-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransforms.py
375 lines (268 loc) · 11.6 KB
/
Transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Databricks notebook source
# MAGIC %md
# MAGIC ### Data Transforms
# COMMAND ----------
# Access configuration
container = "ecom-data"
storage_account = "ecomdatastorage"
application_id = "fb7ba273-59ce-42eb-91d7-4d054efd9277"
directory_id = "9304b1b4-1646-4e1f-8059-6f38efeb3f40"
service_credential = "<client_secret>"
spark.conf.set(f"fs.azure.account.auth.type.{storage_account}.dfs.core.windows.net", "OAuth")
spark.conf.set(f"fs.azure.account.oauth.provider.type.{storage_account}.dfs.core.windows.net", "org.apache.hadoop.fs.azurebfs.oauth2.ClientCredsTokenProvider")
spark.conf.set(f"fs.azure.account.oauth2.client.id.{storage_account}.dfs.core.windows.net", application_id)
spark.conf.set(f"fs.azure.account.oauth2.client.secret.{storage_account}.dfs.core.windows.net", service_credential)
spark.conf.set(f"fs.azure.account.oauth2.client.endpoint.{storage_account}.dfs.core.windows.net", f"https://login.microsoftonline.com/{directory_id}/oauth2/token")
# COMMAND ----------
# MAGIC %md
# MAGIC ### Read the Data from Azure Data Lake Storage Gen2
# COMMAND ----------
# specify directory
path_to_directory = "bronze/"
# List files in the directory
files = dbutils.fs.ls(f"abfss://{container}@{storage_account}.dfs.core.windows.net/{path_to_directory}")
# Create a dictionary to hold DataFrames for each file
dataframes = {}
# Iterate through the files
for file in files:
if file.name.endswith('.csv'): # Check if the file is a CSV
# Create a DataFrame for each CSV file
df_name = file.name.replace('.csv', '') # Create a name for the DataFrame (remove .csv)
df = spark.read \
.format("csv") \
.option("header", "true") \
.option("inferSchema", "true") \
.load(file.path) # Load the CSV file
# Store the DataFrame in the dictionary
dataframes[df_name] = df
# Now you can access each DataFrame by its name
for name, df in dataframes.items():
print(f"DataFrame for {name}:")
#df.show() # Display the contents of the DataFrame
# COMMAND ----------
# MAGIC %md
# MAGIC ## Read a file from MongoDB
# MAGIC ### Product Category Names
# COMMAND ----------
from pymongo import MongoClient
import pandas as pd
# importing module
hostname = "7nbzb.h.filess.io"
database = "ecomprojectNoSQL_ispaidsend"
port = "27018"
username = "ecomprojectNoSQL_ispaidsend"
password = "<password>"
uri = "mongodb://" + username + ":" + password + "@" + hostname + ":" + port + "/" + database
# Connect with the portnumber and host
client = MongoClient(uri)
# Access database
mydatabase = client[database]
collection = mydatabase["product_categories"]
# Convert to pandas DataFrame
mongo_data = pd.DataFrame(list(collection.find()))
# Drop column not required
mongo_data.drop("_id", axis=1, inplace=True)
# Convert to Spark DataFrame
mongo_spark_df = spark.createDataFrame(mongo_data)
display(mongo_spark_df)
# COMMAND ----------
# MAGIC %md
# MAGIC
# COMMAND ----------
# MAGIC %md
# MAGIC ### Cleaning the data
# COMMAND ----------
from pyspark.sql.functions import col, to_date, datediff, current_date, month, year, when
# COMMAND ----------
def clean_dataframe(df,name):
print(f"Cleaning " + name)
# Drop duplicates
cleaned_df = df.dropDuplicates().na.drop("all")
#display(cleaned_df)
return cleaned_df
# COMMAND ----------
# Create a new dictionary to hold cleaned DataFrames
cleaned_dataframes = {}
# Iterate through the dictionary of DataFrames and apply the cleaning function
for name, df in dataframes.items():
cleaned_name = f"{name}_cleaned" # Create a new name with suffix
cleaned_df = clean_dataframe(df, name) # Clean the DataFrame
cleaned_dataframes[cleaned_name] = cleaned_df # Store the cleaned DataFrame in the new dictionary
# COMMAND ----------
cleaned_dataframes
# COMMAND ----------
# MAGIC %md
# MAGIC ### 1. Customers
# COMMAND ----------
customers_df = cleaned_dataframes["olist_customers_dataset_cleaned"]
# Display the first 5 rows in a cleaner format
display(customers_df.limit(5))
# COMMAND ----------
# MAGIC %md
# MAGIC ### 2. Geolocation
# COMMAND ----------
geolocation_df = cleaned_dataframes["olist_geolocation_dataset_cleaned"]
# Display the first 5 rows in a cleaner format
display(geolocation_df.limit(5))
# COMMAND ----------
# MAGIC %md
# MAGIC ### 3. Order items
# COMMAND ----------
items_df = cleaned_dataframes["olist_order_items_dataset_cleaned"]
# Display the first 5 rows in a cleaner format
display(items_df.limit(5))
# COMMAND ----------
# MAGIC %md
# MAGIC ### 4. Order Payments
# COMMAND ----------
order_payments_df = cleaned_dataframes["olist_order_payments_dataset_cleaned"]
# Display the first 5 rows in a cleaner format
display(order_payments_df.limit(5))
# COMMAND ----------
# MAGIC %md
# MAGIC ### 5. Order Reviews
# COMMAND ----------
order_reviews_df = cleaned_dataframes["olist_order_reviews_dataset_cleaned"]
# Display the first 5 rows in a cleaner format
display(order_reviews_df.limit(5))
# COMMAND ----------
# MAGIC %md
# MAGIC ### 6. Orders
# COMMAND ----------
orders_df = cleaned_dataframes["olist_orders_dataset_cleaned"]
# COMMAND ----------
### Convert Date Columns
orders_df = orders_df \
.withColumn("order_delivered_customer_date", to_date(col("order_delivered_customer_date"))) \
.withColumn("order_estimated_delivery_date", to_date(col("order_estimated_delivery_date")))
# COMMAND ----------
### Calculate Delivery and Time Delays
orders_df = orders_df \
.withColumn("delivery_lead_time", datediff("order_delivered_customer_date", "order_purchase_timestamp")) \
.withColumn("estimated_delivery_time", datediff("order_estimated_delivery_date", "order_purchase_timestamp")) \
.withColumn("delay_days", (col("delivery_lead_time") - col("estimated_delivery_time")))
# COMMAND ----------
# Display the first 5 rows in a cleaner format
display(orders_df.limit(5))
# COMMAND ----------
# MAGIC %md
# MAGIC ### 7. Products
# COMMAND ----------
products_df = cleaned_dataframes["olist_products_dataset_cleaned"]
# Display the first 5 rows in a cleaner format
display(products_df.limit(5))
# COMMAND ----------
# MAGIC %md
# MAGIC ### 8. Sellers
# COMMAND ----------
sellers_df = cleaned_dataframes["olist_sellers_dataset_cleaned"]
# Display the first 5 rows in a cleaner format
display(sellers_df .limit(5))
# COMMAND ----------
# MAGIC %md
# MAGIC ## Spark Transformations Vs Actions
# MAGIC
# MAGIC ### Transformations
# MAGIC
# MAGIC Transformations are operations on DataFrames that return a new DataFrame. They are lazily evaluated, meaning they do not execute immediately but build a logical plan that is executed when an action is performed.
# MAGIC
# MAGIC 𝟏. 𝐁𝐚𝐬𝐢𝐜 𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧𝐬:
# MAGIC 𝐬𝐞𝐥𝐞𝐜𝐭(): Select specific columns.
# MAGIC 𝐟𝐢𝐥𝐭𝐞𝐫(): Filter rows based on a condition.
# MAGIC 𝐰𝐢𝐭𝐡𝐂𝐨𝐥𝐮𝐦𝐧():Add or replace a column.
# MAGIC 𝐝𝐫𝐨𝐩(): Remove columns.
# MAGIC 𝐰𝐡𝐞𝐫𝐞(𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧): Equivalent to filter(condition).
# MAGIC 𝐝𝐫𝐨𝐩(*𝐜𝐨𝐥𝐬): Returns a new DataFrame with columns dropped.
# MAGIC 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭():Remove duplicate rows.
# MAGIC 𝐬𝐨𝐫𝐭(): Sort the DataFrame by columns.
# MAGIC 𝐨𝐫𝐝𝐞𝐫𝐁𝐲(): Order the DataFrame by columns.
# MAGIC
# MAGIC 𝟐. 𝐀𝐠𝐠𝐫𝐞𝐠𝐚𝐭𝐢𝐨𝐧 𝐚𝐧𝐝 𝐆𝐫𝐨𝐮𝐩𝐢𝐧𝐠:
# MAGIC 𝐠𝐫𝐨𝐮𝐩𝐁𝐲(): Group rows by column values.
# MAGIC 𝐚𝐠𝐠(): Aggregate data using functions.
# MAGIC 𝐜𝐨𝐮𝐧𝐭(): Count rows.
# MAGIC 𝐬𝐮𝐦(*𝐜𝐨𝐥𝐬):Computes the sum for each numeric column.
# MAGIC 𝐚𝐯𝐠(*𝐜𝐨𝐥𝐬): Computes the average for each numeric column.
# MAGIC 𝐦𝐢𝐧(*𝐜𝐨𝐥𝐬):Computes the minimum value for each column.
# MAGIC 𝐦𝐚𝐱(*𝐜𝐨𝐥𝐬): Computes the maximum value for each column.
# MAGIC
# MAGIC 𝟑. 𝐉𝐨𝐢𝐧𝐢𝐧𝐠 𝐃𝐚𝐭𝐚𝐅𝐫𝐚𝐦𝐞𝐬:
# MAGIC 𝐣𝐨𝐢𝐧(𝐨𝐭𝐡𝐞𝐫, 𝐨𝐧=𝐍𝐨𝐧𝐞, 𝐡𝐨𝐰=𝐍𝐨𝐧𝐞): Joins with another DataFrame using the given join expression.
# MAGIC 𝐮𝐧𝐢𝐨𝐧(): Combine two DataFrames with the same schema.
# MAGIC 𝐢𝐧𝐭𝐞𝐫𝐬𝐞𝐜𝐭(): Return common rows between DataFrames.
# MAGIC
# MAGIC 𝟒. 𝐀𝐝𝐯𝐚𝐧𝐜𝐞𝐝 𝐓𝐫𝐚𝐧𝐬𝐟𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧𝐬:
# MAGIC 𝐰𝐢𝐭𝐡𝐂𝐨𝐥𝐮𝐦𝐧𝐑𝐞𝐧𝐚𝐦𝐞𝐝(): Rename a column.
# MAGIC 𝐝𝐫𝐨𝐩𝐃𝐮𝐩𝐥𝐢𝐜𝐚𝐭𝐞𝐬(): Drop duplicate rows based on columns.
# MAGIC 𝐬𝐚𝐦𝐩𝐥𝐞(): Sample a fraction of rows.
# MAGIC 𝐥𝐢𝐦𝐢𝐭(): Limit the number of rows.
# MAGIC
# MAGIC 𝟓. 𝐖𝐢𝐧𝐝𝐨𝐰 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬:
# MAGIC 𝐨𝐯𝐞𝐫(𝐰𝐢𝐧𝐝𝐨𝐰𝐒𝐩𝐞𝐜): Defines a window specification for window functions.
# MAGIC 𝐫𝐨𝐰_𝐧𝐮𝐦𝐛𝐞𝐫().𝐨𝐯𝐞𝐫(𝐰𝐢𝐧𝐝𝐨𝐰𝐒𝐩𝐞𝐜): Assigns a row number starting at 1 within a window partition.
# MAGIC rank().over(windowSpec): Provides the rank of rows within a window partition.
# MAGIC
# MAGIC ### Actions
# MAGIC
# MAGIC Actions trigger the execution of the transformations and return a result to the driver program or write data to an external storage system.
# MAGIC
# MAGIC 1. Basic Actions:
# MAGIC show(): Display the top rows of the DataFrame.
# MAGIC collect(): Return all rows as an array.
# MAGIC count(): Count the number of rows.
# MAGIC take(): Return the first N rows as an array.
# MAGIC first(): Return the first row.
# MAGIC head(): Return the first N rows.
# MAGIC
# MAGIC 2. Writing Data:
# MAGIC write(): Write the DataFrame to external storage.
# MAGIC write.mode(): Specify save mode (e.g., overwrite, append).
# MAGIC save(): Save the DataFrame to a specified path.
# MAGIC toJSON(): Convert the DataFrame to a JSON dataset.
# MAGIC
# MAGIC 3. Other Actions:
# MAGIC foreach(): Apply a function to each row.
# MAGIC foreachPartition(): Apply a function to each partition.
# COMMAND ----------
# MAGIC %md
# MAGIC ### Joining Data
# COMMAND ----------
customer_orders_df = orders_df \
.join(customers_df, orders_df.customer_id == customers_df.customer_id, "left") \
.drop(orders_df.customer_id)
# COMMAND ----------
display(customer_orders_df)
# COMMAND ----------
order_payments_df = customer_orders_df \
.join(order_payments_df, customer_orders_df.order_id == order_payments_df.order_id, "left") \
.drop(order_payments_df.order_id)
# COMMAND ----------
display(order_payments_df)
# COMMAND ----------
orders_items_df = order_payments_df \
.join(items_df, "order_id", "left")
# COMMAND ----------
orders_items_products_df = orders_items_df \
.join(products_df, orders_items_df.product_id == products_df.product_id, "left") \
.drop(products_df.product_id)
# COMMAND ----------
display(orders_items_products_df)
# COMMAND ----------
final_df = orders_items_products_df \
.join(sellers_df, orders_items_products_df.seller_id == sellers_df.seller_id, "left") \
.drop(sellers_df.seller_id)
# COMMAND ----------
final_df = final_df \
.join(mongo_spark_df, "product_category_name", "left")
# COMMAND ----------
display(final_df)
# COMMAND ----------
# MAGIC %md
# MAGIC ### Export Transformed Data to Silver Layer as a Parquet file
# COMMAND ----------
final_df.write \
.mode("overwrite") \
.parquet("abfss://[email protected]/silver")
# COMMAND ----------
# MAGIC %md
# MAGIC