11
11
import time
12
12
import zipfile
13
13
14
-
15
14
import tensorflow as tf
16
15
import yaml
17
16
@@ -239,7 +238,9 @@ def watch_process(self):
239
238
if self .is_kill :
240
239
while True :
241
240
self .get_running_experiment ()
242
- if self ._running_experiment and ("DONE" in self ._running_experiment [0 ]):
241
+ if self ._running_experiment and (
242
+ "DONE" in self ._running_experiment [0 ]
243
+ ):
243
244
_stop_expr = subprocess .getoutput (
244
245
"nnictl stop {}" .format (self .experiment_id )
245
246
)
@@ -284,7 +285,9 @@ def model_final_update(self):
284
285
285
286
if saved_result is None :
286
287
engine .execute (
287
- INSERT_MODEL_CORE .format (final_result .model_name , pickled_model )
288
+ INSERT_MODEL_CORE .format (
289
+ final_result .model_name , pickled_model
290
+ )
288
291
)
289
292
engine .execute (
290
293
INSERT_MODEL_METADATA .format (
@@ -303,7 +306,9 @@ def model_final_update(self):
303
306
> final_result [self .evaluation_criteria ]
304
307
):
305
308
engine .execute (
306
- UPDATE_MODEL_CORE .format (pickled_model , saved_result .model_name )
309
+ UPDATE_MODEL_CORE .format (
310
+ pickled_model , saved_result .model_name
311
+ )
307
312
)
308
313
engine .execute (
309
314
UPDATE_MODEL_METADATA .format (
@@ -315,7 +320,9 @@ def model_final_update(self):
315
320
)
316
321
)
317
322
318
- engine .execute (DELETE_ALL_EXPERIMENTS_BY_EXPR_NAME .format (self .experiment_name ))
323
+ engine .execute (
324
+ DELETE_ALL_EXPERIMENTS_BY_EXPR_NAME .format (self .experiment_name )
325
+ )
319
326
320
327
321
328
def zip_model (model_path ):
@@ -401,7 +408,12 @@ class ExperimentOwl:
401
408
"""
402
409
403
410
def __init__ (
404
- self , experiment_id , experiment_name , experiment_path , mfile_manage = True , time = 5
411
+ self ,
412
+ experiment_id ,
413
+ experiment_name ,
414
+ experiment_path ,
415
+ mfile_manage = True ,
416
+ time = 5 ,
405
417
):
406
418
self .__minute = 60
407
419
self .time = time * self .__minute
@@ -434,7 +446,9 @@ def main(self):
434
446
expr_list = subprocess .getoutput ("nnictl experiment list" )
435
447
436
448
running_expr = [
437
- expr for expr in expr_list .split ("\n " ) if self .experiment_id in expr
449
+ expr
450
+ for expr in expr_list .split ("\n " )
451
+ if self .experiment_id in expr
438
452
]
439
453
print (running_expr )
440
454
if running_expr and ("DONE" in running_expr [0 ]):
@@ -486,17 +500,23 @@ def update_tfmodeldb(self):
486
500
487
501
if not saved_score or (metrics [0 ] < saved_score [0 ]):
488
502
winner_model = os .path .join (
489
- os .path .join (self .experiment_path , "temp" , self .experiment_name )
503
+ os .path .join (
504
+ self .experiment_path , "temp" , self .experiment_name
505
+ )
490
506
)
491
507
if os .path .exists :
492
508
shutil .rmtree (winner_model )
493
509
os .rename (exprs , winner_model )
494
510
495
511
m_buffer = zip_model (winner_model )
496
- encode_model = codecs .encode (pickle .dumps (m_buffer ), "base64" ).decode ()
512
+ encode_model = codecs .encode (
513
+ pickle .dumps (m_buffer ), "base64"
514
+ ).decode ()
497
515
498
516
engine .execute (
499
- INSERT_OR_UPDATE_MODEL .format (mn = self .experiment_name , mf = encode_model )
517
+ INSERT_OR_UPDATE_MODEL .format (
518
+ mn = self .experiment_name , mf = encode_model
519
+ )
500
520
)
501
521
engine .execute (
502
522
INSERT_OR_UPDATE_SCORE .format (
@@ -506,7 +526,10 @@ def update_tfmodeldb(self):
506
526
score2 = metrics [1 ],
507
527
)
508
528
)
509
- L .info ("saved model %s %s" % (self .experiment_id , self .experiment_name ))
529
+ L .info (
530
+ "saved model %s %s"
531
+ % (self .experiment_id , self .experiment_name )
532
+ )
510
533
511
534
def modelfile_cleaner (self ):
512
535
"""
0 commit comments