-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMain.cpp
345 lines (285 loc) · 13.4 KB
/
Main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
//*** IMPLEMENTATION OF AN ENHANCED ADAPTATION
//*** OF THE REINHARD COLOUR TRANSFER METHOD
// See 'main' routine for further details.
//
// Copyright © Terry Johnson January 11/01/2020
// Revised 07/07/2020 (Version 2)
// https://github.com/TJCoding
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/photo/photo.hpp>
#include <iostream>
int main(int argc, char *argv[]);
cv::Mat adjust_covariance(cv::Mat Lab[3], cv::Mat sLab[3], float covLim);
cv::Mat Rescale(cv::Mat lab_image);
int main(int argc, char *argv[])
{
// Transfers the colour distribution from the source image to
// the target image by matching the mean and standard deviation
// and the colour cross correlation in the L*a*b* colour space.
// The implementation is an enhancement of a method described in
// "Color Transfer between Images" paper by Reinhard et al., 2001,
// but with additional processing options as follows.
// Option 1
// There is an option to match the cross correlation between
// the colour channels 'a' and 'b'. Full matching, no
// matching or restricted matching may be specified.
// (See the note at the end of the code).
// Option 2
// There is an option to retain the shading of the target image
// rather than adapt to the shading in the source image so
// that the processing is implemented as a pure colour transfer.
// Option 3
// There is an option to scale the data to the available data
// range when saturation (clipping) would otherwise occur.
// Option 4
// There is an option to iterate the processing more than once
// (See the note at the end of the code).
// ##########################################################################
// ####################### PROCESSING SELECTIONS ##########################
// ##########################################################################
// Select the processing options in accordance with the
// preceding descriptions.
float CrossCovarianceLimit = 0.5; // Option 1 (Default is '0.5'.)
bool KeepOriginalShading = true; // Option 2 (Default is 'true'.)
bool ScaleRatherThanClip = true; // Option 3 (Default is 'true'.)
int iterations = 2; // Option 4 (Default is '2'.)
// Specify the image files that are to be processed,
// where 'source image' provides the colour scheme that
// is to be applied to 'target image'.
std::string targetname = "images/Flowers_target.jpg";
std::string sourcename = "images/Flowers_source.jpg";
// ###########################################################################
// ###########################################################################
// ###########################################################################
// Declare variables
cv::Mat targetf, sourcef, Lab[3], sLab[3];
cv::Scalar tmean, tdev, smean, sdev;
// Read in the files.
cv::Mat target = cv::imread(targetname, 1);
cv::Mat source = cv::imread(sourcename, 1);
// Convert the images from integer to float
target.convertTo(targetf,CV_32FC3,1/255.0);
source.convertTo(sourcef,CV_32FC3,1/255.0);
// Convert the source image from the BGR colour
// space to the L*a*b colour space.
// Estimate the mean and standard deviation of
// colour channels. Split the source image into
// channels and standardise the data in the
// colour channels (channels a and b). The
// standardised data has zero mean and unit
// standard deviation.
cv::cvtColor(sourcef, sourcef, CV_BGR2Lab);
cv::meanStdDev(sourcef, smean, sdev);
cv::split(sourcef,sLab);
sLab[1]=(sLab[1]-smean[1])/sdev[1];
sLab[2]=(sLab[2]-smean[2])/sdev[2];
for (int i=1;i<=iterations;i++)
{
// Condition the target data as previously
// described for the source data.
cv::cvtColor(targetf, targetf, CV_BGR2Lab);
cv::meanStdDev(targetf, tmean, tdev);
cv::split(targetf,Lab);
Lab[1]=(Lab[1]-tmean[1])/tdev[1];
Lab[2]=(Lab[2]-tmean[2])/tdev[2];
// Implement cross covariance processing.
// (no effect for CrossCovarianceLimit=0)
float covLim=CrossCovarianceLimit*i/iterations;
targetf=adjust_covariance(Lab, sLab, covLim);
cv::split(targetf,Lab);
// Rescale the previously standardised colour channels
// so that the means and standard deviations now match
// those of the source image.
Lab[1]=Lab[1]*sdev[1]+smean[1];
Lab[2]=Lab[2]*sdev[2]+smean[2];
// If the original shading is not to be retained, then
// match the shading to that of the source image by
// standardising the data in the 'lightness' channel
// of the target image and then rescaling to match
// the corresponding channel of the source image.
if(!KeepOriginalShading)
{
Lab[0]=(Lab[0]-tmean[0])/tdev[0];
Lab[0]= Lab[0]*sdev[0]+smean[0];
}
cv::merge(Lab,3,targetf);
// The final image data will automatically be clipped to
// the range 0 to 255 (image saturation) unless rescaling
// is selected.
if(ScaleRatherThanClip){targetf=Rescale(targetf);}
// Convert the processed image back to BGR values.
cv::cvtColor(targetf, targetf,CV_Lab2BGR);
}
// Convert to 8 bit format.
targetf.convertTo(target,CV_8UC3,255.0);
// Display and save the final image.
cv::imshow("processed image",target);
cv::imwrite("images/processed.jpg", target);
// Display images until a key is pressed.
cv::waitKey(0);
return 0;
}
cv::Mat adjust_covariance(cv::Mat Lab[3], cv::Mat sLab[3], float covLim)
{
// This routine adjusts colour channels 2 and 3
// of the image within the L*a*b colour space.
// The channels each have zero mean and unit
// standard deviation but their cross correlation
// value will not normally be zero.
//
// The processing reduces the cross correlation between
// the channels to zero but then reintroduces
// correlation such that the new cross correlation
// value matches that for the source image.
//
// Throughout these manipulations the mean channel values
// are maintained at zero and the standard deviations are
// maintained as unity.
//
// The manipulations are based upon the following relationship.
//
// Let z1 and z2 be two independent (zero correlation) variables
// with zero means and unit standard deviations. It can be shown
// that variables a1 and a2 have zero means, unit standard
// deviations, and mutual cross correlation 'R' when:
//
// a1=sqrt((1+R)/2)*z1 + sqrt((1-R)/2)*z2
// a2=sqrt((1+R)/2)*z1 - sqrt((1-R)/2)*z2
//
// The above relationships are applied inversely to derive
// uncorrelated standardised colour channels variables from
// the standardised but correlated input channels.
//
// The above relationships are then applied directly to obtain
// standardised correlated colour channels with correlation
// matched to that of the source image colour channels.
//
// Original processing method attributable to Dr T E Johnson Sept 2019.
// Declare variables
float tcrosscorr, scrosscorr;
float W1, W2, norm;
cv::Mat temp1;
cv::Scalar smean, sdev, temp2;
// Compute the correlation for the target image colour channels.
// The correlation between the standardised variables (zero mean,
// unit standard deviation) can be computed as the mean cross
// product for the two channels.
cv::multiply(Lab[1],Lab[2],temp1);
temp2=cv::mean(temp1);
tcrosscorr =temp2[0];
std::cout<<tcrosscorr<<" =tcrosscorr \n";
// Compute the correlation for the source image colour channels.
cv::multiply(sLab[1],sLab[2],temp1);
temp2=cv::mean(temp1);
scrosscorr =temp2[0];
std::cout<<scrosscorr<<" =scrosscorr \n";
// Adjust the correlation between the standardised input
// channel values.
cv::Mat z1=Lab[1].clone();
cv::Mat z2=Lab[2].clone();
W1= 0.5*sqrt((1+scrosscorr)/(1+tcrosscorr))
+0.5*sqrt((1-scrosscorr)/(1-tcrosscorr));
W2= 0.5*sqrt((1+scrosscorr)/(1+tcrosscorr))
-0.5*sqrt((1-scrosscorr)/(1-tcrosscorr));
if(std::abs(W2)>covLim*std::abs(W1))
{
W2=copysign(covLim*W1,W2);
norm=1.0/sqrt(W1*W1+W2*W2+2*W1*W2*tcrosscorr);
W1=W1*norm;
W2=W2*norm;
}
Lab[1]=W1*z1+W2*z2;
Lab[2]=W1*z2+W2*z1;
cv:merge(Lab,3,temp1);
return temp1;
}
cv::Mat Rescale(cv::Mat lab_image)
{
// Rescales an image in L*a*b format to match
// the permitted range representation in OpenCV
// Declare variables
cv::Mat Lab[3];
cv::Point minLoc, maxLoc;
double minVal, maxVal, scale=0.0, maxDev;
// Split the image into channels.
split(lab_image,Lab);
// The L*a*b format as implemented in OpenCV requires that
// the channel values lie within particular ranges. In the
// absence of any corrective action, values outside the range
// will automatically be clipped to the range limits. This
// would be an arbitrary change to the data which alters its
// properties such that the processing as previously applied
// to the data no longer exactly achieves its intend outcome.
// This routine implements an alternative (also arbitrary)
// modification to the data in which the data in each channel
// is scaled back towards the centre of the range in order to
// prevent range overflow.
//
// Colour channels 'a' and 'b' are scaled jointly to ensure
// consistency.
// Express the maximum and minimum values of the 'a' colour channel
// as fractions of the maximum and minimum permitted values
// (which are 127 and -127). Keep the largest fraction to date.
// A computed fractional value greater than one indicates
// a data value outside the permitted range
cv::minMaxLoc(Lab[1],&minVal, &maxVal, &minLoc, &maxLoc );
scale=std::max(0.0,maxVal/127);
scale=std::max(scale,-minVal/127);
// Process channel 'b' similarly to channel 'a'.
cv::minMaxLoc(Lab[2],&minVal, &maxVal, &minLoc, &maxLoc );
scale=std::max(scale, maxVal/127);
scale=std::max(scale,-minVal/127);
std::cout<<" "<< scale << " scale\n";
// If the largest channel excursion exceeds its permitted
// range, then scale both the image channels back to bring
// them within range.
if (scale>1.0) {Lab[1]=Lab[1]/scale; Lab[2]=Lab[2]/scale;}
// Express the maximum and minimum values of the 'lightness'
// channel as fractions of the permitted deviations.
// (50 +/-50 for the range 0 to 100.) A computed fractional
// value greater than one indicates a data value outside the
// permitted range, in response to which the data is rescaled.
cv::minMaxLoc(Lab[0],&minVal, &maxVal, &minLoc, &maxLoc );
scale=std::max((maxVal-50)/50, -(minVal-50)/50);
if(scale>1) {Lab[0]=(Lab[0]-50)/scale+50;}
merge(Lab,3,lab_image);
return lab_image;
}
// Notes on Cross Correlation Matching.
// ====================================
// Cross correlation matching is performed by operations of the
// form.
// Channel_a = W1*Channel_a + W2*Channel_b
// Channel_b = W1*Channel_b + W2*Channel_a
// as determined by the value of CrossCovarianceLimit.
//
// If CrossCovarianceLimit = 0, W2=0 and no cross correlation
// matching is performed.
// If CrossCovarianceLimit > 0, W2 is clipped if necessary so
// that it cannot lie outside the range
// -CrossCovarianceLimit*W1 to +CrossCovarianceLimit*W1.
// This mechanism may be used to guard against an overly large
// correction term.
// Typically CrossCovarianceLimit might be set to 0.5
//(for a maximum modification corresponding to 50%).
// Notes on Iteration.
// ===================
// The 'Reinhard Method' of color transfer modifies the distribution
// of values in the L*a*b color space and the enhanced version more so.
// In some cases, the modified values may extend outside the permitted
// ranges for 'l', 'a' and 'b' values in the OpenCV implementation.
// Furthermore even values that are in range do not always give
// rise to valid BGR values when taken in combination. For this reason,
// even when the L*a*b values are scaled to be within range, they
// can still give an output image which is different from that intended.
// To overcome this, there is an option to iterate the processing. A target
// image may be processed to align its colours with the source image but
// that resultant might then be processed itself to achieve better
// colour alignment. Experience suggests that two iterations with
// image rescaling (rather than image clipping) gives good outcomes.
// If only one iteration is undertaken, the image colour may be less
// intense. This may be aesthetically more pleasing sometimes but
// two iterations will normally give an image that better matches
// the source image colouration.
// Note that when iteration is performed, the limiting for CrossCovarianceLimit
// is relaxed progressively at each iteration.