forked from dywsjtu/apparate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_nlp_results.py
84 lines (72 loc) · 3.16 KB
/
plot_nlp_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# %%
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from plotting_utils import parse_result_file, values_to_cdf
# NOTE(ruipan): use these for the final version. use the abs path here for testing.
BATCH_DECISION_PATH = "../../batch_decisions/{model}_{arrival}.pickle"
APPARATE_LATENCY_PATH = "../../apparate_latency/{model}_{dataset}_{arrival}.pickle"
OPTIMAL_LATENCY_PATH = "../../optimal_latency/{model}_{dataset}_optimal.pickle"
# BATCH_DECISION_PATH = "/home/ruipan/apparate-ae/data/batch_decisions/{model}_{arrival}.pickle"
# APPARATE_LATENCY_PATH = "/home/ruipan/apparate-ae/data/apparate_latency/{model}_{dataset}_{arrival}.pickle"
# OPTIMAL_LATENCY_PATH = "/home/ruipan/apparate-ae/data/optimal_latency/{model}_{dataset}_optimal.pickle"
matplotlib.rcParams["figure.figsize"] = (4, 2) # (4, 1.3)
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['ps.fonttype'] = 42
datasets = ["amazon_reviews", "imdb"]
models = ["distilbert-base", "bert-base", "bert-large", "gpt2-medium"]
for model in models:
fig, ax = plt.subplots()
dataset_colors = ["tab:green", "tab:red"]
dataset_linestyles = ["dashed", "dotted", ]
for dataset in datasets:
dataset_label_name = {
"amazon_reviews": "Amazon",
"imdb": "IMDB",
}[dataset]
dataset_color = dataset_colors.pop(0)
dataset_linestyle = dataset_linestyles.pop(0)
results = parse_result_file(
model.lower(),
dataset.lower(),
slo_multiplier=None,
arrival="azure",
BATCH_DECISION_PATH=BATCH_DECISION_PATH,
APPARATE_LATENCY_PATH=APPARATE_LATENCY_PATH,
OPTIMAL_LATENCY_PATH=OPTIMAL_LATENCY_PATH,
)
serving_time_ee = results["serving_time_ee"]
serving_time_vanilla = results["serving_time_vanilla"]
print("="*50)
print(f"model {model} dataset {dataset}")
print(f"50 percentile win {np.percentile(serving_time_vanilla, 50) - np.percentile(serving_time_ee, 50)}ms")
print(f"25 percentile win {np.percentile(serving_time_vanilla, 25) - np.percentile(serving_time_ee, 25)}ms")
ax.plot(
serving_time_ee,
values_to_cdf(serving_time_ee),
label=f"{dataset_label_name}",
color={
"amazon_reviews": "tab:green",
"imdb": "tab:red",
}[dataset],
linestyle=dataset_linestyle,
)
ax.plot(
serving_time_vanilla,
values_to_cdf(serving_time_vanilla),
label=f"{dataset_label_name}-V",
color="tab:blue",
# linestyle="solid",
linestyle=dataset_linestyle,
)
ax.set_xlabel(f"Latency (ms)", fontsize=15)
ax.set_ylabel(f"CDF", fontsize=15)
ax.set_yticks([0.0, 0.25, 0.5, 0.75, 1.0])
ax.legend(loc="upper left", ncols=1, fontsize=10)
ax.set_axisbelow(True) # puts the grid behind the bars
ax.grid(color='lightgrey', linestyle='dashed', axis="both", linewidth=0.8)
plt.tight_layout()
plt.show()
fig.savefig(f'./nlp_results_{model.lower()}.pdf', bbox_inches='tight', dpi=500)
plt.close()
# %%