-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlstm.py
69 lines (63 loc) · 3.02 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import torch.nn as nn
from torch.nn import functional as F
import torch
import torch.random
import argparse
from WordLoader import WordLoader
import time
class Lstm(nn.Module):
def __init__(self, wordlist, argv, aspect_num=0):
super(Lstm, self).__init__()
self.model_name = 'atae-lstm'
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, default='lstm')
parser.add_argument('--rseed', type=int, default=int(1000 * time.time()) % 19491001)
parser.add_argument('--dim_word', type=int, default=300)
parser.add_argument('--dim_hidden', type=int, default=300)
parser.add_argument('--dim_aspect', type=int, default=100)
parser.add_argument('--grained', type=int, default=3, choices=[3])
parser.add_argument('--regular', type=float, default=0.001)
parser.add_argument('--word_vector', type=str, default='data/glove.840B.300d.txt')
args, _ = parser.parse_known_args(argv)
self.wordlist = wordlist
self.name = args.name
self.word_vector = args.word_vector
torch.random.manual_seed(args.rseed)
self.dim_word, self.dimh = args.dim_word, args.dim_hidden
self.grained = args.grained
self.num = len(wordlist) + 1
# aspect的个数,等于dict_target的长度
self.aspect_num = aspect_num
self.Vw = torch.rand((self.num, self.dim_word)).uniform_(-0.01, 0.01)
self.load_word_vector(self.word_vector, self.wordlist)
self.embedding = nn.Embedding.from_pretrained(self.Vw, freeze=False)
# wordlist的单词索引从1开始,将0设为pad的索引,该 pad vector 全为0
self.embedding.padding_idx = 0
self.lstm = nn.LSTM(self.dim_word, self.dimh)
self.Ws = nn.Linear(self.dimh, self.grained, bias=True)
def forward(self, x, solution, aspect_word, aspect_level, train=True, test=False):
x = x.view(-1, 1)
solution = solution.view(1, 3)
# x size = (N, 1, 300) 即 time_step * batch_size * dim_word
x = self.embedding(x)
# h_n size = (1, 300)
output, (h_n, c_n) = self.lstm(x)
h_n = h_n.view(-1, 300)
y = self.Ws(h_n)
y = F.softmax(y, dim=1)
return y
def load_word_vector(self, fname, wordlist):
loader = WordLoader()
# dic为 'word' : [weights] 的字典, 这里传入的wordlist并没有用
dic = loader.load_word_vector(fname, wordlist, self.dim_word)
# print(dic.keys())
not_found = 0
# wordlist = {word1:1, word2:2, ...} index越小的单词出现次数越多
for word, index in wordlist.items():
try:
# 按照wordlist的顺序,设置embedding层的weights,这样就可以根据索引把seqs变成对应词的weights了
# index从1开始,Vw的len比vocab len多1,应该是留出了第一行做unkwon
self.Vw[index] = torch.FloatTensor(dic[word])
except:
# raise ValueError
not_found += 1