeuGOXel7Li0nvB/92Tq3zIjx+5fgL
hwf9sMvIo94a+5Doker1Of1gF2j4GbDFU7Z8rCjohzLdwr/XYjs2LuSzqvpB
3Cl076AwgeaUw8ygpx+cQ1qML2Jvb4ns/qHAAKtDUtqJCwm0Un6GUbGKAasv
rOi/gT12+NRI2GoGLH/QlRmAncDbNa+kzgC3nCiro9jsNVKqFgYMYL9TMKdi
3/SJ8czYz4CtUr/+a15AoA7VO2J74hjw0PCCuwT2TjUFw7MJDKg3zu6bFSJQ
tXrqicj7DIhe6Hd6HDtXM6e5NosBeqqqxZ3YV+mVUTrFDAiQ+L04B1vdZEBG
roMBKP1HnwW2/z5dhc7lA+C96KZF0rwmmtj/0mJKcQDqH5f1xWC7HzC5IqMy
AESR6o1Q7D2O5l/MKQMwcbp3qSc25bBTysuNA/Bzt+WYOfaH0yGr7x8YgJK8
nNGZOU20PuQ/deekATiwc/U6D2z7ImG6e+oA3Lv9r6w79s1+XaNzmQNgj6qX
u2Bz4e7OoNwBqDgfvtsau2F236ns8gHobzeOpmKf9P6cN9qNx4+o3cP9o4nS
skVf8HoHIOOErsMYdnvHxlfz/bh9o6nXILax7r1/l3EGYPsX3e5ubKnxA6P6
MwOQcELP7zV2wclu7asrmTCRuFkuBpuRKGFwXYUJB/NeG0Rgr2gygttrmfCg
gX42GPsa5b5NlgYTPs1ML7mMvWfA0bPBmAnWqk/VjmCH/xXl896UCb4GZl+d
sCu2VF7rMmNCuMtkhh322gylWM4uJtxdX+Fqhf3zYM9zaScmUCpDagyx1W9K
Vaw4hPuPihbRwz5Yublu9VEm2Gp+P0jFrldMbdc5jed73NOMgp3w2XnKzo8J
184MDclhG9l+10tPZoKdt24hd1YTvWKLjLqmM6HMxMx+Ets0iMimPGBCrHHk
sh/Y24quLC94woSOl+0v2NjWcnK8V+VMeHO1q7oH+0O+ccG1KiaQSVqcbux/
th9x31bLhIzhPtVObHvvgs8tTUzQcb7U9hHbtcui7EsnE2jKPcxGbKbnuXNp
X5mwIjj3Tj32cYkENdfvTJjP+733DfYZ44F7QywmxNdsEX6NPdYuYfuUw4Ti
k/DzFfb50zTx82NMaN33iVuB7Z0S4DPNZUJFeK9GGfa03kPaq19MWJvm4FKC
7df6jh34hwlPE4OyirGvza1wEBMhwWuCffAZtvA902Ut4iSE6Oj8V4AdTnVr
jpEi4eyqTY5PsaMOFxnJy5HQ1px+/wm29K+uie4VJEQEi+zLxb4dO5+bqkRC
bpupymNsWQ2K65G/SUgrsP31CDuhzmql6joSNqgiMhtbwelCO5tCwmGDvxgP
sZOnkm7ka5BQNNLy4wF2xvrBGV0dEuROLTbNwl5btaSYr09ChVXS1Uzs7P16
pyuNSMgWW/8hA1t9zHFdoAkJYgWFOgI/CQ/6araFhIv7tzxKxyb+fnxHdDsJ
H5Z/0xC4sKzN8p0FXp9EVE0ato4tVzjGioTfVruPC/yCrfRqjy0J0fMb/hZ4
Y5DZxeX7SLhnRmGnYpcrniS6D5AwbWReJ/DmolvMFCcSeJJxTwWu3lWacvgQ
CRv7JZ8IjAZ69q0/SkIXs7xM4Dd+wkvY7iTYbcv8LPAOOY36vFM4XtRGUcF4
Tfm2Aec8SJDsplkIvGv7ZX1dLxLOXRq4L3Brb+oo7xIebxNzTmBb77fZFVdI
OOBueFGwvnbpYeerASQU0sgZgffnLJM3CyLhVvePOEF8usCwTSSMBKEs582C
eDp2uYQ3R5AQ3qrLF7jXM8w0+iYJ8lmX3wjiL1RTo5x1m4TQRY9eCPZnvczs
bOldEl4uc6kQ7J+5i0FPSyIJyjcfdQj299RTr8q+FBJijcKFc7BjZp/e52aQ
4DwgbC7Ij+eWQ1cWZ5NgbUdJF+TP9NAhQ72nJEj1XIzOx1YySl6x8zkJDUkF
6wT5aBrxmedcQoK/9+O2Quwwyu6S61UkGEtMuwry+a+jxjpfW0mYq24MqxTs
V9GlZeMfSXC6/qauCtthwfPxRZ9JEHlTKlcjyK90tULtbyT0BKXz32Jr9cgR
wWM4/91MK94L4qlpK3lvkgQrfnl6O/ZF3yhOHo8ECX23+5+wKxQW5n6aw+tZ
fvz9V2yL/T9UN8iwYH/vd8Mh7NMPNURMZVmguCGjaUSw/ik35t4VLFA2az47
jv0ptifL/28W3C3ymuYLzoe25r8/UFngs3lURlxwXiqLzDN1WZB0vdpSCjv3
DPr2y4AFxwt0Updijy8uS1mHWBDXuzpIETvA/KHiZVsWvHvF2E1gZyR8n47a
xwKP+kQDOvZbcmVXhj0LWnMJg43Yi0NjE94dZsGtNkkfhJ1Yc1VW5TwL9L75
LBCcx0VGDkvqY/H8bmUbhWGvn7yRcjeeBaHa2opR2PFPXmkeS2KBTSxVKhbb
R2n1LuFMFpzPKyFSsU3/sMK3PGPB+lWB9qXYLTUXharbWDBld/vwCPbmK49u
RbezQDj1vu+U4L6hd6k4f2YBlRbyeAY7LmuTyWwvC2CJBJIQ3I+hC32NR1mw
bj7FRQ2baX57qlRyEDJUkg8dx7YTqgsOlxkEr5X3Ks5hN76cWmYnOwj6sl82
+GA/2XCAxl05CImJNtsjsT0lVc7qagzCH26xZz72n7Y8VqEFbh/dls7Dlrdr
7H4cNgg2XjZR9/H9vWPzQ+QWids7FLZnY19eG5SzJnoQvvDoss+wu8aML92/
Owg9ah4j9djJ1wuW3nwwCJ1Pmu9MYq8ujzc/VzsIlpemKm1wfaGx6liJ/p9B
+LFhKlMR1y+OC7esmhRiw+SLb5MU7Ci2ckjBIjaIvOba62GPvOi0VZNiw9Kn
dcdssAt3W44oKLFBxzTdLxxbL1Bn3awhG85uzs2fxgaGUGzdRTZs2ztqPYrr
p6WBkyoffNjwJtbo2Rw2Q4mZ3+vPhsD+EM2luF4L3d/YNB3KhpbNRp662O+a
ooWo8Wx4/Ulf1w/brnClZ3IJGzKC53NkcP13xl/P5iKPDZ6WG+OscD1pqkjp
DZphQ0fWvh1HsGVKV5y+NceGtrTC5d7YRT9mwp+IDsHzpm2iGdh819rqPvkh
cBOSpnGxg3daa+82GAKHUih8iOvXJPkTSyg+Q2BB9XykgOvjl6tsLcf8hqDY
bYEhFbtrrWFkaeAQtO6+wNiOrUAVFzG/PgTX1ygHX8BOwKfM8YQhiHMNG32P
fdeHPZz7YghKNVL8oyUIFPPlxDutiSFQ/RLwSkmSQAV9tuK8n0MQ8I7lp4/d
yjLcUT09BMEiDvttsKWmxOushTjw/mWgXQh2lGRu+TkZDrhXDcSNYEdsHnr8
XIsDT/eEzr6RwutJO3ld/xQHdmht6AqXJpCZk/uItQcH5izeH3yELaxwdM8J
Lw685QUuaMAOjT2olOzLgRlT/TwRGfx+C7UpFIriwNHHLkHh2JGn9Dtb8jhg
YgzbYpbi98jGBWquoxw4nXk0uPQvAqW2JTbEeA5DLEdx5MwKAq0qR8LxF4dB
3XPt+rvYKQ/YkOwzDCZ0j6uV2Mk+huU514ZhzUPx+4sVcLzXduXV3B7G8fjq
8QQ73ntF7OSzYdBj5iWPKxIoWiXByW5iGI6FbD55bxWBAjzujCt7jcDiJrbm
3rUE2lVH7/12CXtpu0YgtoL8h+b0KyOgncHYlY/9okrqwZqgEdgZWjgmuo5A
HKnw/aq3R+CLz4WGKmz7PJ8KomAE4hwT6uiqOJ/ZzqGbOCPAlb5sratOoOEj
6goOrqPga/u+K10bfy9nvmqedh+Fh7x6pS/YTd4xEHBqFDyDZiPlqATKjvrp
nuk1CtwSH3Yk9qGSmpKh4FHQ8u4p9KYR6D9xh398H4yCtfLkFXv8PqwsjIxJ
Zo6CqrR4lMlGvL9/OIu+uY9BR9LnXXGmBKoYMf8h7fgD/j3+rx7dlkCfVQ0Z
xuvHoUgse6n9Mfze3HCUeid7HH4ljB3qDsDvUTsnvy0qE7DRJEY2LIlAuvac
XLnMCcgOiIh3eoW/n5AdnSZKk/DwmW2bCgPnj7v4zII7k7AhhhvfLqWFqpSP
zHPkpiBpR2LiLTMtVD4XLqwRMwVilaFybH8t1Fa8lRO97Cdkixhpv2vQQvWr
3Rtuxv2EZe+8pPev0kahZfsz+xdzYd150+VWvtqI9tEyYliKC1vKs9VF/bXR
V86Wc1xpLohSyi/XBmgjHRVtEwlZLjB8HFs3BWmj76Gi3TQlLrg5S3lDhDYy
3lu29JomFx5XtFeFJGij8RGFaypWXChinPEWf6GNDq7tcXGK5sKUPlVi15Q2
KvBsTTW7xQWD97bnjbjaaMHr6p4NsVyoz16or8HXRo+cMh2n73Khs1C8Q+Y3
7u+uu118ChcoR6PvDC+kolCxid3v87hQpjOhx/qLivJHREy2vuPCs85Ggwld
KvpdSlXSFOOBldChiKe+VKSdwqsXl+BBxbcnQ5P+VHQ4qMqTtZgHrm05E0aB
VPTW0rIhU5oHc8+Wzv4bQkU3+9zPK8jzgMaPUxOLpqJVi9MaRVR58Plns3lr
OhVtdpa62GfGg8tlmbH5DVTkLzz0b/xVHoSaZEjKLKGhua3GkinXeJDe5eoY
JU1DQaFRO7OCeRBWeoMtvpSGwkW0GwrCcf9yz5vEZGnoltiF140xPLi+71CN
nCINZUn+ef4rjQeOxakdZ1RpqFl22T3n1zwQP7Vy62qgIfn1RkdUhfiwL1tt
4aQ3DaGkML74Qj7A1A3lPB8aOindHj0izIeWcyEFbr409Gr6VEWxGB9iNWYN
vgfQkGtriqyZDB9OvlRQZIbSUIG3UIOLCh+01DRTN96hoR3NjRqJm/nwz5Gn
kZLPacjTVK7Wz5QPvmEPO3hFNJRUfPjAIcSHY0daPwy8oKGR1F8hlG18MJud
Yta9pKE4L83eF5Z82PNnSVl8DQ19U7p166MjHx5fCOi/9YGGLnvY/Vx8hQ/v
d8QuYk3Q0KqNx5oofnxoFZ6ot/xJQzV/zqeYBfBhh5T5XDGPhhZHR2/zDeLD
CdGp/qjfNJSW9/buUCRej2NMt4MIHTWwdfSb7vNhW8CTuvOKdCR3VMY77BUf
zOVL3uZvpaNyDeVdmdV82Js1XXtiBx25TGqoVNXw4XeKQonaTjp6HLSj4edb
PvDTOTEF1nS0KSNA/lgrH46/rbrd50BHrr3DpWbf+CDppT7c7UlHYtm/brj0
8WFng8qlxgt0lH9G7JAvgw/P9LW2vPSmI97vtWJFLD68JOaKH/jT0Y2VjgfW
/ODD1Zmy+KwIOqIyjmuaTPBht5VH7ZMoOurIvTRvP8UH01rCoTSGjlSMYnNu
8/mwqPwmo/MuHb0RSvfL/8WHAAva99F7dHSiKd+m6TcfBmz7nMWS6UjqdsU6
5h8+PFfadGx9Gh09P9DEn5/nQ+o3Dn9bJh39D3kYi00=
"]]},
Annotation[#, "Charting`Private`Tag$2734#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["\[Theta]", HoldForm], TraditionalForm],
FormBox["\[Mu]ext", TraditionalForm]},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.768914636275532*^9},ExpressionUUID->"f4394ddd-0e13-4aa1-ae52-\
d13fa39904c5"],
Cell[BoxData["\<\"z>2 case\"\>"], "Print",
CellChangeTimes->{
3.768914636284553*^9},ExpressionUUID->"29a515d9-db26-427c-9621-\
c2518f45bbc8"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwtU3kw1XsflggVsjs4yVqWyqsu3XLP8+uiRClSZEnWi2wtKiJLESIlJFKW
SpudKIps0WYvyV5XStnCEZ3f9/XOvJ+Zz3z+eJ6Zz8yzKDj6mLtwc3FxZSzs
/66xy3BL1VcXVmOY7dMsVybFoy/j28cwgF7w9mv7XZjUhpvJ14sYFhiO6D8o
4MykTN68L0xjOCNcXyjb24FJWTqzn8YzjmOY+VN9ky2T6ll/Xj+WcQ5R50s4
9WZMKl1id0Q0IwGR/ldK2vSYVCh/0eooxi1oGGqm3xVlUlYHMvLGJ4qhn9OQ
P1siRy0jobbbV1biZXChcYudHKViNjpcc6EWA0Uvalt45aiTb/9E8lQjjCtX
WUXckqWkikV6Fy1qwgGLI4rft8tSjwb1XzfptcK16O7A2QEZqtojTfbA93bo
pndOvgmQoaZV/xLO8XqPg1aay2elZSjuXw9WyKp0gf9s1pdLDxmUDjn0aG9u
N946qghJGzKo1+c2vq1X70P0oYyV3j3SlPylkV/3RvsR9qRvr5WHNDXC7uvt
0BqE1kr+7y6/pahb38pfCl38hLJ1TvbGYVKUEDN77PPnzzBYV9BmyidFxbiX
uKYrDyHOWo63+LIkNUM9+OwW/AXTWubuLUKS1HHt2mLJmmEUx0/+tL8sQfXl
1l5oUfiG1aZvZQt5Jah5j/ZUtYARuBifCY4/JU5pbOWjXcu/I7r+9Jq1E2LU
9kyFfwqkRiG4/jevtLUYdZJprzhgOwbr2V2xTQ2ilOb3fcve7xpHUKR64GYd
UUpMeJy/dm4cfFw3Tu6LF6F4KlPzlK5PIEkpdOjq1Arq8MbyDwImk9j/t0Gh
qsEK6sEOx/RnM5M4J6r+iKUoTE2PyKwYSvqJr5Sdpk+jIFWyd/viBIMpiF3a
za2xfTkVbBR+s3hoCseChhziWpdSCj3GnVnh0yjw03px44AAtVn3XAJDewZl
Dpo2q4v4KNuVTb8Wtc1gw1hnhLTcEmr6Zeygbygbo8ta36ZZ8FDJPAePmyvP
QjQ9eCv/DW5KrLckk7t2Fq+af2tNf+KieINCLf488gvPr8iOXxzjgOvewbxB
0Tm8lzYVJfpzOJqSFytaPQfNPQZqcZtm8FQjkl/Eex59XCseuetOQsT4qGaY
0G9ondhb9oR8R/fa5jb/it8INCDMUeV/kX8Dyp8PcmDADpplBnbjZ8BPPgcH
DmKUSr+FGnVDxzJ7pMeJAz++dYc54t0oFxYueu+2gJe9+LIl9yPqQ3q3vjrK
gbd967XugS58dAyyL4zgwMaz27Z71wcsWV2eEpLLQcNk4kXnze+wY7HPGU4+
B6W2RhaqS98hpk/RMaCIA6lA9U9LujogkhytdryMg0azSTuVgA7ICViX/VO9
wJ/4NNxb3g7tkdkO03ccePR9eHbGsA12eToiTJqD0+qWhjbHmvHIelaomYtG
8um2+Gr9ZggtebL87GIaOZTzFSvxZlTZ/sX/lZ+GO1s8UNmzCYpLDUixGI08
mYbrF9lvMORs9mOnGo0LPfKrVBVewVvGszHQgsaUjZOBaV0d6uvWvlhvSaPL
i6fJ+Vgd5I+M1Q4eoLFf5LLMlEIdml8crTKyp6HToZQTElILbT//UnEPGofl
JXg99WvAboq4/TCYRlKse96hgSqEhGeEdt+n8TTQMk1J4DEET/IZO+TQyI8Y
ZgzElSHFzUt0KI8GX2jg9B2pMhSZ/Jk1VkzDyKR3o7l6KYZEWmq5K2nYi2XE
77UtgckNLn61Nhpu2eruTlMF6Ixzbc7poPG4qGnAOaYAzqGvk7U7adwyfFp5
XqUAZ5yT1fR6aKj296To2uQjX13LZPcXGpn9DJGWuzmQLLW/6DdPQ9T8qnwM
nY2su3X75zg0qi1f3xO0yIZWioZ8MBfB4kXqipwHd7AjiJ0XyUvQq9o1uM7p
NgL141pShQkShYJ7pccyIfDH9LVVogTNnzcHG1plIknVxvG2OMHM7a8a4zUZ
yBNY/TOXQSA5bSRfn5mOwaZn4tVKBP0pexZv4lyHz3Plnm2qBBGPW5yq2an4
XRh9+9UaghGlI2vt2CmQSNqv07GWIPbc1tRG3mswsh21HNYl2CBy1SHRPhHt
uyxWeW0m6Bpv2VYRlgAHPBme0CM428Eny75/BQGKEf7zWwly8yqW3loaj5xh
ZqrQTgLx8/QBE8GLiEwLP9RrSsC2WSymcDoGzuY/VHLNCOJc34d7TkdDrqIi
f5clQaezS6KWcCRmfZVPMK0JlqTt1b2QG4E2lZgtP2wJgmwyguStwxEdZ1Mf
47jw78FKjTsdYXA1qLlg60Lg+c06zvN2KP7+pW6m6Uawu/Gtj3hoCH45zn18
5UUg5ovKP0oD0S7lmJHqS3Aih3k2oDgA+a8bXQ8fW+Av2aJ/ueEU3HSuTSz1
Jxi+L3hadKMfDEa4SrtOE+zyVh/siz4G+XS3wPtnCFa0OgwYsI9gzqJ5a0Ao
gdN8gfvQKV+8E9jEZ3yO4MawnlPDSm8UPrv5mnGewCxqjXbB8cO4eIwv/msU
gbZtmnzBpBsMe97JRcURRFoFe7g6OWNVPGvQKn5BjzNHi3UtHPF7253sNYkE
8xlVdZbuh9A5L+g1e5VAbkBKz1ffDsX5ftoNKQt5iv1UEDR7AJdcethX0wje
GflExY7tx2EZw6f/pBMcLL0pCVULbGt6GKabRdC2836/bIoZFM+JG/HdIbjD
8E/VumwKelOg4Pu7C3qM6gqoHTTGhx+fWu88IBgNYUiWJ25DcaZJ8onchXyo
Xdtjp62PS5ZFdtsKCHwLK1Vd11HwXC6rJFlMsKdAqUOefwuMnocN//uIoPU/
Tcx5ax0on/iWU/KYwCfksHXIDm0QdfNj4RUEp/wTL/nFrUVX3+NN+yoJxiUl
/KyvrMajBAVauZpAQDBQoi5CEfE7omqmagnebuyZIlly8KbHI2tfLOBtXu6u
5RIwLrIyTXhJ4OZknq+gugIqblVizm8IylPs7ov58oGLuebDhmaCbb2rnqXH
cqG7Je7G4jYCyxxJ0ex7M6yyCLZTW8dCH9sSmVUjP1gJW+zVsjoX/GA3vEn4
McjyHa8fPfqRIOGEeK1X7TuWye11xX/3EvS9Or17Z10jS9U6yV90gCAmu1eD
LVHO4hamWYOfFvTvj3n+ceYeq7fGhadwiGCfXLfcXZUk1pNTbxpDvxL4bW72
Gdocwkpa+0ec2XcCBZ6SjFZXJ9aRwesWCmMLeUFY9LUjW1k7r/LITEwQPF03
WLHzujhrzU7PvqopAt5b7SeMuT/8xbOo/dYlNkGNIs8rv6ywv/pLtngcmlvw
b7n7wx8Sk3oVHlnrtTgE9b7tmVF2uVuuyi+bJoSA6//zX2EU6l0=
"]]},
Annotation[#, "Charting`Private`Tag$2854#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["\[Theta]", HoldForm], TraditionalForm],
FormBox["\[Mu]ext", TraditionalForm]},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{All, All},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.768914636346328*^9},ExpressionUUID->"3cc79dec-c24e-4176-aa42-\
7997176e3e9e"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"Print", "[",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Mu]extreme", "[",
RowBox[{"0.1", ",", "z", ",", "1"}], "]"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "1.5", ",", "15"}], "}"}], ",",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"z", ",", "\[Mu]ext"}], "}"}]}], ",",
RowBox[{"AxesOrigin", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}]}], "]"}], "]"}], ";"}]], "Input",Expre\
ssionUUID->"b28e34d0-6fa1-41e8-8b5e-d921463985cc"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwVkmk81HsDxd1mDGPMZsiayE7/QoqSfkeSPaKUboOSSgkVuqjIEomeLiVt
VxFJ0S63q4UbRUUzSorsFZE9JeR6XpzPefE95835HM3Nwe7+MyQkJOKm9X83
OVZVqHqSBhthsUEPSxX08Y53187T4Pf33pTqYRUcnFqpr5hHg9OQn4/NBxX8
oBWEHyqi4SLv/bUPlSrokQ0ReD6i4e+RjelhZ1QgVp9wnmqlof9Z3GNDGxVc
WC7/eLU2HaETriVBZ5Rhmbwib7SAjinZvuwcbyX8ZZCRoniHDqbnp0YzRyXM
qPq8x+IBHVFXvD07FyrhmdRREllLh/oqDeZ5thI8E0QNk8N0sEwnfYIeKmJP
jDdL0koSaemufRt0FFEQ/keIoFYSrjbnVWsYM8GZWe1p1iAJtyHX/jvfFLD7
rqrV2jZJdG1NkbndqQCLkYfMU8OSEFd/EY6UK6Byt2SOihIDueVVBw/HKKA9
MO2N5iYGBkx0N5ZPyUPF79oS42EGghmZ1vvZ8ggK7pp7d5yB0d9eXRicEqAs
Snv2EroUjK4P94UPCbD9xDnaCgUp/Fps8uXGWwGKK1JerDOXglPhoYCWbAHc
9Xd5R0dJYeqEdgl3qQDJX6nYGpo0LIoVo+Qi5NA8FhDqISuNG6eVXq3ZJQcT
Rt7WBnlpbM/j8C9tkkODurpTu440bvOyaQGOctB148iP2kmD43YwKFlNDuW3
+nJnpUznK9OmlP/l4+e+61WB8kyU+5zb1q3Eh/ns9x75s5jI1qG5PmPzEVpJ
b+7QZWKXy2Dh7Rl89MtvGNqwmIlt7RUx13t56LxJV3XwZgKmmfaLy3io6fEK
1Mln4kWX0Ds+kIdsHzq32VIGd+rqQgYzuGhhzD+tbCuDOQxPzfg4LtSKvLTW
rpJBcngCMQrh4tREkfkLXxnovo23K3bgIuW0l+/9BBnUJEnrlk5yEF5XdDOj
drpv5PEpMIADBzuvNa5+LHSbdaafW8VGqELFvz6BLBTerlz52oqNCx3GC0LC
WDDc77xKjWJjNFpa7s9EFuKiMn81sdjILrlXK77KwjEu3V+9WhYTBjOdPEdY
WLR577tUB1kUydZZCxNkETQskkrxYEEgdp6/8zIb5iP9RS3/Y2IeO6eg5Tob
PUcd2/bEMeFoP6azpoSN95H2Frx9TMQ8zFWzqmJj6zyadsD0Tr0Fv5jcHjY2
WvvlplFMVMbd6Lw1jwPriCNa919K44+F8md+3uWgVD3Shq0gjebMRnryEy6G
5xfaJj9goCNIQ+nuSy5MexPVw28x0LXC36i1ngs96+D+HZcZGBzoW72omwuf
+7auwX8yEKt9yHWQwYPz1ZqONn8GMvafOHfeiAc7I5dIfx4DD+f+s2g0dJor
19hn75QEO1V652UpPtYazlk+ZUFH0rwLP/tYfBQHirdFGtMx45V58iIeHzLB
7/aO69ExKrftSsX0b7xuOehxFelozaz43GHAh7vu2Lr932i4cyl2i4YzH3Em
1Y3bb9OwsXRCePo4H3YrO576LaDhas+A21FlOUjbf3cpXz4DUvq/mlm6AhxY
UG6pnyWBs2XNO3wc5JH/6FRGhMkvMn9MNtTMSwErPZxz1v4zTsZTOVFN0TPR
olh698G2MZIgsdBQ86Iiesa96pW3fydc/hXPz0VKiHheKOtX9o2IDg7ExNQp
o8m9hEkzGCHpyQn6ZztVsNMsz2uiboikDn99mSSrBvVE7cOfEgeJ7ZIoVcH8
WVibeSQ8afMAmVT3/KS+TB1KO3MPCV/3ka++9OuTfrNxxjMtWu1LLwnWiPk5
z1IDB/L36TrZ95CV0cd3F5ZpYGxrbeez2m5SkpK87aSHJs5qfaDs13cRowAj
tYeNmuBl/S6OUvhMlozcdXULngPhjL7hBPFHotfn/tZYQgthfxWFNBV2EoV7
GbPcE7Vg3f81JfpGB8ma96S9SVkbMmmSSzk324lBWObW/Gxt7BIU/+DWtZE0
w+hl5fo6GOIVe0RKtZGMY64nbe/rQLjhx6wvFq3kbFllAXO5LhY9um9EY7aQ
pTl6xPyNLrzr3R4HnflAPnjMT8v11oOtwfNwV68mItzrsHjzRz04t8Z/e2Tc
SCKsXXyS9umjO+LApt7f3pOTzd9t+qf0cWwkrujS9wbiYphy+VG6AYyHnSKO
fH5LOjpNfZq1DVFWKltc1VNPIoNi3lhdM8R42OjbG+x6Uph3r5pBjND4sCi9
wuANaS08eZD3zAgCv5vNNr6vyZDW4cPbV83FePgttfRLdSTL3pdt2DoXkmPP
dyzrEBOXpW3uc7dTSDE5atduLiafSkMuHt1BYcL5Mf+HmZjEWEkMfAmksF7t
xEGOqZjcWjY79cpuCnmnhMRqrpgoWQuf6kZRaBjxW5+tISadtu8sNY9RmOx4
/SiZKSaRriLtmXco5MRv1q5rFBH5V757w4opZBnt6Z5oEJFCt4Gy1yUU+PpB
Tnr1ItK6muuT/oCCvVLExwOvRMR2jctp3lMKHIHELtMKEeF5VbFZ7yl4bDLO
KSkSkYJ36zfuaKLgSDnM6b0qIjYbugqqmimcWZdqqXFFRMJ/l7JP6qBwp6jb
MjlHRJqEtrGSXymoaCwI9s+c5s2vX23pp/Dc8PP98ydFhOuzZfaTQQqe33Zm
1aeJyHLfuNLYUQonsixNHVNFpLFVjtX+g4LwuHFrfLKIhG7K9rIepzDLz1H3
caKIcNpN8i9MUji60ps+ES8ilzeXjU5NUTj9h3WkRayI/ActUowN
"]]},
Annotation[#, "Charting`Private`Tag$2901#1"]& ]}, {}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{
FormBox[
TagBox["z", HoldForm], TraditionalForm],
FormBox["\[Mu]ext", TraditionalForm]},
AxesOrigin->{0., 0.},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic,
Charting`ScaledFrameTicks[{Identity, Identity}]}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 15}, {0., 6.76163926292003}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Print",
CellChangeTimes->{
3.768914638422277*^9},ExpressionUUID->"e9371164-53e9-4e79-9bcc-\
145c2fb6d6ac"]
}, Open ]]
},
WindowSize->{808, 696},
WindowMargins->{{236, Automatic}, {Automatic, 50}},
FrontEndVersion->"11.2 for Mac OS X x86 (32-bit, 64-bit Kernel) (September \
10, 2017)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 2290, 68, 178, "Input",ExpressionUUID->"75456f59-f966-423f-a8b5-ae2d3d8c25ec"],
Cell[CellGroupData[{
Cell[2895, 94, 147, 3, 24, "Print",ExpressionUUID->"fb06d8ad-baf6-4c0c-8084-7d425670967e"],
Cell[3045, 99, 7893, 150, 242, "Print",ExpressionUUID->"f4394ddd-0e13-4aa1-ae52-d13fa39904c5"],
Cell[10941, 251, 144, 3, 24, "Print",ExpressionUUID->"29a515d9-db26-427c-9621-c2518f45bbc8"],
Cell[11088, 256, 4973, 102, 245, "Print",ExpressionUUID->"3cc79dec-c24e-4176-aa42-7997176e3e9e"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell[16110, 364, 555, 15, 30, "Input",ExpressionUUID->"b28e34d0-6fa1-41e8-8b5e-d921463985cc"],
Cell[16668, 381, 4380, 92, 246, "Print",ExpressionUUID->"e9371164-53e9-4e79-9bcc-145c2fb6d6ac"]
}, Open ]]
}
]
*)
(* End of internal cache information *)