-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathxai_utils.py
395 lines (355 loc) · 15.3 KB
/
xai_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import cv2
from time import time
import os
import numpy as np
import json
import tensorflow as tf
from tensorflow import keras
from scipy.ndimage.interpolation import zoom
from keras.preprocessing.image import load_img, img_to_array
import keras.backend as K
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt
#############################
def layer_finder(k_model, model_arch, pool_input=True):
'''
Returns a list of all of the last layers in each block of the model.
Parameters:
k_model (Keras model): Either a VGG or ResNet
model_arch (str): Either "VGG" or "ResNet"
Returns:
last_layers (list): A list of all of the last layers in each block of the
model.
'''
if type(model_arch) != str:
raise TypeError("Input argument \"model_arch\" must be a string that is\
either \"VGG\" or \"ResNet\".")
last_layers = []
pool_flag=False
block_end_detected=False
first_layer=True
j=0
if model_arch == "VGG":
for layer in k_model.layers:
if type(layer) == tf.keras.layers.MaxPool2D:
last_layers.append(layer.name)
elif model_arch == "ResNet":
for i in range(len(k_model.layers)):
if i<j: continue
#print(k_model.layers[i])
if len(k_model.layers[i+1].output.get_shape()) < 4:
# only save a layer if the block before the end was a convolutional block
last_layers.append(k_model.layers[i].name)
break
if k_model.layers[i+1].output.get_shape()[2]<k_model.layers[i].output.get_shape()[2]-4:
if pool_input==True:
if type(k_model.layers[i]) == tf.keras.layers.InputLayer: continue
if 'ZeroPadding2D' in str(type(k_model.layers[i])):
if type(k_model.layers[i-1]) == tf.keras.layers.InputLayer: continue
last_layers.append(k_model.layers[i-1].name)
else:
last_layers.append(k_model.layers[i].name)
else:
if first_layer:
j=i+1
pool_flag=True
while(pool_flag):
j += 1
#print(str(type(k_model.layers[j])))
if 'Conv2D' in str(type(k_model.layers[j])):
#print('Here')
last_layers.append(k_model.layers[j-1].name)
first_layer=False
pool_flag=False
else:
j=i
pool_flag=True
while(pool_flag):
j += 1
#print(str(type(k_model.layers[j])))
if 'merge.Add' in str(type(k_model.layers[j])):
block_end_detected=True
#print(j)
elif block_end_detected==True and 'Conv2D' in str(type(k_model.layers[j])):
#print('Here')
last_layers.append(k_model.layers[j-1].name)
block_end_detected=False
pool_flag=False
else:
print("Input argument \"model_arch\" must be either \"VGG\" or \"ResNet\".")
return [[lay] for lay in last_layers]
def create_random_mask(h=7, w=7, H=224, W=224, p_1=0.5, resample=Image.BILINEAR):
'''
Generates one random mask utilized in RISE
inputs:
h, w: initial size of binary mask
H, W: final size of the upsampled mask
p_1: probability of actiating pixels in the down-sampled masks.
interp: upsampling technique.
returns:
mask: a smooth mask with the values in range [0,1] with size of HxW.
'''
assert H>h, 'Masks should be resized to higher dimensions.'
assert W>w, 'Masks should be resized to higher dimensions.'
# create random binary hxw mask
mask=np.random.choice([0, 1], size=(h, w), p=[1-p_1, p_1])
# upsample mask to (h+H,w+W)
mask = Image.fromarray(mask*255.)
mask = mask.resize((H + h, W + w), resample=resample)
mask = np.array(mask)
# randomly crop mask to HxW
w_crop = np.random.randint(0,w+1)
h_crop = np.random.randint(0,h+1)
mask = mask[h_crop:H + h_crop, w_crop:W + w_crop]
# normalize between 0 and 1
mask /= np.max(mask)
return mask
def create_attribution_masks(img, model, layers, class_index, max_mask_num, interp='bilinear'):
'''
Derives feature maps from one, or a couple of layers, and post-processes them
to convert them to attribution masks.
inputs:
img: a 4-D tensor image.
model: the classification model
layers: list of layers to be visualized either individually or mutually.
class_index: the output class according to whom the layer(s) are visualized.
max_mask_num: the threshold "normalized gradient" value for sampling attribution masks (\mu in our paper)
interp: upsampling technique.
For now, 'bilinear' and 'nearest' are supported.
returns:
masks: a set of attribution masks normalized between 0 and 1.
'''
assert interp in ['bilinear', 'nearest'], 'Selected upsampling type undefined or unsupported.'
# Forward pass to get attribution masks.
conv_outputs=[]
for layer in model.layers:
if np.isin(layer.name,layers):
conv_outputs.append(layer.output)
conv_outputs.append(model.output)
feedforward1=keras.models.Model([model.input], [conv_outputs])
with tf.GradientTape() as tape:
ff_results=feedforward1([img])[0]
all_fmap_masks, predictions = ff_results[:-1], ff_results[-1]
loss = predictions[:, class_index]
grads = tape.gradient(loss, all_fmap_masks)
###
# upsample and normalize masks.
num_masks=0
masks=[]
for i in range(len(layers)):
tmp_mask = all_fmap_masks[i][0].numpy()
if len(img.shape)==3:
axis=0
size=img.shape[1:]
tmp_mask = np.expand_dims(tmp_mask, axis=1)
elif len(img.shape)==4:
axis=(0,1)
size=img.shape[1:-1]
significance = np.mean(grads[i][0], axis=axis)
#idxs = np.argpartition(significance, -1*max_mask_num)[-1*max_mask_num:]
idxs = np.where(significance>max_mask_num*np.max(significance))[0]
if interp == 'bilinear':
fmap = tf.image.resize(tmp_mask[...,idxs], size, method='bilinear').numpy()
elif interp == 'nearest':
fmap = tf.image.resize(tmp_mask[...,idxs], size, method='nearest').numpy()
else: raise ValueError('You have selected an unsupported interpolation type.')
num_masks+=fmap.shape[2]
fmap -= np.min(fmap, axis=(0,1))
fmap /= (np.max(fmap, axis=(0,1))+10e-7)
masks.append(fmap)
return masks
def visualize_layers(img, model, class_index, masks, H=224, W=224, C=3, batch_size = 128):
'''
Combines attribution masks using the RISE-based framework mentioned in
SISE white paper.
inputs:
img: a 3-D tensor image.
model: the classification model
class_index: the output class according to whom the layer(s) are visualized.
masks: a set of attribution masks normalized between 0 and 1.
returns:
sum_masks: visualization map of the selected layer(s).
This function follows 'create_attribution_masks()'.
'''
# creates perturbed images to probe model.
img = img if len(img.shape)==3 else np.expand_dims(img, axis=1)
X = np.einsum('hwc,hwn->nhwc', img, masks)
# second forward pass to valuate attribution maps
preds_masked = np.empty([0])
if masks.shape[2] <= batch_size :
preds_masked=np.append(preds_masked, model(X, training=False)[:,class_index],axis=0)
else :
for i in range (0, masks.shape[2]-batch_size, batch_size) :
preds_masked=np.append(preds_masked, model(X[i:i+batch_size], training=False)[:,class_index],axis=0)
preds_masked=np.append(preds_masked, model(X[i+batch_size:], training=False)[:,class_index],axis=0)
# Linear combination of attribution masks.
masks /= (masks.sum(axis=(0,1))+10e-7)
sum_mask = np.einsum('hwn,n->hw', masks, preds_masked)
sum_mask -= np.min(sum_mask)
sum_mask /= np.max(sum_mask)
return sum_mask
def otsu(I, nbins=256, tau=1.5):
'''
Finds the optimum adaptive threshold value for a 2-D image.
inputs:
I: a 2-D image (visualization map/ heat-map/ etc.)
nbins: resolution of histogram. Increasing this parameter yields to more
precise threshold value, achieved in longer time.
tau: bottleneck amplititude
returns: Otsu adaptive threshold value
'''
I = np.round(I*nbins)
#histogram of the image
hist, bins = np.histogram(I.ravel(),nbins,[0,nbins])
#CDF/ mean/ variance terms for multiple values
i = np.arange(nbins)
varsb = np.zeros(nbins)
for j in range(1, nbins):
w0 = np.sum(hist[0:j])
w1 = np.sum(hist[j:nbins])
u0 = np.sum(np.multiply(hist[0:j], i[0:j])) / w0
u1 = np.sum(np.multiply(hist[j:nbins], i[j:nbins])) / w1
varsb[j] = w0 * w1 * (u0-u1) * (u0-u1)
# the threshold value is the one maximizing the variance term.
t = np.argmax(varsb)
#print(t)
k = round(t*tau)
if np.sum(hist[int(k):256]) < .1 * np.sum(hist):
#print('happened')
return t*tau/nbins
else:
return t/nbins
def otsu_sigmoid(I, nbins=256, T=100., tau=1.5):
'''
Thresholds the 2-D visualization map softly, combining Otsu's method and
sigmoid function.
inputs:
I: a 2-D image (visualization map/ heat-map/ etc.)
nbins: resolution of histogram. Increasing this parameter yields to more
precise threshold value, achieved in longer time.
T: sigmoid temparature (preferred to be set to high values.)
returns:
the soft-thresholded heat-map according to the input.
'''
thr=otsu(I, nbins=256, tau=1.5)
return 1/(1 + np.exp(-(I-thr)*T))
def fuse_visualization_maps(exmaps, fusion_type='otsu', T=100.):
'''
Fuses visualization maps to a unique explanation map. Visualization maps should
be given with the correct order (low-level layer to high-level layer)
'''
assert fusion_type in ['simple', 'otsu']
ex=exmaps[0]
if fusion_type=='simple':
for i in range(1, len(exmaps)):
ex += exmaps[i]
ex *= exmaps[i]
elif fusion_type=='otsu':
for i in range(1, len(exmaps)):
ex += exmaps[i]
ex *= otsu_sigmoid(exmaps[i], T=T)
return ex
def SISE(img, model, class_index, layers, grad_thr, interp='bilinear',
fusion_type='otsu', T=100.):
'''
For now, this function supports VGG16, ResNet50, and ResNet101.
img: a 4-D image, or a 3-D array.
model: the classification model
layers: list of layers to be visualized either individually or mutually.
interp: upsampling technique.
Check the supproted upsampling types in function 'create_attribution_masks'.
grad_thr: Threshold on the average gradient values to select the most appropriate feature maps.
fusion_type: the fusion technipue for visualization maps:
simple: Using only addition and multiplication blocks.
otsu: Using addition, soft otsu threshold, and multiplication blocks.
auto_layer_finder: if 'True', the layers are automatically selected. Otherwise,
pre-defined layers for the models experimented are used.
pool_input_select: If True, the inputs of pooling layers are detected automatically.
Otherwise, the outputs of pooling layers are detected automatically.
If 'auto_layer_finder=False', this parameter is ineffective.
'''
masks = create_attribution_masks(img, model, layers, class_index=class_index, max_mask_num = grad_thr, interp=interp)
exmaps=[]
for mask_set in masks:
exmaps.append(visualize_layers(img[0], model, class_index, mask_set))
return fuse_visualization_maps(exmaps, fusion_type=fusion_type, T=T)
def weighted_fusion(w,exmaps, T=100.):
'''
Objective: weighted fusion using weighted addition, unweighted multiplication, and otsu threshold blocks.
inputs:
w: an array of weight factors of length N-1.
exmaps: a 3-D array of explanation maps of length H x W x N.
parameters:
N: number of visualiation maps received
H x W: size of visualization maps.
outputs:
e_out: fused explanation map.
'''
#w_post=np.maximum(w,0)
w_post=np.clip(a=w, a_min=0, a_max=2)
e23=np.multiply((exmaps[:,:,0]*w_post[0]+exmaps[:,:,1]*(2-w_post[0])),
otsu_sigmoid(exmaps[:,:,1], T=T))
e234=np.multiply((e23*w_post[1]+exmaps[:,:,2]*(2-w_post[1])),
otsu_sigmoid(exmaps[:,:,2], T=T))
e2345=np.multiply((e234*w_post[2]+exmaps[:,:,3]*(2-w_post[2])),
otsu_sigmoid(exmaps[:,:,3], T=T))
e23456=np.multiply((e2345*w_post[3]+exmaps[:,:,4]*(2-w_post[3])),
otsu_sigmoid(exmaps[:,:,4], T=T))
e_out = e23456
return e_out
def grad_cam(input_model, image, layer_name):
cls = np.argmax(input_model.predict(image))
def normalize(x):
"""Utility function to normalize a tensor by its L2 norm"""
return (x + 1e-10) / (K.sqrt(K.mean(K.square(x))) + 1e-10)
"""GradCAM method for visualizing input saliency."""
y_c = input_model.output
conv_output = input_model.get_layer(layer_name).output
feedforward1 = keras.models.Model([input_model.input], [conv_output, y_c])
with tf.GradientTape() as tape:
ff_results=feedforward1([image])
all_fmap_masks, predictions = ff_results[0], ff_results[-1]
loss = predictions[:, cls]
grads_val = tape.gradient(loss, all_fmap_masks)
if len(image.shape)==3:
axis=(0, 1)
elif len(image.shape)==4:
axis=(0, 1, 2)
weights = np.mean(grads_val, axis=axis)
cam = np.dot(all_fmap_masks[0], weights)
#print (cam)
H,W= image.shape[1:3]
cam = np.maximum(cam, 0)
#cam = resize(cam, (H, W))
cam = zoom(cam,H/cam.shape[0])
#cam = np.maximum(cam, 0)
cam = cam / cam.max()
return cam
def RISE(img, model, class_index, N_MASKS=8000, H=224, W=224, C=3):
'''
img: a 3-D input image
model: a trained model
class_index; The class of interest
N_MASKS: The number of random masks to be generated
H,W,C: The desired dimensions of the random masks
'''
X = np.zeros(shape=(N_MASKS, H, W, C), dtype=np.float32)
masks = np.zeros((N_MASKS,H,W), dtype=np.float32)
#for i in tqdm(range(N_MASKS)):
for i in range(N_MASKS):
m =create_random_mask(H=H, W=W)
masks[i] = m
x = img.copy()
x[:, :, 0] *= m
x[:, :, 1] *= m
x[:, :, 2] *= m
X[i] = x
preds_masked = model.predict(X, verbose=0)
sum_mask = np.zeros(masks[0].shape, dtype=np.float32)
# np.einsum???
for i, mask in enumerate(masks):
m = mask * preds_masked[i, class_index]
sum_mask += m
sum_mask -= np.min(sum_mask)
sum_mask /= np.max(sum_mask)
return sum_mask