-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathMinimumStatistics.cpp
241 lines (218 loc) · 6.31 KB
/
MinimumStatistics.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
* MinimumStatistics.cpp
*
* Created on: 2015/11/19
* Author: Shunsuke Aihara([email protected])
*/
#include "MinimumStatistics.h"
MinimumStatistics::MinimumStatistics(int size, int samplingrate, double *noise_profile) {
// TODO Auto-generated constructor stub
int i = 0;
counter = 0;
fftsize = size;
double frametime = (double)fftsize * 2.0 / (double)samplingrate;
snrexp = (-1.0)*frametime/0.064;
av = 2.12;
alpha_c_lambda = 0.7;
U = 8;
V = 12;
D = U * V;
M = 0.87;
M2 = 0.64;
H = 3.5;
subwc = V - 1;
ibuf = 0;
lmin_flag_lambda = makeVector(fftsize, int(0));
alpha_max = 0.96;
beta_max = 0.8;
float qeqmax = 14.0;
qeqimin = 1/qeqmax;
clear_max = 4294836225; // max of uint32_t
actmin_lambda = makeVector(fftsize, clear_max);
actmin_lambda_sub = makeVector(fftsize, clear_max);
Pmin_u_lambda = makeVector(fftsize, clear_max);
actbuf = new double*[U];
for (i = 0;i < U; i++){
actbuf[i] = makeVector(fftsize, clear_max);
}
P_lambda = new double[fftsize];
memcpy(P_lambda, noise_profile, sizeof(double) * fftsize);
sn2_lambda = new double[fftsize];
memcpy(sn2_lambda, noise_profile, sizeof(double) * fftsize);
eP_lambda = new double[fftsize];
memcpy(eP_lambda, noise_profile, sizeof(double) * fftsize);
eP2_lambda = new double[fftsize];
memcpy(eP2_lambda, noise_profile, sizeof(double) * fftsize);
powerVector(fftsize, eP2_lambda);
Pmin_u_lambda = new double[fftsize];
memcpy(Pmin_u_lambda, noise_profile, sizeof(double) * fftsize);
power = new double[fftsize];
alpha_lambda_hat = new double[fftsize];
Qeq_lambda_inverse = new double[fftsize];
Bmin_lambda = new double[fftsize];
Bmin_lambda_sub = new double[fftsize];
k_mod = new int[fftsize];
}
MinimumStatistics::~MinimumStatistics() {
// TODO Auto-generated destructor stub
int i = 0;
for (i = 0;i < U; i++){
delete[] actbuf[i];
}
delete[] actbuf;
delete[] lmin_flag_lambda;
delete[] actmin_lambda;
delete[] actmin_lambda_sub;
delete[] Pmin_u_lambda;
delete[] P_lambda;
delete[] sn2_lambda;
delete[] eP_lambda;
delete[] eP2_lambda;
delete[] power;
delete[] alpha_lambda_hat;
delete[] Qeq_lambda_inverse;
delete[] Bmin_lambda;
delete[] Bmin_lambda_sub;
delete[] k_mod;
}
void MinimumStatistics::process(double *amp){
int i = 0;
int j = 0;
for (i = 0; i< fftsize; i++){
power[i] = amp[i] * amp[i];
}
// eq9
double tmp = (sumVector(fftsize, P_lambda)/sumVector(fftsize, power) - 1);
double alpha_c_lambda_tilde = 1.0 / (tmp * tmp + 1.0);
// eq10
if (alpha_c_lambda_tilde > 0.7){
tmp = alpha_c_lambda_tilde;
}else{
tmp = 0.7;
}
alpha_c_lambda = alpha_c_lambda * 0.7 + 0.3 * tmp;
// eq11
for(i = 0; i < fftsize; i++){
tmp = (P_lambda[i] / sn2_lambda[i] - 1.0);
alpha_lambda_hat[i] = (alpha_max / alpha_c_lambda) / (tmp * tmp + 1);
}
// eq12
double snr = sumVector(fftsize, P_lambda) / sumVector(fftsize, sn2_lambda);
tmp = powf(snr, snrexp);
if (tmp > 0.3){
tmp = 0.3;
}
for(i = 0; i < fftsize; i++){
if (alpha_lambda_hat[i] < tmp){
alpha_lambda_hat[i] = tmp;
}
}
// eq4 smoothed periodgram
for(i = 0; i < fftsize; i++){
P_lambda[i] = alpha_lambda_hat[i] * P_lambda[i] + (1.0 - alpha_lambda_hat[i]) * power[i];
}
for(i = 0; i < fftsize; i++){
// eq20
tmp = alpha_lambda_hat[i] * alpha_lambda_hat[i];
if (tmp > beta_max){
tmp = beta_max;
}
eP_lambda[i] = tmp * eP_lambda[i] + (1.0 - tmp) * P_lambda[i];
eP2_lambda[i] = tmp * eP2_lambda[i] + (1.0 - tmp) * P_lambda[i] * P_lambda[i];
// eq22
tmp = eP2_lambda[i] - eP_lambda[i] * eP_lambda[i];
// eq23
tmp = tmp / (sn2_lambda[i] * sn2_lambda[i] * 2.0);
if (tmp > 0.5){
tmp = 0.5;
}
if (tmp < qeqimin/(counter + 1)){
tmp = qeqimin/(counter + 1);
}
Qeq_lambda_inverse[i] = tmp;
}
double eQ_lambda = sumVector(fftsize, Qeq_lambda_inverse) / fftsize;
double Bc_lambda = 1.0 + av * sqrtf(eQ_lambda);
// eq 16
for(i = 0; i < fftsize; i++){
// for overall window of length D
tmp = (1.0 / Qeq_lambda_inverse[i] - 2 * M) / (1.0 - M);
Bmin_lambda[i] = 1.0 + (D - 1) * 2.0 / tmp;
// for subwindow U of length V
tmp = (1.0 / Qeq_lambda_inverse[i] - 2 * M2) / (1.0 - M2);
Bmin_lambda_sub[i] = 1.0 + (V - 1) * 2.0 / tmp;
}
// calc actmin,
resetVector(fftsize, k_mod, 0); // reset to 0
for(i = 0; i < fftsize; i++){
// if (P * Bmin * Bc < actmin)
tmp = P_lambda[i] * Bmin_lambda[i] * Bc_lambda;
if (actmin_lambda[i] > tmp){
actmin_lambda[i] = tmp;
actmin_lambda_sub[i] = P_lambda[i] * Bmin_lambda_sub[i] * Bc_lambda;
k_mod[i] = 1;
}
}
if(0 < subwc && subwc < V-1){
for(i = 0; i < fftsize; i++){
// sample is NOT the fisrt or the last; middle of buffer allows a local minimum
if (lmin_flag_lambda[i] + k_mod[i] >= 1){
lmin_flag_lambda[i] = 1;
}else{
lmin_flag_lambda[i] = 0;
}
if ( Pmin_u_lambda[i] > actmin_lambda_sub[i]){
Pmin_u_lambda[i] = actmin_lambda_sub[i];
}
}
memcpy(sn2_lambda, Pmin_u_lambda, sizeof(double) * fftsize);
subwc++;
}else if(subwc >= V - 1){
// store actmin_lamnda, note actbuf is NOT cyclic!
ibuf = ibuf % U;
memcpy(actbuf[ibuf], actmin_lambda, sizeof(double) * fftsize);
ibuf++;
// calc noise_slope_max
double noise_slope_max;
if(eQ_lambda < 0.03){
noise_slope_max = 8.0;
}else if(eQ_lambda < 0.05){
noise_slope_max = 4.0;
}else if(eQ_lambda < 0.06){
noise_slope_max = 2.0;
}else{
noise_slope_max = 1.2;
}
// sample IS the last; end of buffer lets finishing subwindow process and a buffer switch
for(i = 0; i < fftsize; i++){
if (lmin_flag_lambda[i] - k_mod[i] >= 0){
lmin_flag_lambda[i] = 1;
}else{
lmin_flag_lambda[i] = 0;
}
// find Pmin_u, the minimum of the last U stored value of actmin
Pmin_u_lambda[i] = clear_max;
for(j = 0; j < U; j++){
if (Pmin_u_lambda[i] > actbuf[j][i]){
Pmin_u_lambda[i] = actbuf[j][i];
}
}
// replace all previously stored values of actmin by actminsub
if (lmin_flag_lambda[i] == 1 && actmin_lambda_sub[i] < noise_slope_max * Pmin_u_lambda[i] && Pmin_u_lambda[i] < actmin_lambda_sub[i]){
Pmin_u_lambda[i] = actmin_lambda_sub[i];
for(j = 0; j < U; j++){
actbuf[j][i] = Pmin_u_lambda[i];
}
}
}
resetVector(fftsize, lmin_flag_lambda, 0);
resetVector(fftsize, actmin_lambda, clear_max);
subwc = 0;
}else{
subwc++;
}
counter++;
}
void MinimumStatistics::updateNoiseProfile(double *noise){
memcpy(noise, sn2_lambda, sizeof(double) * fftsize);
}