-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathaicandy_mobilenet_train_enrnptys.py
123 lines (95 loc) · 4.68 KB
/
aicandy_mobilenet_train_enrnptys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
"""
@author: AIcandy
@website: aicandy.vn
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from torchvision import datasets, transforms
from sklearn.model_selection import train_test_split
from torch.utils.data import DataLoader, random_split
import os
import numpy as np
from aicandy_model_src_eboxesox.aicandy_mobilenet_model_mhgmyhay import CustomMobileNet
# python aicandy_mobilenet_train_enrnptys.py --train_dir ../dataset --num_epochs 100 --batch_size 32 --model_path aicandy_model_out_tdtagoyx/aicandy_model_pth_bmdmrcav.pth
def train(train_dir, num_epochs, batch_size, model_path):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform_train = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(), # Data augmentation
transforms.RandomRotation(10), # Data augmentation
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2), # Data augmentation
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
transform_val = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
dataset = datasets.ImageFolder(root=train_dir, transform=transform_train)
# Split dataset into train and validation sets
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])
# Apply validation transformations to the validation dataset
val_dataset.dataset.transform = transform_val
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)
# Lưu nhãn và id lớp
with open('label.txt', 'w') as f:
for idx, class_name in enumerate(dataset.classes):
f.write(f'{idx}: {class_name}\n')
num_classes = len(dataset.classes)
model = CustomMobileNet(num_classes=num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
best_acc = 0.0
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
correct = 0
total = 0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
train_loss = running_loss / len(train_dataset)
train_acc = 100. * correct / total
model.eval()
val_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
loss = criterion(outputs, labels)
val_loss += loss.item() * inputs.size(0)
_, predicted = outputs.max(1)
total += labels.size(0)
correct += predicted.eq(labels).sum().item()
val_loss = val_loss / len(val_dataset)
val_acc = 100. * correct / total
print(f'Epoch [{epoch+1}/{num_epochs}], Train Loss: {train_loss:.4f}, Train Accuracy: {train_acc:.2f}%, Val Loss: {val_loss:.4f}, Val Accuracy: {val_acc:.2f}%')
if val_acc > best_acc:
best_acc = val_acc
torch.save(model.state_dict(), model_path)
print(f'Model saved with accuracy: {best_acc:.2f}%')
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='AIcandy.vn')
parser.add_argument('--train_dir', type=str, required=True, help='Path to the training data')
parser.add_argument('--num_epochs', type=int, default=25, help='Number of epochs to train')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size')
parser.add_argument('--model_path', type=str, default='best_model.pth', help='Path to save the best model')
args = parser.parse_args()
train(train_dir=args.train_dir, num_epochs=args.num_epochs, batch_size=args.batch_size, model_path=args.model_path)