Skip to content

Commit 2ec6046

Browse files
committed
corrected some pages
Several small mistakes/errors were corrected in several proofs/definitions.
1 parent 4d9fb6e commit 2ec6046

File tree

5 files changed

+11
-11
lines changed

5 files changed

+11
-11
lines changed

D/chi2.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ sources:
2222
url: "https://en.wikipedia.org/wiki/Chi-square_distribution#Definitions"
2323
- authors: "Robert V. Hogg, Joseph W. McKean, Allen T. Craig"
2424
year: 2018
25-
title: "The χ2-Distribution"
25+
title: "The Chi-Squared-Distribution"
2626
in: "Introduction to Mathematical Statistics"
2727
pages: "Pearson, Boston, 2019, p. 178, eq. 3.3.7"
2828
url: "https://www.pearson.com/store/p/introduction-to-mathematical-statistics/P100000843744"

P/ci-wilks.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@ $$ \label{eq:llr}
7474
\log \Lambda(\phi) = \log p(y|\phi,\hat{\lambda}) - \log p(y|\hat{\phi},\hat{\lambda}) \; .
7575
$$
7676

77-
[Wilks' theorem](llr-wilks) states that, when comparing two statistical models with parameter spaces $\Theta_1$ and $\Theta_0 \subset \Theta_1$, as the sample size approaches infinity, the quantity calculated as $-2$ times the log-ratio of maximum likelihoods follows a [chi-squared distribution](/D/chi2), if the null hypothesis is true:
77+
[Wilks' theorem](/P/llr-wilks) states that, when comparing two statistical models with parameter spaces $\Theta_1$ and $\Theta_0 \subset \Theta_1$, as the sample size approaches infinity, the quantity calculated as $-2$ times the log-ratio of maximum likelihoods follows a [chi-squared distribution](/D/chi2), if the null hypothesis is true:
7878

7979
$$ \label{eq:wilks}
8080
H_0: \theta \in \Theta_0 \quad \Rightarrow \quad -2 \log \frac{\operatorname*{max}_{\theta \in \Theta_0} p(y|\theta)}{\operatorname*{max}_{\theta \in \Theta_1} p(y|\theta)} \sim \chi^2_{\Delta k}

P/kl-nonsymm.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -39,10 +39,10 @@ $$ \label{eq:KL-nonsymm}
3939
\mathrm{KL}[P||Q] \neq \mathrm{KL}[Q||P]
4040
$$
4141

42-
for some [probability distributions](dist) $P$ and $Q$.
42+
for some [probability distributions](/D/dist) $P$ and $Q$.
4343

4444

45-
**Proof:** Let $X \in \mathcal{X} = \left\lbrace 0, 1, 2 \right\rbrace$ be a discrete [random variable](/D/rvar) and consider the two [probability distributions](dist)
45+
**Proof:** Let $X \in \mathcal{X} = \left\lbrace 0, 1, 2 \right\rbrace$ be a discrete [random variable](/D/rvar) and consider the two [probability distributions](/D/dist)
4646

4747
$$ \label{eq:P-Q}
4848
\begin{split}

P/norm-gi.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ sources:
2222
url: "https://proofwiki.org/wiki/Gaussian_Integral"
2323
- authors: "ProofWiki"
2424
year: 2020
25-
title: "Integral to Infinity of Exponential of -t^2"
25+
title: "Integral to Infinity of Exponential of minus t squared"
2626
in: "ProofWiki"
2727
pages: "retrieved on 2020-11-25"
2828
url: "https://proofwiki.org/wiki/Integral_to_Infinity_of_Exponential_of_-t%5E2"

P/wald-mgf.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -72,13 +72,13 @@ $$ \label{eq:bessel-de}
7272
x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx}-(x^2+p^2)y=0 \; .
7373
$$
7474

75-
The first of these [identities](https://dlmf.nist.gov/10.39.2) gives an explicit solution for $K_{-1/2}$:
75+
The [first of these identities](https://dlmf.nist.gov/10.39.2) gives an explicit solution for $K_{-1/2}$:
7676

7777
$$ \label{eq:bessel-fact1}
7878
K_{-1/2}(x) = \sqrt{\frac{\pi}{2x}} e^{-x} \; .
7979
$$
8080

81-
The second of these [identities](https://dlmf.nist.gov/10.32.10) gives an integral representation of $K_p$:
81+
The [second of these identities](https://dlmf.nist.gov/10.32.10) gives an integral representation of $K_p$:
8282

8383
$$ \label{eq:bessel-fact2}
8484
K_p(\sqrt{ab}) = \frac{1}{2}\left(\frac{a}{b}\right)^{p/2} \int_0^{\infty}x^{p-1}\cdot \exp\left[-\frac{1}{2}\left(ax + \frac{b}{x}\right)\right]dx \; .
@@ -104,10 +104,10 @@ Combining with \eqref{eq:bessel-fact1} and simplifying gives
104104

105105
$$ \label{eq:wald-mgf-s4}
106106
\begin{split}
107-
M_X(t) &= \frac{\alpha}{\sqrt{2\pi}}\cdot e^{\alpha \gamma}\cdot 2\left(\frac{\gamma^2-2t}{\alpha^2}\right)^{1/4} \cdot \sqrt{\frac{\pi}{2\sqrt{\alpha^2(\gamma^2-2t)}}}\cdot \exp\left[-\sqrt{\alpha^2(\gamma^2-2t)}\right] \\
108-
&= \frac{\alpha}{\sqrt{2}\cdot \sqrt{\pi}}\cdot e^{\alpha \gamma}\cdot 2 \cdot \frac{(\gamma^2-2t)^{1/4}}{\sqrt{\alpha}}\cdot \frac{\sqrt{\pi}}{\sqrt{2}\cdot \sqrt{\alpha}\cdot (\gamma^2-2t)^{1/4}}\cdot \exp\left[-\sqrt{\alpha^2(\gamma^2-2t)}\right] \\
109-
&= e^{\alpha \gamma} \cdot \exp\left[-\sqrt{\alpha^2(\gamma^2-2t)}\right] \\
110-
&= \exp\left[\alpha \gamma-\sqrt{\alpha^2(\gamma^2-2t)}\right] \; .
107+
M_X(t) &= \frac{\alpha}{\sqrt{2\pi}}\cdot e^{\alpha \gamma}\cdot 2\left(\frac{\gamma^2-2t}{\alpha^2}\right)^{1/4} \cdot \sqrt{\frac{\pi}{2\sqrt{\alpha^2(\gamma^2-2t)}}}\cdot \exp\left[-\sqrt{\alpha^2(\gamma^2-2t)}\right] \\
108+
&= \frac{\alpha}{\sqrt{2}\cdot \sqrt{\pi}}\cdot e^{\alpha \gamma}\cdot 2 \cdot \frac{(\gamma^2-2t)^{1/4}}{\sqrt{\alpha}}\cdot \frac{\sqrt{\pi}}{\sqrt{2}\cdot \sqrt{\alpha}\cdot (\gamma^2-2t)^{1/4}}\cdot \exp\left[-\sqrt{\alpha^2(\gamma^2-2t)}\right] \\
109+
&= e^{\alpha \gamma} \cdot \exp\left[-\sqrt{\alpha^2(\gamma^2-2t)}\right] \\
110+
&= \exp\left[\alpha \gamma-\sqrt{\alpha^2(\gamma^2-2t)}\right] \; .
111111
\end{split}
112112
$$
113113

0 commit comments

Comments
 (0)