-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcode_dataset.py
457 lines (393 loc) · 18.5 KB
/
code_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
from random import shuffle
import torch
import torch.utils.data as data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from util.util import construct, try_cuda
class CodeDataset(data.Dataset):
"""
PyTorch dataset that groups samples from an underlying dataset together so
that they are ready for encoding.
"""
def __init__(self, name, base_model, num_classes, base_dataset,
ec_k, code_dataset=None, put_gpu=True):
"""
Parameters
----------
name: str
One of {"train", "val", "test"}
base_model: ``torch.nn.Module``
Base model on which inference is being performed and over which a
code imparts resilience.
num_classes: int
The number of classes in the underlying dataset.
base_dataset: ``torchvision.datasets.Dataset``
A dataset from the datasets provided by torchvision.
ec_k: int
Number of samples from ``base_dataset`` that will be encoded
together.
code_dataset: ``torchvision.dataset.Dataset``
Dataset containing a set of transforms to apply to samples prior to
encoding. These transforms may differ from those in
`base_transform` as one may wish to include transformations such as
random cropping and rotating of images so as to reduce overfiting.
Such transformations would not be included in `base_dataset` as
they could lead to noisy labels being generated.
put_gpu: bool
Whether to put data and labels on GPU. This is untenable for large
datasets.
"""
self.name = name
self.base_model = base_model
self.ec_k = ec_k
self.dataset = base_dataset
# Since we are not directly calling this DataLoader when we perform
# iterations when training a code, it is OK not to shuffle the
# underlying dataset.
dataloader = data.DataLoader(self.dataset, batch_size=32,
shuffle=False)
in_size = self.dataset[0][0].view(-1).size(0)
self.num_channels = self.dataset[0][0].size(0)
if self.num_channels > 1:
assert self.num_channels == 3, "Only currently support 3 channels for multi-channel input"
# Preprate data, outputs from base model, and the true labels for
# samples. We will populate these tensors so that we can later access
# them without pulling PIL images from the underlying dataset.
self.data = torch.zeros(len(self.dataset), in_size)
self.outputs = torch.zeros(len(self.dataset), num_classes)
self.true_labels = torch.zeros(len(self.dataset))
cur = 0
for inputs, targets in dataloader:
inputs = try_cuda(inputs.squeeze(1).view(inputs.size(0), -1))
x = self.base_model(inputs)
last = cur + inputs.size(0)
self.data[cur:last, :] = inputs.data
self.outputs[cur:last, :] = x.data
self.true_labels[cur:last] = targets
cur = last
# Calculate the accuracy of the base model with respect to this dataset.
base_model_preds = torch.max(self.outputs, dim=1)[1]
correct_preds = (base_model_preds ==
self.true_labels.long())
base_model_num_correct = torch.sum(correct_preds).item()
base_model_num_tried = self.outputs.size(0)
base_model_accuracy = base_model_num_correct / base_model_num_tried
# We don't print the accuracy for the validation dataset because we
# only split the training set into a training and validation set
# after getting all inference results from the training dataset.
# Printing accuracy for the validation dataset can lead to confusion.
if name != "val":
print("Base model", name, "accuracy is", base_model_num_correct,
"/", base_model_num_tried, "=", base_model_accuracy)
self.true_labels = self.true_labels.long()
if put_gpu:
# Move data, outputs, and true labels to GPU for fast access.
self.data = try_cuda(self.data)
self.outputs = try_cuda(self.outputs)
self.true_labels = try_cuda(self.true_labels)
# If extra transformations are passed, create a new dataset containing
# these so that a caller can pull new, transformed samples with calls
# to `__getitem__`.
if code_dataset is not None:
self.dataset = code_dataset
self.extra_transforms = True
else:
self.extra_transforms = False
def __getitem__(self, idx):
# If there are extra transformations to perform, we pull directly from
# the underlying dataset rather than from the cached `data` tensor
# because we'd like a new sample, and extra transformations often
# contain some random components.
#
# Note, however, that even though we are pulling a "new" sample from
# the underlying dataset, we will still use thes same output for the
# sample as we calculated when we initially performed inference to get
# the `outputs` tensor during `__init__`. This avoids having to perform
# inference over the base model in-line with `__getitem__` calls.
if self.extra_transforms:
data, _ = self.dataset[idx]
data = data.view(-1)
else:
data = self.data[idx]
return data, self.outputs[idx], self.true_labels[idx]
def __len__(self):
# Number of samples in an epoch is equal to the number of `ec_k`-sized
# groups are contained in our dataset.
return (self.data.size(0) // self.ec_k) * self.ec_k
def encoder_in_dim(self):
"""
Returns size of each input that will be given to the encoder.
"""
return self.dataset[0].size()
def decoder_in_dim(self):
"""
Returns dimensionality of input that will be given to the decoder.
"""
return self.outputs.size(1)
class DownloadCodeDataset(CodeDataset):
"""
Wrapper class around CodeDataset for handling datasets made available
through torchvision.
"""
def __init__(self, name, base_model, num_classes, base_dataset,
base_dataset_dir, ec_k, base_transform=None,
code_transform=None):
"""
Parameters (that are different from CodeDataset)
------------------------------------------------
base_dataset_dir: str
Location where ``base_dataset`` has been or will be saved. This
avoids re-downloading the dataset.
base_transform: ``torchvision.transforms.Transform``
Set of transforms to apply to samples when generating base model
outputs that will (potentially) be used as labels.
"""
if base_transform is None:
base_transform = transforms.ToTensor()
# Draw from the torchvisions "train" datasets for training and
# validation datasets
is_train = (name != "test")
# Create the datasets from the underlying `base_model_dataset`.
# When generating outputs from running samples through the base model,
# we do apply `base_transform`.
full_base_dataset = base_dataset(root=base_dataset_dir, train=is_train,
download=True, transform=base_transform)
if code_transform is not None:
full_code_dataset = base_dataset(root=base_dataset_dir, train=is_train,
download=True, transform=code_transform)
else:
full_code_dataset = None
super().__init__(name=name,
base_model=base_model,
base_dataset=full_base_dataset,
ec_k=ec_k,
num_classes=num_classes,
code_dataset=full_code_dataset)
class FolderCodeDataset(CodeDataset):
"""
Wrapper class around CodeDataset for handling datasets downloaded on our
own.
"""
def __init__(self, name, base_model, num_classes, base_dataset_dir,
ec_k, base_transform=None, code_transform=None):
"""
Parameters (that are different from CodeDataset)
------------------------------------------------
base_dataset_dir: str
Location where ``base_dataset`` has been or will be saved. This
avoids re-downloading the dataset.
base_transform: ``torchvision.transforms.Transform``
Set of transforms to apply to samples when generating base model
outputs that will (potentially) be used as labels.
"""
if base_transform is None:
base_transform = transforms.ToTensor()
full_base_dataset = datasets.ImageFolder(
root=base_dataset_dir, transform=base_transform)
if code_transform is not None:
full_code_dataset = datasets.ImageFolder(
root=base_dataset_dir, transform=code_transform)
else:
full_code_dataset = None
super().__init__(name=name,
base_model=base_model,
base_dataset=full_base_dataset,
ec_k=ec_k,
num_classes=num_classes,
code_dataset=full_code_dataset,
put_gpu=False)
class MNISTCodeDataset(DownloadCodeDataset):
def __init__(self, name, base_model, ec_k, encoder_transforms):
base_dataset = datasets.MNIST
base_dataset_dir = "data/mnist"
code_transform = transforms.Compose([
*encoder_transforms,
transforms.ToTensor()
])
super().__init__(name=name,
base_model=base_model,
base_dataset=base_dataset,
base_dataset_dir=base_dataset_dir,
ec_k=ec_k, num_classes=10,
code_transform=code_transform)
class FashionMNISTCodeDataset(DownloadCodeDataset):
def __init__(self, name, base_model, ec_k, encoder_transforms):
base_dataset = datasets.FashionMNIST
base_dataset_dir = "data/fashion-mnist"
code_transform = transforms.Compose([
*encoder_transforms,
transforms.ToTensor()
])
super().__init__(name=name,
base_model=base_model,
base_dataset=base_dataset,
base_dataset_dir=base_dataset_dir,
ec_k=ec_k, num_classes=10,
code_transform=code_transform)
class CIFARCodeDataset(DownloadCodeDataset):
def __init__(self, name, base_model, ec_k, num_classes, encoder_transforms):
assert num_classes == 10 or num_classes == 100
if num_classes == 10:
base_dataset = datasets.CIFAR10
base_dataset_dir = "data/cifar10"
else:
base_dataset = datasets.CIFAR100
base_dataset_dir = "data/cifar100"
# For `base_transform`, we only apply normalization.
base_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=(0.4914, 0.4822, 0.4465),
std=(0.2023, 0.1994, 0.2010))])
# We add extra transformations for CIFAR-10 as is done in:
# https://github.com/kuangliu/pytorch-cifar
if name == "train":
code_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
*encoder_transforms,
transforms.ToTensor(),
transforms.Normalize(
mean=(0.4914, 0.4822, 0.4465),
std=(0.2023, 0.1994, 0.2010))])
else:
code_transform = transforms.Compose([
*encoder_transforms,
transforms.ToTensor(),
transforms.Normalize(
mean=(0.4914, 0.4822, 0.4465),
std=(0.2023, 0.1994, 0.2010))])
super().__init__(name=name,
base_model=base_model,
base_dataset=base_dataset,
base_dataset_dir=base_dataset_dir,
ec_k=ec_k, num_classes=num_classes,
base_transform=base_transform,
code_transform=code_transform)
class CIFAR10CodeDataset(CIFARCodeDataset):
def __init__(self, name, base_model, ec_k, encoder_transforms):
super().__init__(name=name, base_model=base_model,
ec_k=ec_k, num_classes=10,
encoder_transforms=encoder_transforms)
class CIFAR100CodeDataset(CIFARCodeDataset):
def __init__(self, name, base_model, ec_k, encoder_transforms):
super().__init__(name=name, base_model=base_model,
ec_k=ec_k, num_classes=100,
encoder_transforms=encoder_transforms)
class CatDogCodeDataset(FolderCodeDataset):
def __init__(self, name, base_model, ec_k, encoder_transforms):
dataset_dir = "data/cat_v_dog/{}"
base_dataset_dir = dataset_dir.format(name)
num_classes = 2
# See: https://github.com/pytorch/examples/blob/master/imagenet/main.py
base_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
if name == "train":
code_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
*encoder_transforms,
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
else:
code_transform = transforms.Compose([
*encoder_transforms,
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
super().__init__(name=name, base_model=base_model, ec_k=ec_k,
base_dataset_dir=base_dataset_dir,
num_classes=num_classes,
base_transform=base_transform,
code_transform=code_transform)
def get_dataloaders(dataset_path, base_model, ec_k, batch_size,
encoder_transforms):
"""
Generates training, validation, and test datasets.
Parameters
----------
dataset_path: str
Classpath of underlying dataset to use.
base_model: ``torch.nn.Module``
Base model on which inference is being performed and over which a
code imparts resilience.
ec_k: int
Number of samples from ``base_dataset`` that will be encoded
together.
batch_size: int
Number of samples (group of `ec_k` inputs) to be run in a single
minibatch.
encoder_transforms: list
List of transforms to be applied on inputs before being converted
to a tensor.
Returns
-------
{train, val, test}_dataloader: ``torch.utils.data.DataLoader``
Dataloaders to be used for training, validation, and testing.
"""
train_dataset = construct(dataset_path,
{"name": "train",
"base_model": base_model,
"ec_k": ec_k,
"encoder_transforms": encoder_transforms})
val_dataset = construct(dataset_path,
{"name": "val",
"base_model": base_model,
"ec_k": ec_k,
"encoder_transforms": encoder_transforms})
test_dataset = construct(dataset_path,
{"name": "test",
"base_model": base_model,
"ec_k": ec_k,
"encoder_transforms": encoder_transforms})
# Each sample for the encoder/decoder consists of `ec_k` images from
# the underlying dataset. Thus, the batch size for drawing samples from
# the underlying dataset is `batch_size * ec_k`
batch_size_for_loading = ec_k * batch_size
if "CatDog" in dataset_path["class"] or "GCommand" in dataset_path["class"]:
num_workers = 4
pin_mem = torch.cuda.is_available()
train_loader = data.DataLoader(train_dataset,
batch_size=batch_size_for_loading,
shuffle=True, num_workers=num_workers,
pin_memory=pin_mem)
val_loader = data.DataLoader(val_dataset,
batch_size=batch_size_for_loading,
shuffle=True, num_workers=num_workers,
pin_memory=pin_mem)
test_loader = data.DataLoader(test_dataset,
batch_size=batch_size_for_loading,
shuffle=True, num_workers=num_workers,
pin_memory=pin_mem)
else:
total_train = len(train_dataset)
indices = list(range(total_train))
shuffle(indices)
num_val = 5000
remainder = num_val % ec_k
# Make sure that the training and validation sets have a multiple of
# ec_k.
if remainder != 0:
num_val += (ec_k - remainder)
train_indices = indices[num_val:]
val_indices = indices[:num_val]
train_sampler = data.sampler.SubsetRandomSampler(train_indices)
val_sampler = data.sampler.SubsetRandomSampler(val_indices)
train_loader = data.DataLoader(train_dataset, sampler=train_sampler,
batch_size=batch_size_for_loading)
val_loader = data.DataLoader(val_dataset, sampler=val_sampler,
batch_size=batch_size_for_loading)
test_loader = data.DataLoader(test_dataset,
batch_size=batch_size_for_loading, shuffle=False)
return train_loader, val_loader, test_loader