|
| 1 | +import { generateKeyBetween } from 'fractional-indexing' |
| 2 | +import { binarySearch, compareKeys, diffHalfOpen } from '../utils.js' |
| 3 | +import type { HRange } from '../utils.js' |
| 4 | + |
| 5 | +// Abstraction for fractionally indexed values |
| 6 | +export type FractionalIndex = string |
| 7 | +export type IndexedValue<V> = [V, FractionalIndex] |
| 8 | + |
| 9 | +export function indexedValue<V>( |
| 10 | + value: V, |
| 11 | + index: FractionalIndex, |
| 12 | +): IndexedValue<V> { |
| 13 | + return [value, index] |
| 14 | +} |
| 15 | + |
| 16 | +export function getValue<V>(indexedVal: IndexedValue<V>): V { |
| 17 | + return indexedVal[0] |
| 18 | +} |
| 19 | + |
| 20 | +export function getIndex<V>(indexedVal: IndexedValue<V>): FractionalIndex { |
| 21 | + return indexedVal[1] |
| 22 | +} |
| 23 | + |
| 24 | +/** |
| 25 | + * Creates a comparator for [key, value] tuples that first compares values, |
| 26 | + * then uses the row key as a stable tie-breaker. |
| 27 | + */ |
| 28 | +export function createKeyedComparator<K extends string | number, T>( |
| 29 | + comparator: (a: T, b: T) => number, |
| 30 | +): (a: [K, T], b: [K, T]) => number { |
| 31 | + return ([aKey, aVal], [bKey, bVal]) => { |
| 32 | + // First compare on the value |
| 33 | + const valueComparison = comparator(aVal, bVal) |
| 34 | + if (valueComparison !== 0) { |
| 35 | + return valueComparison |
| 36 | + } |
| 37 | + // If the values are equal, use the row key as tie-breaker |
| 38 | + // This provides stable, deterministic ordering since keys are string | number |
| 39 | + return compareKeys(aKey, bKey) |
| 40 | + } |
| 41 | +} |
| 42 | + |
| 43 | +export type TopKChanges<V> = { |
| 44 | + /** Indicates which element moves into the topK (if any) */ |
| 45 | + moveIn: IndexedValue<V> | null |
| 46 | + /** Indicates which element moves out of the topK (if any) */ |
| 47 | + moveOut: IndexedValue<V> | null |
| 48 | +} |
| 49 | + |
| 50 | +export type TopKMoveChanges<V> = { |
| 51 | + /** Flag that marks whether there were any changes to the topK */ |
| 52 | + changes: boolean |
| 53 | + /** Indicates which elements move into the topK (if any) */ |
| 54 | + moveIns: Array<IndexedValue<V>> |
| 55 | + /** Indicates which elements move out of the topK (if any) */ |
| 56 | + moveOuts: Array<IndexedValue<V>> |
| 57 | +} |
| 58 | + |
| 59 | +/** |
| 60 | + * A topK data structure that supports insertions and deletions |
| 61 | + * and returns changes to the topK. |
| 62 | + */ |
| 63 | +export interface TopK<V> { |
| 64 | + size: number |
| 65 | + insert: (value: V) => TopKChanges<V> |
| 66 | + delete: (value: V) => TopKChanges<V> |
| 67 | +} |
| 68 | + |
| 69 | +/** |
| 70 | + * Implementation of a topK data structure. |
| 71 | + * Uses a sorted array internally to store the values and keeps a topK window over that array. |
| 72 | + * Inserts and deletes are O(n) operations because worst case an element is inserted/deleted |
| 73 | + * at the start of the array which causes all the elements to shift to the right/left. |
| 74 | + */ |
| 75 | +export class TopKArray<V> implements TopK<V> { |
| 76 | + #sortedValues: Array<IndexedValue<V>> = [] |
| 77 | + #comparator: (a: V, b: V) => number |
| 78 | + #topKStart: number |
| 79 | + #topKEnd: number |
| 80 | + |
| 81 | + constructor( |
| 82 | + offset: number, |
| 83 | + limit: number, |
| 84 | + comparator: (a: V, b: V) => number, |
| 85 | + ) { |
| 86 | + this.#topKStart = offset |
| 87 | + this.#topKEnd = offset + limit |
| 88 | + this.#comparator = comparator |
| 89 | + } |
| 90 | + |
| 91 | + get size(): number { |
| 92 | + const offset = this.#topKStart |
| 93 | + const limit = this.#topKEnd - this.#topKStart |
| 94 | + const available = this.#sortedValues.length - offset |
| 95 | + return Math.max(0, Math.min(limit, available)) |
| 96 | + } |
| 97 | + |
| 98 | + /** |
| 99 | + * Moves the topK window |
| 100 | + */ |
| 101 | + move({ |
| 102 | + offset, |
| 103 | + limit, |
| 104 | + }: { |
| 105 | + offset?: number |
| 106 | + limit?: number |
| 107 | + }): TopKMoveChanges<V> { |
| 108 | + const oldOffset = this.#topKStart |
| 109 | + const oldLimit = this.#topKEnd - this.#topKStart |
| 110 | + |
| 111 | + // `this.#topKEnd` can be `Infinity` if it has no limit |
| 112 | + // but `diffHalfOpen` expects a finite range |
| 113 | + // so we restrict it to the size of the topK if topKEnd is infinite |
| 114 | + const oldRange: HRange = [ |
| 115 | + this.#topKStart, |
| 116 | + this.#topKEnd === Infinity ? this.#topKStart + this.size : this.#topKEnd, |
| 117 | + ] |
| 118 | + |
| 119 | + this.#topKStart = offset ?? oldOffset |
| 120 | + this.#topKEnd = this.#topKStart + (limit ?? oldLimit) // can be `Infinity` if limit is `Infinity` |
| 121 | + |
| 122 | + // Also handle `Infinity` in the newRange |
| 123 | + const newRange: HRange = [ |
| 124 | + this.#topKStart, |
| 125 | + this.#topKEnd === Infinity |
| 126 | + ? Math.max(this.#topKStart + this.size, oldRange[1]) // since the new limit is Infinity we need to take everything (so we need to take the biggest (finite) topKEnd) |
| 127 | + : this.#topKEnd, |
| 128 | + ] |
| 129 | + const { onlyInA, onlyInB } = diffHalfOpen(oldRange, newRange) |
| 130 | + |
| 131 | + const moveIns: Array<IndexedValue<V>> = [] |
| 132 | + onlyInB.forEach((index) => { |
| 133 | + const value = this.#sortedValues[index] |
| 134 | + if (value) { |
| 135 | + moveIns.push(value) |
| 136 | + } |
| 137 | + }) |
| 138 | + |
| 139 | + const moveOuts: Array<IndexedValue<V>> = [] |
| 140 | + onlyInA.forEach((index) => { |
| 141 | + const value = this.#sortedValues[index] |
| 142 | + if (value) { |
| 143 | + moveOuts.push(value) |
| 144 | + } |
| 145 | + }) |
| 146 | + |
| 147 | + // It could be that there are changes (i.e. moveIns or moveOuts) |
| 148 | + // but that the collection is lazy so we don't have the data yet that needs to move in/out |
| 149 | + // so `moveIns` and `moveOuts` will be empty but `changes` will be true |
| 150 | + // this will tell the caller that it needs to run the graph to load more data |
| 151 | + return { moveIns, moveOuts, changes: onlyInA.length + onlyInB.length > 0 } |
| 152 | + } |
| 153 | + |
| 154 | + insert(value: V): TopKChanges<V> { |
| 155 | + const result: TopKChanges<V> = { moveIn: null, moveOut: null } |
| 156 | + |
| 157 | + // Lookup insert position |
| 158 | + const index = this.#findIndex(value) |
| 159 | + // Generate fractional index based on the fractional indices of the elements before and after it |
| 160 | + const indexBefore = |
| 161 | + index === 0 ? null : getIndex(this.#sortedValues[index - 1]!) |
| 162 | + const indexAfter = |
| 163 | + index === this.#sortedValues.length |
| 164 | + ? null |
| 165 | + : getIndex(this.#sortedValues[index]!) |
| 166 | + const fractionalIndex = generateKeyBetween(indexBefore, indexAfter) |
| 167 | + |
| 168 | + // Insert the value at the correct position |
| 169 | + const val = indexedValue(value, fractionalIndex) |
| 170 | + // Splice is O(n) where n = all elements in the collection (i.e. n >= k) ! |
| 171 | + this.#sortedValues.splice(index, 0, val) |
| 172 | + |
| 173 | + // Check if the topK changed |
| 174 | + if (index < this.#topKEnd) { |
| 175 | + // The inserted element is either before the top K or within the top K |
| 176 | + // If it is before the top K then it moves the element that was right before the topK into the topK |
| 177 | + // If it is within the top K then the inserted element moves into the top K |
| 178 | + // In both cases the last element of the old top K now moves out of the top K |
| 179 | + const moveInIndex = Math.max(index, this.#topKStart) |
| 180 | + if (moveInIndex < this.#sortedValues.length) { |
| 181 | + // We actually have a topK |
| 182 | + // because in some cases there may not be enough elements in the array to reach the start of the topK |
| 183 | + // e.g. [1, 2, 3] with K = 2 and offset = 3 does not have a topK |
| 184 | + result.moveIn = this.#sortedValues[moveInIndex]! |
| 185 | + |
| 186 | + // We need to remove the element that falls out of the top K |
| 187 | + // The element that falls out of the top K has shifted one to the right |
| 188 | + // because of the element we inserted, so we find it at index topKEnd |
| 189 | + if (this.#topKEnd < this.#sortedValues.length) { |
| 190 | + result.moveOut = this.#sortedValues[this.#topKEnd]! |
| 191 | + } |
| 192 | + } |
| 193 | + } |
| 194 | + |
| 195 | + return result |
| 196 | + } |
| 197 | + |
| 198 | + /** |
| 199 | + * Deletes a value that may or may not be in the topK. |
| 200 | + * IMPORTANT: this assumes that the value is present in the collection |
| 201 | + * if it's not the case it will remove the element |
| 202 | + * that is on the position where the provided `value` would be. |
| 203 | + */ |
| 204 | + delete(value: V): TopKChanges<V> { |
| 205 | + const result: TopKChanges<V> = { moveIn: null, moveOut: null } |
| 206 | + |
| 207 | + // Lookup delete position |
| 208 | + const index = this.#findIndex(value) |
| 209 | + // Remove the value at that position |
| 210 | + const [removedElem] = this.#sortedValues.splice(index, 1) |
| 211 | + |
| 212 | + // Check if the topK changed |
| 213 | + if (index < this.#topKEnd) { |
| 214 | + // The removed element is either before the top K or within the top K |
| 215 | + // If it is before the top K then the first element of the topK moves out of the topK |
| 216 | + // If it is within the top K then the removed element moves out of the topK |
| 217 | + result.moveOut = removedElem! |
| 218 | + if (index < this.#topKStart) { |
| 219 | + // The removed element is before the topK |
| 220 | + // so actually, the first element of the topK moves out of the topK |
| 221 | + // and not the element that we removed |
| 222 | + // The first element of the topK is now at index topKStart - 1 |
| 223 | + // since we removed an element before the topK |
| 224 | + const moveOutIndex = this.#topKStart - 1 |
| 225 | + if (moveOutIndex < this.#sortedValues.length) { |
| 226 | + result.moveOut = this.#sortedValues[moveOutIndex]! |
| 227 | + } else { |
| 228 | + // No value is moving out of the topK |
| 229 | + // because there are no elements in the topK |
| 230 | + result.moveOut = null |
| 231 | + } |
| 232 | + } |
| 233 | + |
| 234 | + // Since we removed an element that was before or in the topK |
| 235 | + // the first element after the topK moved one position to the left |
| 236 | + // and thus falls into the topK now |
| 237 | + const moveInIndex = this.#topKEnd - 1 |
| 238 | + if (moveInIndex < this.#sortedValues.length) { |
| 239 | + result.moveIn = this.#sortedValues[moveInIndex]! |
| 240 | + } |
| 241 | + } |
| 242 | + |
| 243 | + return result |
| 244 | + } |
| 245 | + |
| 246 | + // TODO: see if there is a way to refactor the code for insert and delete in the topK above |
| 247 | + // because they are very similar, one is shifting the topK window to the left and the other is shifting it to the right |
| 248 | + // so i have the feeling there is a common pattern here and we can implement both cases using that pattern |
| 249 | + |
| 250 | + #findIndex(value: V): number { |
| 251 | + return binarySearch(this.#sortedValues, indexedValue(value, ``), (a, b) => |
| 252 | + this.#comparator(getValue(a), getValue(b)), |
| 253 | + ) |
| 254 | + } |
| 255 | +} |
0 commit comments