-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
83 lines (57 loc) · 1.84 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from Types import Iris_Data_Sample, Iris_Dataset
from math import sqrt, exp, floor, pow, pi
import random
from typing import Dict, List
def gaussianPdf(x: float, mean: float, stddev: float):
return (1 / (stddev * (sqrt(2 * pi)))) * (exp((-1 / 2) * pow(((x - mean) / (stddev)), 2)))
def customArgmax(data: Dict[str, float]):
maxKey = None
maxValue = None
for key in data:
if maxKey == None:
maxKey = key
if maxValue == None or maxValue < data[key]:
maxValue = data[key]
maxKey = key
return maxKey
def shuffleArray(array: list):
arrayCopy = array.copy()
random.shuffle(arrayCopy)
return arrayCopy
def splitArr(array: list, ratio: float):
n = len(array)
m = floor(n * ratio)
firstPart: list = array[0: m]
secondPart: list = array[m: n]
return [firstPart, secondPart]
def convertArrayToDatasamples(data: List[List[str]]):
noOfSamples = 0
noOfFeatures = 0
noOfSamples = len(data)
noOfFeatures = len(data[0]) - 1 if (noOfSamples > 0) else 0
dataset: List[Iris_Data_Sample] = []
for row in data:
features: List[float] = list(map(float, row[:noOfFeatures]))
category: str = row[noOfFeatures]
dataSample: Iris_Data_Sample = Iris_Data_Sample(
features,
category
)
dataset.append(dataSample)
return [
noOfFeatures,
noOfSamples,
dataset
]
def convertJsonObjectToIrisSample(sample: dict):
dataSample = Iris_Data_Sample(
sample["features"],
sample["category"]
)
return dataSample
def convertJsonDatasetToIrisDataset(jsonDataset: List[dict]):
dataset: Iris_Dataset = []
for sample in jsonDataset:
dataSample = convertJsonObjectToIrisSample(sample)
dataset.append(dataSample)
return dataset