-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbinary_search_tree.cpp
340 lines (316 loc) · 8.32 KB
/
binary_search_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*
***************************
* *
* Author: Swaraj Deep *
* *
***************************
*/
#include <iostream>
#include <queue>
using namespace std;
template <typename T>
struct node
{ // structure of a node in the BST
T data; // Data field of the node
node *left; // Address of the left child
node *right; // Address of the right child
};
template <typename T>
class BST
{ // BST Class
private:
int len; // Keeps track of current number of elements in the BST
node<T> *root; // stores the root node of the BST
node<T> *get_new_node(const T &); // get the new node for the BST
void remove_all(node<T> *); // Remove all the nodes from the BST
node<T> *insert(node<T> *, const T &); // helper to insert the node to the BST
node<T> *search(node<T> *, const T &); // helper to search for the data in BST
node<T> *delete_node(node<T> *, const T &); // helper to delete the node of the BST
public:
BST(); // Constructor of the BST
~BST(); // Destructor of the BST
int get_length(); // Get the length of the BST
void add(const T &); // Add the given element to the BST
node<T> *find(const T &); // Check whether the given element is present in the BST or not
node<T> *get_root(); // get the root of the BST
void remove(const T &); // Remove a given node from the BST and return the reference of the root node
void print_preorder(node<T> *); // Prints the preorder of the BST
void print_inorder(node<T> *); // Prints the inorder of the BST
void print_postorder(node<T> *); // Prints the postorder of the BST
void print_levelorder(node<T> *); // Prints the levelorder of the BST
node<T> *inorder_successor(node<T> *); // Returns the reference to the inorder successor of the given node roference
node<T> *find_min(node<T> *); // Returns the reference to the minimum element in the passed reference
node<T> *find_max(node<T> *); // Returns the reference to the maxm element in the passed reference
int get_height(node<T> *); // Returns the height of the tree
};
template <typename T>
int BST<T>::get_height(node<T> *root_ptr)
{
if (root_ptr == NULL)
{
return -1;
}
return (max(get_height(root_ptr->left), get_height(root_ptr->right)) + 1);
}
template <typename T>
BST<T>::BST()
{
this->len = 0;
this->root = NULL;
}
template <typename T>
node<T> *BST<T>::get_new_node(const T &data)
{
node<T> *new_node = new node<T>;
new_node->data = data;
new_node->left = NULL;
new_node->right = NULL;
return new_node;
}
template <typename T>
BST<T>::~BST()
{
this->len = 0;
remove_all(this->root);
this->root = NULL;
}
template <typename T>
int BST<T>::get_length()
{
return this->len; // Get the length of the BST
}
template <typename T>
node<T> *BST<T>::get_root()
{
return this->root; // Get the root of the BST
}
template <typename T> // Duplicates are not allowed
node<T> *BST<T>::insert(node<T> *root_ptr, const T &data)
{
if (root_ptr == NULL)
{
return get_new_node(data);
}
else if (data < root_ptr->data)
{
root_ptr->left = insert(root_ptr->left, data);
}
else if (data > root_ptr->data)
{
root_ptr->right = insert(root_ptr->right, data);
}
return root_ptr;
}
template <typename T>
void BST<T>::add(const T &data)
{
this->len++;
this->root = insert(this->root, data);
}
template <typename T>
node<T> *BST<T>::search(node<T> *root_ptr, const T &data)
{
if (root_ptr == NULL)
{
return NULL;
}
else if (root_ptr->data == data)
{
return root_ptr;
}
else if (root_ptr->data < data)
{
search(root_ptr->right, data);
}
else
{
search(root_ptr->left, data);
}
}
template <typename T>
node<T> *BST<T>::find(const T &data)
{
return search(this->root, data);
}
template <typename T>
void BST<T>::print_preorder(node<T> *root_ptr)
{
if (root_ptr == NULL)
{
return;
}
else
{
cout << root_ptr->data << ' ';
print_preorder(root_ptr->left);
print_preorder(root_ptr->right);
}
}
template <typename T>
void BST<T>::print_inorder(node<T> *root_ptr)
{
if (root_ptr == NULL)
{
return;
}
else
{
print_inorder(root_ptr->left);
cout << root_ptr->data << ' ';
print_inorder(root_ptr->right);
}
}
template <typename T>
void BST<T>::print_levelorder(node<T> *root_ptr)
{
if (root_ptr == NULL)
{
return;
}
else
{
queue<node<T> *> node_queue;
node_queue.push(root_ptr);
while (!node_queue.empty())
{
node<T> *current_node = node_queue.front();
cout << current_node->data << ' ';
node_queue.pop();
if (current_node->left)
{
node_queue.push(current_node->left);
}
if (current_node->right)
{
node_queue.push(current_node->right);
}
}
}
}
template <typename T>
void BST<T>::print_postorder(node<T> *root_ptr)
{
if (root_ptr == NULL)
{
return;
}
else
{
print_postorder(root_ptr->left);
print_postorder(root_ptr->right);
cout << root_ptr->data << ' ';
}
}
template <typename T>
node<T> *BST<T>::find_min(node<T> *root_ptr)
{
while (root_ptr->left != NULL)
{
root_ptr = root_ptr->left;
}
return root_ptr;
}
template <typename T>
node<T> *BST<T>::find_max(node<T> *root_ptr)
{
while (root_ptr->right != NULL)
{
root_ptr = root_ptr->right;
}
return root_ptr;
}
template <typename T>
void BST<T>::remove_all(node<T> *root_ptr)
{
if (root_ptr == NULL)
{
return;
}
remove_all(root_ptr->left);
remove_all(root_ptr->right);
delete root_ptr;
}
template <typename T>
node<T> *BST<T>::inorder_successor(node<T> *root_ptr)
{
if (root_ptr == NULL)
{
return NULL;
}
// Now if the node has a right subtree return the minimum of that subtree
if (root_ptr->right != NULL)
{
return find_min(root_ptr->right);
}
else
{
// Traverse the tree from the root node until that value is found (value=>node of which successor is to be found)
node<T> *successor = NULL;
node<T> *ancestor = this->root;
while (ancestor != root_ptr)
{
if (root_ptr->data < ancestor->data)
{
successor = ancestor;
ancestor = ancestor->left;
}
else
{
ancestor = ancestor->right;
}
}
return successor;
}
}
template <typename T>
node<T> *BST<T>::delete_node(node<T> *root_ptr, const T &data)
{
if (root_ptr == NULL)
{
return root_ptr;
}
else if (data < root_ptr->data)
{
root_ptr->left = delete_node(root_ptr->left, data);
}
else if (data > root_ptr->data)
{
root_ptr->right = delete_node(root_ptr->right, data);
}
else
{
// Node to be deleted has been found here
// Case 1: No Child
if (root_ptr->left == NULL && root_ptr->right == NULL)
{
delete root_ptr;
}
else if (root_ptr->left == NULL)
{ // Case 2: One Child
node<T> *temp = root_ptr;
root_ptr = root_ptr->right;
delete temp;
}
else if (root_ptr->right == NULL)
{
node<T> *temp = root_ptr;
root_ptr = root_ptr->left;
delete temp;
}
else
{
// Case 3: With both the children
node<T> *temp = find_min(root_ptr->right); // We could also find the maximum of the left subtree
root_ptr->data = temp->data;
root_ptr->right = delete_node(root_ptr->right, temp->data);
}
}
return root_ptr;
}
template <typename T>
void BST<T>::remove(const T &data)
{
this->root = delete_node(this->root, data);
this->len--;
return;
}