-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDifModel.py
executable file
·47 lines (40 loc) · 1.64 KB
/
DifModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
'''
Each model is referred to using a modelname and must contain must contain three methods
intializemodelname
modelname
fitmodelname
T2SE : Simple diffusion exponential decay model
last modification: 6-3-14
'''
import lmfit
import numpy as np
def initializeDifModel (nroi=None,bvalue=None, data=None, roi = None, useROIs = False, B=0):
"""initialize parameters for DifModel """
nDifModelparams =2 #max number of parameters, some may be fixed
if nroi == None: #if no parameters are passed return the number of fitting parameters for this model
return nDifModelparams
ADCparams = lmfit.Parameters() #define parameter dictionary
paramlist = [] # list of parameters used for this model
if useROIs: #if true use ROI values else use best guess
ADCguess = roi.ADC
else:
ADCguess=0.001
ADCparams.add('ADC', value= ADCguess, min=0., vary = True)
paramlist.append('ADC')
ADCparams.add('Si', value= np.amax(data), vary = True)
paramlist.append('Si')
# ADCparams.add('B', value= 0, min=0., vary = False) #baseline for Rician noise correction, not implemented
# paramlist.append('B')
return [ADCparams,paramlist]
# define objective function: returns the array to be minimized
def DifModel(params, bvalue, data):
""" Diffusion model; bvalue array"""
Si = params['Si'].value
ADC = params['ADC'].value
model = Si*np.exp(-bvalue*ADC)
return (model - data)
def fitDifModel(params, bvalue, data):
"""fits signal vs bvalue data to DifModel model"""
result = lmfit.minimize(DifModel, params, args=(bvalue, data))
final = data + result.residual
return final