Skip to content

Commit b292dd4

Browse files
authored
Merge pull request #57 from TensorBFS/jg/port-gtn
Port GenericTensorNetworks
2 parents 2615430 + 3059164 commit b292dd4

10 files changed

+154
-14
lines changed

Project.toml

+3-1
Original file line numberDiff line numberDiff line change
@@ -1,12 +1,13 @@
11
name = "TensorInference"
22
uuid = "c2297e78-99bd-40ad-871d-f50e56b81012"
33
authors = ["Jin-Guo Liu", "Martin Roa Villescas"]
4-
version = "0.2.0"
4+
version = "0.2.1"
55

66
[deps]
77
Artifacts = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
88
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
99
DocStringExtensions = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
10+
GenericTensorNetworks = "3521c873-ad32-4bb4-b63d-f4f178f42b49"
1011
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
1112
OMEinsum = "ebe7aa44-baf0-506c-a96f-8464559b3922"
1213
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
@@ -18,6 +19,7 @@ TropicalNumbers = "b3a74e9c-7526-4576-a4eb-79c0d4c32334"
1819
[compat]
1920
CUDA = "4"
2021
DocStringExtensions = "0.8.6, 0.9"
22+
GenericTensorNetworks = "1"
2123
OMEinsum = "0.7"
2224
PrecompileTools = "1"
2325
Requires = "1"

src/Core.jl

+23-10
Original file line numberDiff line numberDiff line change
@@ -47,14 +47,16 @@ Probabilistic modeling with a tensor network.
4747
### Fields
4848
* `vars` are the degrees of freedom in the tensor network.
4949
* `code` is the tensor network contraction pattern.
50-
* `tensors` are the tensors fed into the tensor network.
50+
* `tensors` are the tensors fed into the tensor network, the leading tensors are unity tensors associated with `mars`.
5151
* `evidence` is a dictionary used to specify degrees of freedom that are fixed to certain values.
52+
* `mars` is a vector, each element is a vector of variables to compute marginal probabilities.
5253
"""
5354
struct TensorNetworkModel{LT, ET, MT <: AbstractArray}
5455
vars::Vector{LT}
5556
code::ET
5657
tensors::Vector{MT}
5758
evidence::Dict{LT, Int}
59+
mars::Vector{Vector{LT}}
5860
end
5961

6062
function Base.show(io::IO, tn::TensorNetworkModel)
@@ -85,13 +87,21 @@ end
8587

8688
"""
8789
$(TYPEDSIGNATURES)
90+
91+
### Keyword Arguments
92+
* `openvars` is the list of variables that remains in the output. If it is not empty, the return value will be a nonzero ranked tensor.
93+
* `evidence` is a dictionary of evidences, the values are integers start counting from 0.
94+
* `optimizer` is the tensor network contraction order optimizer, please check the package [`OMEinsumContractionOrders.jl`](https://github.com/TensorBFS/OMEinsumContractionOrders.jl) for available algorithms.
95+
* `simplifier` is some strategies for speeding up the `optimizer`, please refer the same link above.
96+
* `mars` is a list of marginal probabilities. It is all single variables by default, i.e. `[[1], [2], ..., [n]]`. One can also specify multi-variables, which may increase the computational complexity.
8897
"""
8998
function TensorNetworkModel(
9099
model::UAIModel;
91100
openvars = (),
92101
evidence = Dict{Int,Int}(),
93102
optimizer = GreedyMethod(),
94-
simplifier = nothing
103+
simplifier = nothing,
104+
mars = [[i] for i=1:model.nvars]
95105
)::TensorNetworkModel
96106
return TensorNetworkModel(
97107
1:(model.nvars),
@@ -100,7 +110,8 @@ function TensorNetworkModel(
100110
openvars,
101111
evidence,
102112
optimizer,
103-
simplifier
113+
simplifier,
114+
mars
104115
)
105116
end
106117

@@ -114,15 +125,16 @@ function TensorNetworkModel(
114125
openvars = (),
115126
evidence = Dict{LT, Int}(),
116127
optimizer = GreedyMethod(),
117-
simplifier = nothing
128+
simplifier = nothing,
129+
mars = [[v] for v in vars]
118130
)::TensorNetworkModel where {T, LT}
119131
# The 1st argument of `EinCode` is a vector of vector of labels for specifying the input tensors,
120132
# The 2nd argument of `EinCode` is a vector of labels for specifying the output tensor,
121133
# e.g.
122134
# `EinCode([[1, 2], [2, 3]], [1, 3])` is the EinCode for matrix multiplication.
123-
rawcode = EinCode([[[var] for var in vars]..., [[factor.vars...] for factor in factors]...], collect(LT, openvars)) # labels for vertex tensors (unity tensors) and edge tensors
124-
tensors = Array{T}[[ones(T, cards[i]) for i in 1:length(vars)]..., [t.vals for t in factors]...]
125-
return TensorNetworkModel(collect(LT, vars), rawcode, tensors; evidence, optimizer, simplifier)
135+
rawcode = EinCode([mars..., [[factor.vars...] for factor in factors]...], collect(LT, openvars)) # labels for vertex tensors (unity tensors) and edge tensors
136+
tensors = Array{T}[[ones(T, [cards[i] for i in mar]...) for mar in mars]..., [t.vals for t in factors]...]
137+
return TensorNetworkModel(collect(LT, vars), rawcode, tensors; evidence, optimizer, simplifier, mars)
126138
end
127139

128140
"""
@@ -134,15 +146,16 @@ function TensorNetworkModel(
134146
tensors::Vector{<:AbstractArray};
135147
evidence = Dict{LT, Int}(),
136148
optimizer = GreedyMethod(),
137-
simplifier = nothing
149+
simplifier = nothing,
150+
mars = [[v] for v in vars]
138151
)::TensorNetworkModel where {LT}
139152
# `optimize_code` optimizes the contraction order of a raw tensor network without a contraction order specified.
140153
# The 1st argument is the contraction pattern to be optimized (without contraction order).
141154
# The 2nd arugment is the size dictionary, which is a label-integer dictionary.
142155
# The 3rd and 4th arguments are the optimizer and simplifier that configures which algorithm to use and simplify.
143156
size_dict = OMEinsum.get_size_dict(getixsv(rawcode), tensors)
144157
code = optimize_code(rawcode, size_dict, optimizer, simplifier)
145-
TensorNetworkModel(collect(LT, vars), code, tensors, evidence)
158+
TensorNetworkModel(collect(LT, vars), code, tensors, evidence, mars)
146159
end
147160

148161
"""
@@ -159,7 +172,7 @@ Get the cardinalities of variables in this tensor network.
159172
"""
160173
function get_cards(tn::TensorNetworkModel; fixedisone = false)::Vector
161174
vars = get_vars(tn)
162-
[fixedisone && haskey(tn.evidence, vars[k]) ? 1 : length(tn.tensors[k]) for k in 1:length(vars)]
175+
[fixedisone && haskey(tn.evidence, vars[k]) ? 1 : length(tn.tensors[k]) for k in eachindex(vars)]
163176
end
164177

165178
chevidence(tn::TensorNetworkModel, evidence) = TensorNetworkModel(tn.vars, tn.code, tn.tensors, evidence)

src/TensorInference.jl

+1
Original file line numberDiff line numberDiff line change
@@ -45,6 +45,7 @@ include("sampling.jl")
4545
using Requires
4646
function __init__()
4747
@require CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba" include("cuda.jl")
48+
@require GenericTensorNetworks = "3521c873-ad32-4bb4-b63d-f4f178f42b49" include("generictensornetworks.jl")
4849
end
4950

5051
# import PrecompileTools

src/generictensornetworks.jl

+44
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,44 @@
1+
using .GenericTensorNetworks: generate_tensors, GraphProblem, flavors, labels
2+
3+
export probabilistic_model
4+
5+
"""
6+
$TYPEDSIGNATURES
7+
8+
Convert a constraint satisfiability problem (or energy model) to a probabilistic model.
9+
10+
### Arguments
11+
* `problem` is a `GraphProblem` instance in [`GenericTensorNetworks`](https://github.com/QuEraComputing/GenericTensorNetworks.jl).
12+
* `β` is the inverse temperature.
13+
"""
14+
function TensorInference.TensorNetworkModel(problem::GraphProblem, β::Real; evidence::Dict=Dict{Int,Int}(),
15+
optimizer=GreedyMethod(), simplifier=nothing, mars=[[l] for l in labels(problem)])
16+
ixs = getixsv(problem.code)
17+
iy = getiyv(problem.code)
18+
lbs = labels(problem)
19+
nflavors = length(flavors(problem))
20+
# generate tensors for x = e^β
21+
tensors = generate_tensors(exp(β), problem)
22+
factors = [Factor((ix...,), t) for (ix, t) in zip(ixs, tensors)]
23+
return TensorNetworkModel(lbs, fill(nflavors, length(lbs)), factors; openvars=iy, evidence, optimizer, simplifier, mars)
24+
end
25+
function TensorInference.MMAPModel(problem::GraphProblem, β::Real;
26+
queryvars,
27+
evidence = Dict{labeltype(problem.code), Int}(),
28+
optimizer = GreedyMethod(), simplifier = nothing,
29+
marginalize_optimizer = GreedyMethod(), marginalize_simplifier = nothing
30+
)::MMAPModel
31+
ixs = getixsv(problem.code)
32+
iy = getiyv(problem.code)
33+
nflavors = length(flavors(problem))
34+
# generate tensors for x = e^β
35+
tensors = generate_tensors(exp(β), problem)
36+
factors = [Factor((ix...,), t) for (ix, t) in zip(ixs, tensors)]
37+
lbs = labels(problem)
38+
return MMAPModel(lbs, fill(nflavors, length(lbs)), factors; queryvars, openvars=iy, evidence,
39+
optimizer, simplifier,
40+
marginalize_optimizer, marginalize_simplifier)
41+
end
42+
43+
@info "`TensorInference` loaded `GenericTensorNetworks` extension successfully,
44+
`TensorNetworkModel` and `MMAPModel` can be used for converting a `GraphProblem` to a probabilistic model now."

src/map.jl

+2
Original file line numberDiff line numberDiff line change
@@ -45,6 +45,8 @@ $(TYPEDSIGNATURES)
4545
Returns the largest log-probability and the most probable configuration.
4646
"""
4747
function most_probable_config(tn::TensorNetworkModel; usecuda = false)::Tuple{Real, Vector}
48+
expected_mars = [[l] for l in get_vars(tn)]
49+
@assert tn.mars[1:length(expected_mars)] == expected_mars "To get the the most probable configuration, the leading elements of `tn.vars` must be `$expected_mars`"
4850
vars = get_vars(tn)
4951
tensors = map(t -> Tropical.(log.(t)), adapt_tensors(tn; usecuda, rescale = false))
5052
logp, grads = cost_and_gradient(tn.code, tensors)

src/mar.jl

+2-3
Original file line numberDiff line numberDiff line change
@@ -128,13 +128,12 @@ Returns the marginal probability distribution of variables.
128128
One can use `get_vars(tn)` to get the full list of variables in this tensor network.
129129
"""
130130
function marginals(tn::TensorNetworkModel; usecuda = false, rescale = true)::Vector
131-
vars = get_vars(tn)
132131
# sometimes, the cost can overflow, then we need to rescale the tensors during contraction.
133132
cost, grads = cost_and_gradient(tn.code, adapt_tensors(tn; usecuda, rescale))
134133
@debug "cost = $cost"
135134
if rescale
136-
return LinearAlgebra.normalize!.(getfield.(grads[1:length(vars)], :normalized_value), 1)
135+
return LinearAlgebra.normalize!.(getfield.(grads[1:length(tn.mars)], :normalized_value), 1)
137136
else
138-
return LinearAlgebra.normalize!.(grads[1:length(vars)], 1)
137+
return LinearAlgebra.normalize!.(grads[1:length(tn.mars)], 1)
139138
end
140139
end

test/Project.toml

+1
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
[deps]
22
CUDA = "052768ef-5323-5732-b1bb-66c8b64840ba"
33
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
4+
GenericTensorNetworks = "3521c873-ad32-4bb4-b63d-f4f178f42b49"
45
KaHyPar = "2a6221f6-aa48-11e9-3542-2d9e0ef01880"
56
OMEinsum = "ebe7aa44-baf0-506c-a96f-8464559b3922"
67
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"

test/generictensornetworks.jl

+19
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,19 @@
1+
using Test
2+
using GenericTensorNetworks, TensorInference
3+
4+
@testset "marginals" begin
5+
# compute the probability
6+
β = 2.0
7+
g = GenericTensorNetworks.Graphs.smallgraph(:petersen)
8+
problem = IndependentSet(g)
9+
model = TensorNetworkModel(problem, β; mars=[[2, 3]])
10+
mars = marginals(model)[1]
11+
problem2 = IndependentSet(g; openvertices=[2,3])
12+
mars2 = TensorInference.normalize!(GenericTensorNetworks.solve(problem2, PartitionFunction(β)), 1)
13+
@test mars mars2
14+
15+
# mmap
16+
model = MMAPModel(problem, β; queryvars=[1,4])
17+
logp, config = most_probable_config(model)
18+
@test config == [0, 0]
19+
end

test/mar.jl

+55
Original file line numberDiff line numberDiff line change
@@ -68,3 +68,58 @@ end
6868
end
6969
end
7070
end
71+
72+
@testset "joint marginal" begin
73+
model = TensorInference.read_model_from_string("""MARKOV
74+
8
75+
2 2 2 2 2 2 2 2
76+
8
77+
1 0
78+
2 1 0
79+
1 2
80+
2 3 2
81+
2 4 2
82+
3 5 3 1
83+
2 6 5
84+
3 7 5 4
85+
86+
2
87+
0.01
88+
0.99
89+
90+
4
91+
0.05 0.01
92+
0.95 0.99
93+
94+
2
95+
0.5
96+
0.5
97+
98+
4
99+
0.1 0.01
100+
0.9 0.99
101+
102+
4
103+
0.6 0.3
104+
0.4 0.7
105+
106+
8
107+
1 1 1 0
108+
0 0 0 1
109+
110+
4
111+
0.98 0.05
112+
0.02 0.95
113+
114+
8
115+
0.9 0.7 0.8 0.1
116+
0.1 0.3 0.2 0.9
117+
""")
118+
n = 10000
119+
tnet = TensorNetworkModel(model; mars=[[2, 3], [3, 4]])
120+
mars = marginals(tnet)
121+
tnet23 = TensorNetworkModel(model; openvars=[2,3])
122+
tnet34 = TensorNetworkModel(model; openvars=[3,4])
123+
@test mars[1] probability(tnet23)
124+
@test mars[2] probability(tnet34)
125+
end

test/runtests.jl

+4
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,10 @@ end
2020
include("sampling.jl")
2121
end
2222

23+
@testset "generic tensor networks" begin
24+
include("generictensornetworks.jl")
25+
end
26+
2327
using CUDA
2428
if CUDA.functional()
2529
include("cuda.jl")

0 commit comments

Comments
 (0)