-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhw1_markdown.Rmd
1021 lines (801 loc) · 34.6 KB
/
hw1_markdown.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "Statistical Learning, Homework-01"
author: "Barba Paolo, Candi Matteo, Costantini Silvia, Vestini Maria Vittoria"
date: '2023-05-10'
output:
html_document:
code_folding: hide
theme:
color-contrast-warnings: false
bg: "#2B3E50"
fg: "#B8BCC2"
primary: "#EA80FC"
secondary: "#00DAC6"
base_font:
google: Prompt
heading_font:
google: Proza Libre
editor_options:
markdown:
wrap: 72
---
```{r setup, include=FALSE}
if (requireNamespace("thematic"))
thematic::thematic_rmd(font = "auto")
```
```{r package, message=FALSE, warning=FALSE}
rm(list = ls())
# Set reproducibility -----------------------------------------------------
seed <- 1234
set.seed(seed)
# Libraries and Data ---------------------------------------------------------------
pkt <- c('glmnet', 'NMOF', 'parallel', 'snow', 'ggplot2', 'reshape2', 'gridExtra','tidyverse')
invisible(lapply(pkt, require, character.only = TRUE))
```
## Purpose & Statistical tools used
The homework's goal is to try to estimate an unknown function
$f(X)$ in order to predict the response variable $Y$ from
independent data $(X_1,Y_1) \dots ,(X_n,Y_n)$, to achieve this goal we will assume:
- $Y_i | X_1 , \dots , X_n \sim p(y | f(X_i))$
- $f$ lies in some fixed class of
functions.
For the Homework's sake we are going to use a penalized linear regression model and truncated power basis function, obtaining
the following: $$ Y_i = f(\underline{x_i}) + \epsilon_i \ for \ i = 1\dots n $$
where the $\epsilon_i$ are $i.i.d$ data from some normal distribution
$N(0,\sigma^2)$.
In order to get the optimal hyperparameters and MSE estimation we will
implement CV and nested CV techniques.
## Be linear in transformed feature space
The basic idea of being linear in a transformed feature space is to map
our parameters into a higher dimensional space with d-dimensions. The
model will then be linear in that space.
Let $\phi(x)$ be a feature mapping function that maps the input data $x$
into a transformed d-dimensional space. Let $w$ be a weight vector in
the transformed space. Thus, the prediction function is given by
$f(x) = w^T\phi(x)$. By mapping the parameters into higher dimensional
space, we can capture more complex structures between the features and
the target variable.
The polynomial models in a d-dimensional feature space assume that there
is a fixed functional form for the relationship between features and the
response variable. And since this relationship is defined globally,
these models may not capture the entire complexity of the data.
Spline regression models, instead, provide more flexible and adaptive
modeling in order to catch up the local structures of the target
variable $Y$.
In order to implement splines, we use truncated power functions
$\mathcal{G}_{d,q}$, defined as:
$$\mathcal{G}_{d,q} = \{g_1(x) \dots g_{d+1}(x),g_{(d+1)+1}(x),\dots,g_{(d+1)+q}(x) \}$$
where:
$\{g_1(x)=1,g_2(x)=x,...,g_{d+1}(x)=x^{d}\}$ and
$\{g_{(d+1)+j}(x)= (x−\xi_{j})^d_+\}$ where $(x)_+ =max\{0,x\}$.
It can be easily shown that the spline function $f(x)$ can be
represented by a linear combination of the power functions
$\mathcal{G}_{d,q}$:
$$f(x)= \sum_{j= 1}^{d+q+1} β_j ·g_j(x)$$
where $\beta_j$ are the coefficients to be estimated, and $g_j(x)$
denotes the $j$-th power function of $\mathcal{G}_{d,q}$.
## Implementation of the truncated power basis
We have developed our own function of the truncated power basis
$\mathcal{G}_{d,q}$. This function takes as input the degree $d$ of the
truncated power functions, the number of knots $q$, and their positions,
and returns a feature matrix $\mathbb{X}$. The feature matrix
$\mathbb{X}$ will be used to obtain a prediction of the response
variable $Y$.
In order to illustrate our implementation, in the following plots,
results are shown considering $d\ \in \{1 , 3\}$ and
$q\ \in \{3 , 10\}$.
```{r power_function}
# Function used to compute the feature matrix
power_functions <- function(d, q, knots, x){
X <- matrix(NA, length(x), d+q+1) # Pre-set the feature matrix
for( i in 1:length(x)){ # Loop over the data-points
for( j in 1:(d+q+1) ){ # Loop over the basis used
if ( j <= d+1 ){ # Check if the index belong to the firsts (d+1) indices
X[i,j] <- x[i]^(j-1) # Compute the powers
}
else # The index do not belong to the firsts (d+1) indices
if((x[i] - knots[j-(d+1)])^d > 0){ # Check if the power of the difference between the data-point and the knot is positive
X[i,j] <- (x[i] - knots[j-(d+1)])^d # Compute the power of the difference
}
else # the power is not positive
X[i,j] <- 0 # Set the value to 0
}
}
return(X) # Return the feature matrix
}
```
```{r plot truncated power function, fig.showtext = TRUE, fig.height = 7, fig.width = 12, fig.align = "center", message=FALSE, warning=FALSE , echo = FALSE}
plot_func <- function(d, q){
knots <- seq(0, 1, length.out = q+2)[2 : (q+1)]
df <- data.frame(power_functions(d, q, knots, xx))
n_col <- ncol(df)
legend_labels <- c()
for (i in 1:n_col) legend_labels <- c(legend_labels, paste0('g', i, '(x)'))
colnames(df) <- legend_labels
df <- cbind('xx' = xx, df)
df <- melt(df, id.vars = 'xx')
graph <- ggplot(data=df, aes(x = xx, y = value, color = variable)) +
geom_line(linewidth = 1) +
ggtitle(paste0('Plot with d = ', d, ' and q = ', q)) +
xlab('x') +
ylab('gi(x)') +
theme_light() +
theme(panel.grid = element_blank(),
panel.background = element_rect(fill = NA),
title = element_text(colour = "white"),
plot.background = element_rect(fill = NA, colour = "#2B3E50"),
plot.title = element_text(size=16),
axis.line = element_line(color = "white"),
axis.text = element_text(color = "white", size = 10),
legend.title = element_blank(),
legend.text = element_text(size = 10, color = 'white'),
legend.key = element_rect(color = NA, fill = NA),
legend.key.size = unit(0.6, "cm"),
legend.background = element_rect(fill = NA))
return(graph)
}
xx <- seq(0, 1, length.out = 1000)
p1 <- plot_func(1, 3)
p2 <- plot_func(3, 3)
p3 <- plot_func(1, 10)
p4 <- plot_func(3, 10)
grid.arrange(p1, p2, p3, p4, ncol=2)
```
## Comments
For $j \le d +1$, the truncated power function is defined as
$g_j(x) = x^{j-1}$. For $j > d +1$, the truncated power function is
defined as $g_j(x) = (x-\xi_j)^d_+$, where $(x)_+ = \max\{0,x\}$, and
$\xi_j$ is the $(j-d-1)$-th knot.
For $j > d +1$, the truncated power function is equal to zero for data
points below the knot $\xi_j$, and $(x-\xi_j)^d$ for data points above
the knot.
The use of truncated power basis allows us to work with a higher
dimensional feature space without using a high degree polynomial. The
additional dimensions in the feature space come from the truncated power
functions that capture the local structure of the target function around
each knot. This can lead to more accurate modeling of complex
relationships between the input features and the target variable.
An issue that can arise in spline regression is the presence of a
non-singular matrix, which can lead to numerical instability in order to
obtain the parameter estimates.
This problem typically arises when the knots are not well-spaced or when
the degree of the spline is too high relative to the number of
observations. In these cases, the matrix of the spline basis functions
can become rank-deficient, which means that it has fewer linearly
independent rows or columns than its dimensions.
## ChatGPT - Power function
In this section we ask CHAT-GPT to implement its own version of
truncated power basis. Below are reported the conversation we had with
it.
**1° Request:**
" Can you implement a function in R to compute the truncated power
basis, with parameters $d$, $q$, knots. Where $g_i=x^{i-1}$ if $i\le(d+1)$
else $g_{d+1+j} = \max((x-knots[j])^d, 0)$ for $j \in [1,q]$? "
**1 ° Response:**
" Certainly! Here's a function in R that computes the truncated power
basis you described:
```{r GPT, class.source = "fold-show"}
truncated_power_basis <- function(x, d, q, knots) {
# Compute the first d+1 basis functions
basis <- matrix(0, nrow = length(x), ncol = d+1)
basis[,1] <- 1
for (i in 2:(d+1)) {
basis[,i] <- x^(i-1)
}
# Compute the remaining basis functions using knots
for (j in 1:q) {
basis[,d+1+j] <- pmax((x - knots[j])^d, 0)
}
return(basis)
}
```
This function takes as input the vector $x$, the integer $d$, the integer $q$,
and the vector knots. It returns a matrix with length(x) rows and $d+1+q$
columns, where each column represents a basis function."
Let's give a try to the ChatBot implementation!
```{r GPtest, error=TRUE, class.source = "fold-show"}
d <- 1
q <- 3
knots <- seq(0, 1, length.out=q)
x <- seq(0, 1, length.out=1000)
M <- truncated_power_basis(x, d, q, knots)
```
Oopsie Doopsie! Looks like the ChatBot response doesn't work. So we will
try and see how much we have to tell it in order to obtain a working
function, the first thing we will do is show it the error we got.
*For this following part the code will not be directly shown.*
**2° message request:**
" It seems like there is an error with your function, if i try to use it
I get this error: "Error in `[<-`(`*tmp*`, , d + 1 + j, value =
pmax((x - knots[j])\^d, 0)): subscript out of bounds". Could you give me
the correct implementation? "
**2° response:**
" I apologize for the error in my previous implementation. Here's an
updated version of the truncated_power_basis function that should work
correctly:
```{r GPtest2, error=TRUE}
truncated_power_basis <- function(x, d, q, knots) {
# Compute the first d+1 basis functions
basis <- matrix(0, nrow = length(x), ncol = d+1)
basis[,1] <- 1
for (i in 2:(d+1)) {
basis[,i] <- x^(i-1)
}
# Compute the remaining basis functions using knots
if (q > 0) {
for (j in 1:q) {
basis[,d+j+1] <- pmax((x - knots[j])^d, 0)
}
}
return(basis)
}
```
... "
Again it doesn't work, so this time we give the ChatBot a hint, since we
realize that the problem is that there isn't enough allocated space for
the matrix, in fact the matrix should have $q+d+1$ columns instead of
$d+1$.
**3° message:**
" It doesn't solve it, I think the problem is in the dimension of the
matrix. "
**3° response:**
" I apologize for the continued issue. You are correct that there is an
issue with the dimension of the matrix. Here is the corrected
implementation of the truncated_power_basis function:
```{r GPtest3, error=TRUE}
truncated_power_basis <- function(x, d, q, knots) {
# Compute the first d+1 basis functions
basis <- matrix(0, nrow = length(x), ncol = d+1)
basis[,1] <- 1
for (i in 2:(d+1)) {
basis[,i] <- x^(i-1)
}
# Compute the remaining basis functions using knots
if (q > 0) {
for (j in 1:q) {
basis[,d+j+1] <- pmax((x - knots[j])^(d*(x >= knots[j])), 0)
}
}
return(basis)
}
```
... "
At the end since also this implementation doesn't work we decided to
tell the ChatBot how to solve the issue.
**4° message:**
" Still not good, shouldn't the matrix have $q+d+1$ columns since we are
trying to evaluate $q+d+1$ functions? "😅
**4° response:**
" You are correct. I apologize for the error. The matrix should have
$q + d + 1$ columns since we are computing a total of $q + d + 1$ basis
functions. Here is the corrected implementation:
```{r GPtest4, error=TRUE}
truncated_power_basis <- function(x, d, q, knots) {
# Compute the first d+1 basis functions
basis <- matrix(0, nrow = length(x), ncol = d+1)
basis[,1] <- 1
for (i in 2:(d+1)) {
basis[,i] <- x^(i-1)
}
# Compute the remaining basis functions using knots
if (q > 0) {
for (j in 1:q) {
basis[,d+j+1] <- pmax((x - knots[j])^(d*(x >= knots[j])), 0)
}
}
return(basis)
}
```
... "
But again even if we straight up told the Bot what's the problem and how
to solve it the function is not working! At the end the only thing left
to do is just tell it the code it should use.
**5° (and final) message:**
" You are not allocating the memory for the matrix correctly, basis
should be defined as "basis \<- matrix(0, nrow = length(x), ncol =
d+q+1)". "
**5° response:**
" You are correct again. I apologize for the confusion. Here is the
corrected implementation:
```{r GPtest5, error=TRUE, class.source = "fold-show"}
truncated_power_basis <- function(x, d, q, knots) {
# Compute the first d+1 basis functions
basis <- matrix(0, nrow = length(x), ncol = d+q+1)
basis[,1] <- 1
for (i in 2:(d+1)) {
basis[,i] <- x^(i-1)
}
# Compute the remaining basis functions using knots
if (q > 0) {
for (j in 1:q) {
basis[,d+j+1] <- pmax((x - knots[j])^(d*(x >= knots[j])), 0)
}
}
?pmax
return(basis)
}
```
$\dots$ "
Finally we obtain a function without errors!
```{r GPtest final, error=TRUE, class.source = "fold-show"}
truncated_power_basis(seq(0,1,length.out=6), 3, 2, c(0.1, 0.5))
```
Sadly though we realize that, from the third response on, the ChatBot
changed a line of code from $basis[,d+j+1] <- pmax((x - knots[j])^d, 0)$
to $basis[,d+j+1] <- pmax((x - knots[j])^{d*(x >= knots[j])}, 0)$ and
now the function indeed does gives an output, but it's not the right
one.
## Comments:
After the chat we had with ChatGPT, our thoughts are that the chatbot
can be very useful for providing a starting point. We believe, however,
that can be risky for non-experts in the field to use the chatbot, since
they may not be able to identify errors or misunderstandings in the
information that the chat provides.
We have to remark that chatbots have limitations in fields that require
specialized knowledge or experience, such as statistics or data
analysis.😉
## Dataset
The Dataset we are going to use to implement the model is about
**Wilkinson Microwave Anisotropy Probe**, also known as **WMAP**. An
explorer mission that measured the difference of temperature across the
space.
The Dataset is composed by $675$ observations of $2$ variable of
interest.
```{r dataset}
test_set_vero <- read.csv("test.csv")
train_set <- read.csv("train.csv")
```
```{r plot dataset, fig.showtext = TRUE, fig.height = 5, fig.width = 10, fig.align = "center", message=FALSE, warning=FALSE , echo = FALSE}
# Plot --------------------------------------------------------------------
colors <- c("Real Data" = "snow")
point_size <- 1.4
ggplot() +
geom_point(aes(x = train_set$x, y = train_set$y, color = 'Real Data'), size = point_size, shape=16) +
theme_light() +
labs(x = "x", y = "y", color = " Legend", title = 'Train set', shape = "", color="") +
guides(color = guide_legend(override.aes=list(shape = 16, size = 2))) +
scale_color_manual(values = colors) +
theme(panel.border = element_rect(color = "white"),
legend.title = element_text(size=12, color='white'),
plot.title = element_text(hjust = 0.5,size=16),
legend.text = element_text(size = 10, color = 'white'),
legend.key = element_rect(color = NA, fill = NA),
legend.background = element_rect(fill = NA),
panel.grid.major = element_line(linetype = 2),
panel.grid.minor = element_line(linetype = 0),
panel.background = element_rect(fill = NA),
title = element_text(colour = "white"),
plot.background = element_rect(fill = NA, colour = "#2B3E50"),
axis.line = element_line(color = "white"),
axis.text = element_text(color = "white", size = 10),
axis.title.y = element_text(angle = 0, vjust = 0.5))
```
## Vanilla Cross Validation
In order to estimate the coefficients $\beta_j$ in our penalized linear
model, we are going to perform a *k-fold* cross validation.
Since the variance of the response variable is not constant across the
range of predictor variables it can be possible that, picking knots
where the functions is very variable, may influence the good predictive
performance of our model. In order to try to resolve this problem, we
fix the lower bound of the position of the knots at $0$ and we add the
hyperparameter $p$ that is representing the upper bound. The knots will
be equispaced in interval $(0,p]$.
Once we have performed the power functions, we train a penalized linear
model, where we tune the type of regularization from Ridge to Lasso
throughout some elastic net.
At the end of the day, we end up with $5$ hyperparameter to tune:
- $\alpha$ for Ridge, Lasso and elastic net
- $\lambda$ Regularization parameter
- $d$ degree of the power functions
- $q$ the number of knots
- $p$ positions of the upper bound
Since the data shown that for a higher $x$, the $y$ are way more variable,
in the train of our model, we will use into the model weights
proportional to the variance given $x$.
We will down-weight observations with high variance and up-weight
observations with low variance, which can decrease the error of our
predictions.
Given the knots we estimated the conditional variance by computing the
empirical variance of $y$ in the intervals defined by the knots.
The idea is that after cross validation we shrink the space of our
parameters that we consider sub-optimal. Then we will perform the nested
cross validation in order to select in a more accurate way the
hyperparameters.
```{r functions VCV}
# Function to estimate the weights
compute_weights <- function(knots , dataset){
# Number of knots
n <- length(knots)
# Add the bounds
knots <- c(0, knots)
if(knots[n+1] != 1){
knots <- c(knots, 1)
}
# Define the matrix
xx <- rep(NA, length(dataset$x))
# Intialize v in case there are no data-points in the first interval
v <- 1
# For each interval bounded by the knots
for(i in 1:(n+1)){
# Check if there are at least 2 data points inside the interval
if(sum(dataset$x >= knots[i] & dataset$x <= knots[i+1])>1){
# Compute the conditional variance
v <- var(dataset$y[(dataset$x >= knots[i]) & (dataset$x <= knots[i+1])])
# Set the weight of the data points equal to the inverse of the variance
xx[dataset$x >= knots[i] & dataset$x <= knots[i+1]] <- 1/v
}
# If there is only one data point
else if(sum(dataset$x >= knots[i] & dataset$x <= knots[i+1]) == 1){
# Since we can't compute the variance of a single data point then we use the previously computed variance
xx[dataset$x >= knots[i] & dataset$x <= knots[i+1]] <- 1/v
}
}
return(xx)
}
# Function used for the cross validation
cross_val_func <- function(x){
set.seed(070720)
# Define the parameters
d <- x[1]
q <- x[2]
k <- x[3]
a <- x[4]
l <- x[5]
p <- x[6]
# size of the fold
l_folds <- nrow(train_set) / k
# Pre-set the scores (MSE)
score <- rep(NA, k)
# Random sample of the indices
idx <- sample((1:nrow(train_set)),nrow(train_set))
#Loop over the folds
for ( i in 1:k){
# Set the validation and train set
cv_test <- train_set[idx[((i-1)*l_folds+1): (i*l_folds)],]
cv_train <- train_set[-idx[((i-1)*l_folds+1): (i*l_folds)],]
# Conpute the knots
knots <- seq(0, p, length.out=q+1)[2:(q+1)]
# Compute the power function on the training set
M_cv_train <- power_functions(d = d, q = q, knots = knots, x = cv_train$x)
# Compute the power function on the valifation set
M_cv_test <- power_functions(d = d, q = q, knots = knots, x = cv_test$x)
# compute the weights, based on the conditional variance
hat_weights <- compute_weights(knots = knots , cv_train)
# Train the model
cv_model <- glmnet(M_cv_train,
cv_train$y,
family = "gaussian",
alpha=a,
lambda=l,
weights = hat_weights)
# Preditcion on the validation set
cv_predictions <- predict(cv_model, M_cv_test)
# Compute the score
score[i] <- sqrt(mean((cv_test$y-cv_predictions)^2))
}
# Return the mean MSE
return(mean(score))
}
```
```{r cv vanilla, eval = FALSE}
# parameters
k <- c(5)
d_grid <- c(1, 3)
q_grid <- seq(3, 50, 2)
positions <- seq(0.2, 0.8, 0.1)
lambdas <- 10^seq(-0.5, 0, .05)
alphas <- seq(0, 1, 0.1)
# Set the parameter for the CV
parameters <- list(d_grid, q_grid, k, alphas, lambdas, positions)
# CV vanilla --------------------------------------------------------------
# Select the best combination of parameters
cl = makeCluster(detectCores())
clusterExport(cl, c('train_set', 'power_functions', 'glmnet', 'compute_weights'))
res <- gridSearch(cross_val_func, levels=parameters, method = 'snow', cl=cl)
stopCluster(cl)
best_params <- res$minlevels
names(best_params) <- c('d', 'q', 'k', 'alpha', 'lambda', 'position')
```
After the vanilla cross validation this are the hyperparameters
we obtained:
```{r training with vanilla parameters, warning = FALSE }
load("RData//best_params_vanilla_NODC.RData")
# Prediction --------------------------------------------------------------
# Using the best parameters
d_best <- best_params[1]
q_best <- best_params[2]
k_best <- best_params[3]
a_best <- best_params[4]
l_best <- best_params[5]
p_best <- best_params[6]
# Compute the predictions
knots <- seq(0, p_best, length.out=q_best+1)[2:(q_best+1)]
M_train <- power_functions(d = d_best, q = q_best, knots = knots, x = train_set$x)
M_test <- power_functions( d = d_best, q = q_best, knots = knots, x = test_set_vero$x)
knots_test <- power_functions( d = d_best, q = q_best, knots = knots, x = knots)
hat_weights <- compute_weights(knots , train_set)
final_model <- glmnet(M_train, train_set$y, family ="gaussian",
alpha=a_best, lambda=l_best , weights = hat_weights )
predictions <- predict(final_model,M_test)
round(best_params,3)
```
After training the model with those hyperparameters and predicting the
$Y$ in the test set, we can plot our results.
```{r plot after vanilla, fig.showtext = TRUE, fig.height = 5, fig.width = 10, fig.align = "center",echo = FALSE, message=FALSE, warning=FALSE}
colors <- c("Real Data" = "#F1F1E6", "Predicted" = "#E09F20", "Knots" = "#006054")
point_size <- 1.4
knots_size <- 1
knots_shape <- 18
ggplot() +
geom_point(aes(x = train_set$x, y = train_set$y, color = 'Real Data'), size = point_size, shape=16) +
geom_line(aes(x = test_set_vero$x, y = predictions, color = 'Predicted'), linewidth = 2) +
geom_point(aes(x = knots, y = predict(final_model, knots_test), color = 'Knots'), shape = knots_shape, stroke = 1.7, size = knots_size) +
theme_light() +
labs(x = "x", y = "y", color = " Legend", title = 'Prediction on WMAP data after cross validation', shape = "", color="") +
scale_color_manual(values = colors) +
guides(color = guide_legend(override.aes=list(shape = c(knots_shape, NA, 18), size = 2, linetype = c(NA, 1, NA)))) +
theme(panel.border = element_rect(color = "white"),
legend.title = element_text(size=12, color='white'),
plot.title = element_text(hjust = 0.5,size=16),
legend.text = element_text(size = 10, color = 'white'),
legend.key = element_rect(color = NA, fill = NA),
legend.background = element_rect(fill = NA),
panel.grid.major = element_line(linetype = 2, linewidth=.2),
panel.grid.minor = element_line(linetype = 0),
panel.background = element_rect(fill = NA),
title = element_text(colour = "white"),
plot.background = element_rect(fill = NA, colour = "#2B3E50"),
axis.line = element_line(color = "white"),
axis.text = element_text(color = "white", size = 10),
axis.title.y = element_text(angle = 0, vjust = 0.5))
```
### Kaggle-LeaderBoard-Result: 3329.84561 in RMSE
## Update the parameters
As anticipated before, after computing the *k-fold* cross validation, we
are going to select some new parameter, similar to the ones obtained
from the validation, to be tuned via Nested Cross Validation.
```{r update parameter, warning=FALSE}
# Update Parameters -------------------------------------------------------------
# Using the best parameters
d_best <- best_params[1]
q_best <- best_params[2]
k_best <- best_params[3]
a_best <- best_params[4]
l_best <- best_params[5]
p_best <- best_params[6]
#Select the new parameters for the nested cross validation
d <- d_best
q <- q_best+seq(-2,2,1)
k <- k_best
a <- a_best + seq(-0.03, 0, 0.01)
l <- l_best + seq(-0.05, 0.05, 0.025)
p <- p_best
# Set the parameter for the CV
parameters <- list(d, q, k, a, l, p)
```
## Nested Cross Validation
To apply the Nested Cross Validation the first thing we have to do is
implement its main functions:
- **nested_crossval**, that takes as input the hyperparameters and the
data, inside this function we will iteratively select the *k-folds*
randomly, then for each of the folds we call the *inner_crossval*
function (to obtain the vector $e^{(in)}$), train and test the model
(to compute the vector $e^{(out)}$). After each iteration the
function will store $e^{(in)}$ in the vector $es$ and compute the
wanted quantities $(mean(e^{(in)})-mean(e^{(out)}))^2$ and
$\frac{var(e^{(out)})}{len(fold)}$, to be stored in *a_list* and
*b_list* respectively. At the end the function will return an estimator
of the RMSE and its relative MSE.
- **inner_crossval**, takes as input $k-1$ out of the $k$ folds
created in the previous function and compute the cross validation on
the $k-1$ folds, returning as a output a vector of $k-1$ RMSEs.
```{r nested cross validation, eval=FALSE}
# Secondary function for nested CV
inner_crossval <- function(x, train_set){
# define the parameters
d <- x[1]
q <- x[2]
K <- x[3]
a <- x[4]
l <- x[5]
p <- x[6]
# Pre-set the error
e_in <- c()
# Loop over k-1 fold
for(k in (1:(K-1))){
# Set the indices
idx <- ((k-1)*l_folds+1): (k*l_folds)
# Validation set
cv_test <- train_set[idx,]
# Train set
cv_train <- train_set[-idx,]
# Define the knots
knots <- seq(0, p, length.out=q+1)[2:(q+1)]
# Compute the power functions
M_cv_train <- power_functions(d = d, q = q, knots = knots, x = cv_train$x)
M_cv_test <- power_functions(d = d, q = q, knots = knots, x = cv_test$x)
# Compute the weights based on the conditional variance
hat_weights <- compute_weights(knots = knots , cv_train)
# Train the model
cv_model <- glmnet(M_cv_train,
cv_train$y,
family = "gaussian",
alpha=a,
lambda=l,
weights = hat_weights)
# prediction
cv_predictions <- predict(cv_model, M_cv_test)
# Compute the error
e_temp <- sqrt(cv_test$y-cv_predictions)^2)
e_in <- c(e_in, e_temp)
}
return(e_in)
}
# Main function for the nested CV
nested_crossval <- function(x){
# set the parameters
d <- x[1]
q <- x[2]
K <- x[3]
a <- x[4]
l <- x[5]
p <- x[6]
R <- 250
# Define the length of the folds
l_folds <<- nrow(train_set) / K
# Define the vectors needed
es <- c()
a_list <- rep(NA, R*K)
b_list <- rep(NA, R*K)
# For R times
for(r in (1:R)){
# Select the indexes for the folds randomly
idx <- sample((1:nrow(train_set)),nrow(train_set))
# For each of the folds
for(k in (1:K)){
# Define train and validation selecting the folds
cv_test <- train_set[idx[((k-1)*l_folds+1): (k*l_folds)],]
cv_train <- train_set[-idx[((k-1)*l_folds+1): (k*l_folds)],]
# inner cross
e_in <- inner_crossval(x, cv_train)
# Outer cross
knots <- seq(0, p, length.out=q+1)[2:(q+1)]
# Map in the feature matrices
M_cv_train <- power_functions(d = d, q = q, knots = knots, x = cv_train$x)
M_cv_test <- power_functions(d = d, q = q, knots = knots, x = cv_test$x)
# Compute the weights
hat_weights <- compute_weights(knots = knots , cv_train)
# Train the model
cv_model <- glmnet(M_cv_train,
cv_train$y,
family = "gaussian",
alpha=a,
lambda=l,
weights = hat_weights)
# Compute the predictions
cv_predictions <- predict(cv_model, M_cv_test)
# Compute the error
e_out <- sqrt((cv_test$y-cv_predictions)^2)
# Store the needed informations
es <- c(es, e_in)
a_list[(r-1)*K+k] <- (mean(e_in)-mean(e_out))^2
b_list[(r-1)*K+k] <- (sd(e_out)^2)/l_folds
}
}
# Compute the estimated error
mse <- mean(a_list)-mean(b_list)
err <- mean(es)
return(paste(mse,err))
}
```
```{r run nested cv , eval = FALSE}
# CV nested --------------------------------------------------------------
cl = makeCluster(detectCores())
clusterExport(cl, c('train_set','compute_weights' ,'inner_crossval', 'power_functions', 'glmnet'))
res <- gridSearch(nested_crossval, levels=parameters, method = 'snow', cl=cl)
stopCluster(cl)
# save the results err and mse in two vectors
return_numeric <- function(x){
return(as.numeric(strsplit(x, ' ')[[1]]))
}
vector <- unlist(lapply(res$values, FUN = return_numeric))
n <- length(vector)
mse <- sqrt(vector[seq(n) %% 2 == 1])*1.96
err <- vector[seq(n) %% 2 == 0]
best_params <- res$levels[[which.min(mse)]]
```
After performed the nested cross validation we can compute a confidence
interval for each of the CV RMSE we got, by using the following
computation:
$$
\big( \widehat{RMSE} - z_{1-\alpha/2} \sqrt{\widehat{MSE}} \ , \widehat{RMSE} + z_{1-\alpha/2} \sqrt{\widehat{MSE}} \ \big)
$$
For each combination tested, the following plot show the estimated RMSE
with the $1 - \alpha = 95\%$ confidence interval associated.
```{r plot err with mse CI, fig.showtext = TRUE, fig.height = 5, echo = FALSE,fig.width = 8, fig.align = "center", message=FALSE, warning=FALSE}
mse_err <- read.csv("RData/Nested_NODC.csv")
mse <- mse_err$mse
err <- mse_err$err
colors <- c("RMSE" = "#F1F1E6", "Confidence Interval" = "#FFB238")
ggplot()+
geom_point(aes(x=1:length(mse),y=err, color='RMSE'), shape = 18, size= 1.8)+
geom_errorbar(aes(x =1:length(mse), ymin=err-mse, ymax=mse+err, width=0.2, color='Confidence Interval'))+
theme_bw() +
scale_y_continuous(limits = c(1100, 2100)) +
labs(x = "Combination of hyperparameters", y = "CI of RMSE", color = " Legend", title = 'Confidence Interval of RMSE', shape = "", color="") +
guides(color = guide_legend(override.aes=list(shape = c(NA, 18), size = 2, linetype = c(1, NA), linewidth=1.4))) +
scale_color_manual(values = colors) +
theme(panel.border = element_rect(color = "white"),
legend.title = element_text(size=12, color='white'),
plot.title = element_text(hjust = 0.5,size=16),
legend.text = element_text(size = 10, color = 'white'),
legend.key = element_rect(color = NA, fill = NA),
legend.background = element_rect(fill = NA),
panel.grid.major = element_line(linetype = 0, linewidth=.2),
panel.grid.minor = element_line(linetype = 0),
panel.background = element_rect(fill = NA),
title = element_text(colour = "white"),
plot.background = element_rect(fill = NA, colour = "#2B3E50"),
axis.line = element_line(color = "white"),
axis.text = element_text(color = "white", size = 10))
```
## Comments:
Since the plot shown that all combination of hyperparameters have similar $\widehat{RMSE}$, the decision we made to select the best configuration is taking into account the width of the interval. At the end we decided to select the configutations that minimize the $\widehat{MSE}$. The hyperparameters we have selected are shown below.
```{r training with nested parameters, warning = FALSE}
load("RData//best_params_NODC.RData")
# Prediction --------------------------------------------------------------
# Using the best parameters
d_best <- best_params[1]
q_best <- best_params[2]
k_best <- best_params[3]
a_best <- best_params[4]
l_best <- best_params[5]
p_best <- best_params[6]
# Compute the predictions
knots <- seq(0, p_best, length.out=q_best+1)[2:(q_best+1)]
M_train <- power_functions(d = d_best, q = q_best, knots = knots, x = train_set$x)
M_test <- power_functions( d = d_best, q = q_best, knots = knots, x = test_set_vero$x)
knots_test <- power_functions( d = d_best, q = q_best, knots = knots, x = knots)
hat_weights <- compute_weights(knots , train_set)
final_model <- glmnet(M_train, train_set$y, family ="gaussian",
alpha=a_best, lambda=l_best , weights = hat_weights )
predictions <- predict(final_model, M_test)
round(best_params,3)
```
```{r plot after nested, fig.showtext = TRUE, echo = FALSE,fig.height = 5, fig.width = 10, fig.align = "center", message=FALSE, warning=FALSE}
colors <- c("Real Data" = "#F1F1E6", "Predicted" = "#E09F20", "Knots" = "#006054")
point_size <- 1.4
knots_size <- 1
knots_shape <- 18
line_size <- .6
ggplot() +
geom_point(aes(x = train_set$x, y = train_set$y, color = 'Real Data'), size = point_size) +
geom_line(aes(x = test_set_vero$x, y = predictions, color = 'Predicted'), size = 2) +
geom_point(aes(x = knots, y = predict(final_model, knots_test), color = 'Knots'), shape = knots_shape, stroke = 1.7, size = knots_size) +
theme_bw() +
labs(x = "x", y = "y", color = " Legend", title = 'Prediction on WMAP after nested cross validation', shape = "", color="") +
scale_color_manual(values = colors) +
guides(color = guide_legend(override.aes=list(shape = c(knots_shape, NA, 18), size = 2, linetype = c(NA, 1, NA), linewidth=1.8))) +
theme(panel.border = element_rect(color = "white"),
legend.title = element_text(size=12, color='white'),
plot.title = element_text(hjust = 0.5,size=16),
legend.text = element_text(size = 10, color = 'white'),
legend.key = element_rect(color = NA, fill = NA),