forked from GravityProtocol/singularity
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathncd_aware_rank.cpp
172 lines (135 loc) · 5.63 KB
/
ncd_aware_rank.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#include "include/ncd_aware_rank.hpp"
#include <boost/numeric/ublas/io.hpp>
using namespace boost;
using namespace boost::numeric::ublas;
using namespace singularity;
std::shared_ptr<vector_t> ncd_aware_rank::process(
const matrix_t& outlink_matrix,
const vector_t& initial_vector,
const vector_t& weight_vector,
const additional_matrices_vector& additional_matrices
) const {
// sparce_vector_t v = matrix_tools::calculate_correction_vector(outlink_matrix);
Graph g = create_graph(outlink_matrix);
scan scan(parameters.clustering_e, parameters.clustering_m);
scan.process(g);
std::shared_ptr<matrix_t> ms = create_interlevel_matrix_s(g);
std::shared_ptr<matrix_t> ml = create_interlevel_matrix_l(g, outlink_matrix);
return calculate_rank(outlink_matrix, additional_matrices, *ms, *ml, initial_vector);
}
double_type ncd_aware_rank::get_teleportation_weight() const
{
return double_type(1) - parameters.outlink_weight - parameters.interlevel_weight;
}
std::shared_ptr<vector_t> ncd_aware_rank::iterate(
const matrix_t& outlink_matrix,
const additional_matrices_vector& additional_matrices,
const matrix_t& interlevel_matrix_s,
const matrix_t& interlevel_matrix_l,
const vector_t& previous,
const vector_t& teleportation
) const {
// unsigned int num_accounts = outlink_matrix.size2();
vector_t tmp(interlevel_matrix_l.size1(), 0);
matrix_tools::prod(tmp, interlevel_matrix_l, previous, parameters.num_threads);
vector_t tmp2(interlevel_matrix_s.size1(), 0);
std::shared_ptr<vector_t> next(new vector_t(outlink_matrix.size1(), 0));
matrix_tools::prod(*next, outlink_matrix, previous, parameters.num_threads);
matrix_tools::prod(tmp2, interlevel_matrix_s, tmp, parameters.num_threads);
*next += tmp2;
for (auto additional_matrix: additional_matrices) {
*next += prod(*additional_matrix, previous) * parameters.outlink_weight;
}
// vector_t correction_vector(num_accounts, inner_prod(outlink_vector, previous));
// *next += correction_vector;
*next += teleportation;
return next;
}
std::shared_ptr<vector_t> ncd_aware_rank::calculate_rank(
const matrix_t& outlink_matrix,
const additional_matrices_vector& additional_matrices,
const matrix_t& interlevel_matrix_s,
const matrix_t& interlevel_matrix_l,
const vector_t& initial_vector
) const {
// unsigned int num_accounts = outlink_matrix.size2();
// double_type initialValue = 1.0/num_accounts;
std::shared_ptr<vector_t> next;
std::shared_ptr<vector_t> previous = std::make_shared<vector_t>(initial_vector);
vector_t teleportation = (*previous) * (1.0 - parameters.outlink_weight - parameters.interlevel_weight) ;
matrix_t outlink_matrix_weighted = outlink_matrix * parameters.outlink_weight;
matrix_t interlevel_matrix_s_weighted = interlevel_matrix_s * parameters.interlevel_weight;
// sparce_vector_t outlink_vector_weighted = outlink_vector * parameters.outlink_weight;
for (uint i = 0; i < MAX_ITERATIONS; i++) {
next = iterate(outlink_matrix_weighted, additional_matrices, interlevel_matrix_s_weighted, interlevel_matrix_l, *previous, teleportation);
double_type norm = norm_1(*next - *previous);
if (norm <= parameters.rank_calculation_precision) {
return next;
} else {
previous = next;
}
}
return next;
}
std::shared_ptr<matrix_t> ncd_aware_rank::create_interlevel_matrix_s(
const Graph& g
) const
{
Graph::vertex_iterator current, end;
unsigned int num_clasters = get_property(g, graph_num_clusters);
std::shared_ptr<matrix_t> S(new matrix_t(num_vertices(g), num_clasters));
tie(current, end) = vertices(g);
for ( ; current != end; current++) {
unsigned int index = get(vertex_index, g, *current);
unsigned int cluster_id = get(vertex_cluster_id, g, *current);
(*S)(index, cluster_id) = 1;
}
matrix_tools::normalize_columns(*S);
return S;
}
std::shared_ptr<matrix_t> ncd_aware_rank::create_interlevel_matrix_l(
const Graph& g,
const matrix_t& outlink_matrix
) const
{
unsigned int num_clusters = get_property(g, graph_num_clusters);
Graph::vertex_iterator start, end;
tie(start, end) = vertices(g);
std::shared_ptr<matrix_t> L(new matrix_t(num_clusters, num_vertices(g)));
for (matrix_t::const_iterator1 i = outlink_matrix.begin1(); i != outlink_matrix.end1(); i++)
{
Graph::vertex_descriptor vertex = start[i.index1()];
unsigned int clusterId = get(vertex_cluster_id, g, vertex);
(*L)(clusterId, i.index1()) = 1;
for (matrix_t::const_iterator2 j = i.begin(); j != i.end(); j++)
{
if (*j > 0) {
(*L)(clusterId, j.index2()) = 1;
}
}
}
matrix_tools::normalize_columns(*L);
return L;
}
Graph ncd_aware_rank::create_graph(const matrix_t& m) const
{
Graph g(m.size2());
Graph::vertex_iterator v,ve;
tie(v, ve) = vertices(g);
unsigned int id = 0;
for (matrix_t::const_iterator1 i = m.begin1(); i != m.end1(); i++)
{
for (matrix_t::const_iterator2 j = i.begin(); j != i.end(); j++)
{
Graph::edge_descriptor edge;
bool added = false;
if (*j > 0) {
tie(edge, added) = add_edge(v[j.index1()], v[j.index2()], g);
if (added) {
put(edge_index, g, edge, id++);
}
}
}
}
return g;
}