Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 42 additions & 0 deletions tests/unit/components/test_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,3 +128,45 @@ def test_remove_einsum_from_complex_attn_linear():

# Check if the results are the same
assert torch.allclose(result_new, result_old, atol=1e-4)


@pytest.mark.skipif(
not torch.backends.mps.is_available() and torch.__version__ != "2.8.0",
reason="Issue with F.linear issue exclusive to mps and PyTorch 2.8"
"https://github.com/pytorch/pytorch/issues/161640",
)
def test_cpu_mps_outputs_match():
torch.manual_seed(0)

cfg = {
"n_layers": 1,
"d_model": 48,
"n_ctx": 256,
"d_head": 16,
"n_heads": 3,
"load_in_4bit": False,
"dtype": torch.float32,
"act_fn": "relu",
}

def init_weights(attn_layer: nn.Module):
nn.init.normal_(attn_layer.W_Q, mean=0.0, std=0.02)
nn.init.normal_(attn_layer.W_K, mean=0.0, std=0.02)
nn.init.normal_(attn_layer.W_V, mean=0.0, std=0.02)
nn.init.normal_(attn_layer.W_O, mean=0.0, std=0.02)
return attn_layer

attn_cpu = Attention(cfg)
attn_cpu = init_weights(attn_cpu)

attn_mps = Attention(cfg).to("mps")
attn_mps.load_state_dict(attn_cpu.state_dict(), strict=True)

batch = 1
input_cpu = torch.randn(batch, cfg["n_ctx"], cfg["d_model"])
input_mps = input_cpu.to("mps")

cpu_output = attn_cpu(input_cpu, input_cpu, input_cpu)
mps_output = attn_mps(input_mps, input_mps, input_mps)

assert torch.allclose(cpu_output, mps_output.cpu())
11 changes: 7 additions & 4 deletions transformer_lens/components/abstract_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -299,10 +299,13 @@ def forward(
if self.b_O.device != z.device:
z = z.to(self.b_O.device)

out = F.linear(
z.reshape(z.shape[0], z.shape[1], self.cfg.d_head * self.cfg.n_heads),
w,
self.b_O,
z = einops.rearrange(
z, "batch pos head_index d_head -> batch pos (head_index d_head)"
)

out = (
einops.einsum(z, w, "batch pos d_heads, d_model d_heads -> batch pos d_model")
+ self.b_O
)
else:
# Explicitly calculate the attention result so it can be accessed by a hook
Expand Down
Loading