|
| 1 | +import numpy as np |
| 2 | +from matplotlib import pyplot as plt |
| 3 | +from scipy.stats import gaussian_kde |
| 4 | + |
| 5 | + |
| 6 | +def gibbs_sampling(dim, conditional_sampler, x0=None, burning_steps=1000, max_steps=10000, epsilon=1e-8, verbose=False): |
| 7 | + """ |
| 8 | + Given a conditionl sampler which samples from p(x_j | x_1, x_2, ... x_n) |
| 9 | + return a list of samples x ~ p, where p is the original distribution of the conditional distribution. |
| 10 | + x0 is the initial value of x. If not specified, it's set as zero vector. |
| 11 | + conditional_sampler takes (x, j) as parameters |
| 12 | + """ |
| 13 | + x = np.zeros(dim) if x0 is None else x0 |
| 14 | + samples = np.zeros([max_steps - burning_steps, dim]) |
| 15 | + for i in range(max_steps): |
| 16 | + for j in range(dim): |
| 17 | + x[j] = conditional_sampler(x, j) |
| 18 | + if verbose: |
| 19 | + print("New value of x is", x_new) |
| 20 | + if i >= burning_steps: |
| 21 | + samples[i - burning_steps] = x |
| 22 | + return samples |
| 23 | + |
| 24 | + |
| 25 | +if __name__ == '__main__': |
| 26 | + def demonstrate(dim, p, desc, **args): |
| 27 | + samples = gibbs_sampling(dim, p, **args) |
| 28 | + z = gaussian_kde(samples.T)(samples.T) |
| 29 | + plt.scatter(samples[:, 0], samples[:, 1], c=z, marker='.') |
| 30 | + plt.plot(samples[: 100, 0], samples[: 100, 1], 'r-') |
| 31 | + plt.title(desc) |
| 32 | + plt.show() |
| 33 | + |
| 34 | + # example 1: |
| 35 | + mean = np.array([2, 3]) |
| 36 | + covariance = np.array([[1, 0], |
| 37 | + [0, 1]]) |
| 38 | + covariance_inv = np.linalg.inv(covariance) |
| 39 | + det_convariance = 1 |
| 40 | + def gaussian_sampler1(x, j): |
| 41 | + return np.random.normal() |
| 42 | + demonstrate(2, gaussian_sampler1, "Gaussian distribution with mean of 0 and 0") |
| 43 | + |
| 44 | + # example 2: |
| 45 | + mean = np.array([2, 3]) |
| 46 | + covariance = np.array([[1, 0], |
| 47 | + [0, 1]]) |
| 48 | + covariance_inv = np.linalg.inv(covariance) |
| 49 | + det_convariance = 1 |
| 50 | + def gaussian_sampler2(x, j): |
| 51 | + if j == 0: |
| 52 | + return np.random.normal(2) |
| 53 | + else: |
| 54 | + return np.random.normal(3) |
| 55 | + demonstrate(2, gaussian_sampler2, "Gaussian distribution with mean of 2 and 3") |
| 56 | + |
| 57 | + # example 3: |
| 58 | + def blocks_sampler(x, j): |
| 59 | + sample = np.random.random() |
| 60 | + if sample > .5: |
| 61 | + sample += 1. |
| 62 | + return sample |
| 63 | + demonstrate(2, blocks_sampler, "Four blocks") |
| 64 | + |
| 65 | + # example 4: |
| 66 | + def blocks_sampler(x, j): |
| 67 | + sample = np.random.random() |
| 68 | + if sample > .5: |
| 69 | + sample += 100. |
| 70 | + return sample |
| 71 | + demonstrate(2, blocks_sampler, "Four blocks with large gap.") |
0 commit comments