Skip to content

Commit 8cb6f50

Browse files
committed
Add Unit 4
1 parent 8483476 commit 8cb6f50

File tree

4 files changed

+176
-0
lines changed

4 files changed

+176
-0
lines changed

README.md

+4
Original file line numberDiff line numberDiff line change
@@ -37,6 +37,8 @@ TeX packages that have been used are:
3737
- [tabularray](https://ctan.org/pkg/tabularray): Better table display and management.
3838
* Also uses libraries to simulate [booktabs](https://ctan.org/pkg/booktabs) and [varwidth](https://ctan.org/pkg/varwidth)
3939
- [tcolorbox](https://ctan.org/pkg/tcolorbox), [adjustbox](https://ctan.org/pkg/adjustbox): Create colored boxes for different environments
40+
- [tikz](https://ctan.org/pkg/tikz): Used for images.
41+
* [pgfplots](https://ctan.org/pkg/pgfplots): Used to display axis.
4042
- [xcolor](https://ctan.org/pkg/xcolor): Used to get more colors
4143
- [xstring](https://ctan.org/pkg/xstring): Analyze strings given as arguments to an environment
4244

@@ -64,5 +66,7 @@ For intellisense, a list of the commands is added in the [package_intellisense](
6466
- `\adj`: Used to indicate the adjoint
6567
- `\proj`: Used to indicate the orthogonal projection of a vector
6668
- `\Area `: Used to indicate area
69+
- `\Real`: Display text form of Re, instead of symbol from `\Re`
70+
- `\Imaginary`: Display text form of Im, instead of symbol from `\Im`
6771

6872
---

notes.tex

+1
Original file line numberDiff line numberDiff line change
@@ -17,4 +17,5 @@
1717
\addfile{units/unit01.tex}
1818
\addfile{units/unit02.tex}
1919
\addfile{units/unit03.tex}
20+
\addfile{units/unit04.tex}
2021
\end{document}

notestyles.sty

+4
Original file line numberDiff line numberDiff line change
@@ -59,6 +59,8 @@
5959
\DeclareMathOperator{\adj}{adj}
6060
\DeclareMathOperator{\proj}{proj}
6161
\DeclareMathOperator{\Area}{Area}
62+
\DeclareMathOperator{\Real}{Re}
63+
\DeclareMathOperator{\Imaginary}{Im}
6264

6365
% Tables
6466
\RequirePackage{tabularray}
@@ -114,6 +116,8 @@
114116
\RequirePackage{tikz}
115117
\usetikzlibrary{fit, backgrounds, topaths}
116118
\tikzstyle{every picture}+=[remember picture]
119+
\RequirePackage{pgfplots}
120+
\pgfplotsset{compat=1.18}
117121

118122
% Questions, Concepts and Emphasis Styling
119123
\newcommand{\question}[1]{\textbf{#1}}

units/unit04.tex

+167
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,167 @@
1+
\providecommand{\main}{..}
2+
\documentclass[\main/notes.tex]{subfiles}
3+
4+
\begin{document}
5+
\addtocontents{toc}{\protect\newpage}
6+
\setcounter{chapter}{3}
7+
\chapter{Complex Numbers}
8+
\section{Complex Numbers}
9+
\begin{definition}{Complex Number}
10+
The number $i$ is defined such that:
11+
\begin{align*}
12+
i &= \sqrt{-1}\\
13+
i^{2} &= -1
14+
\end{align*}
15+
16+
Then, if $a$ and $b$ are real numbers, a \concept{complex number} can be written in the form:
17+
\begin{align*}
18+
z = a + bi
19+
\end{align*}
20+
21+
The number $a$ is called the \concept{real part} of $z$, and is denoted $\Real(z)$, or $\Re(z)$. The number $b$ is called the \concept{imaginary part} of $z$, and is denoted $\Imaginary(z)$ or $\Im(z)$.
22+
\end{definition}
23+
\begin{definition}{The Complex Plane}
24+
A complex number $z = a + bi$ can be associated with an ordered pair of real numbers $(a, b)$. These numbers can then be represented geometrically by a point in the $xy$-plane. This plane is called the \concept{complex plane}. Points on the $x$-axis are real numbers, as they have an imaginary part of $0$, and points on the $y$-axis are \concept{pure imaginary numbers}, as they have a real part of $0$.
25+
\begin{center}
26+
\begin{tikzpicture}
27+
\begin{axis}[xmin=-1, xmax=1, ymin=-1, ymax=1, axis lines=center, xlabel={Real}, ylabel={Imaginary}, every axis y label/.style={at=(current axis.above origin),anchor=south}, every axis x label/.style={at=(current axis.right of origin),anchor=west}, ticks=none, scale=0.6]
28+
\end{axis}
29+
\end{tikzpicture}
30+
\end{center}
31+
\end{definition}
32+
\begin{definition}{Complex Conjugate}
33+
If $z = a + bi$ is a complex number, then the \concept{complex conjugate} of $z$ is denoted $\bar{z}$, and is defined by:
34+
\begin{align*}
35+
\bar{z} = a - bi
36+
\end{align*}
37+
38+
You flip the sign of the imaginary part. This results in a vector that is reflected about the real axis.
39+
\end{definition}
40+
\begin{definition}{Modulus}
41+
The producr of a complex number $z = a + bi$ and its conjugate $\bar{z} = a - bi$ is a nonnegative neal number.
42+
\begin{align*}
43+
z\bar{z} = (a + bi)(a - bi) = a^{2} - abi + bai - b^{2}i^{2} = a^{2} + b^{2}
44+
\end{align*}
45+
46+
The square root of the above value is the length of the vector corresponding to $z$. This is called the \concept{modulus}, or \concept{absolute value} of $z$, and is written $\left\lvert z \right\rvert$
47+
\begin{align*}
48+
\left\lvert z\right\rvert = \sqrt{z \bar{z}} = \sqrt{a^{2} + b^{2}}
49+
\end{align*}
50+
\end{definition}
51+
\begin{definition}{Recipricols and Division}
52+
If $z \neq 0$, then the \concept{recipricol} (or \concept{multiplicative inverse}) of $z$ is denoted by $1/z$ or $z^{-1}$, and is defined such that:
53+
\begin{align*}
54+
\frac{1}{z}z = 1
55+
\end{align*}
56+
This equation has a unique solution for $1/z$:
57+
\begin{align*}
58+
\frac{1}{z} = \frac{\bar{z}}{\left\lvert z\right\rvert^{2}}
59+
\end{align*}
60+
\end{definition}
61+
\begin{definition}{Quotient}
62+
If $z_{2} \neq 0$, then the \concept{quotient} $z_{1}/z_{2}$ is defined to be the product of $z_{1}$ and $1/z_{2}$
63+
\begin{align*}
64+
\frac{z_{1}}{z_{2}} = \frac{\overline{z_{2}}}{\left\lvert z_{2}\right\rvert^{2}}z_{1} = \frac{z_{1}\overline{z_{2}}}{\left\lvert z_{2}\right\rvert^{2}}
65+
\end{align*}
66+
67+
The practical way to perform division of complex numbers is therefore to multiply both the top and bottom by the conjugate of the bottom.
68+
\end{definition}
69+
\pagebreak
70+
\begin{sidenote}{Conjugate Rules}
71+
For any complex numbers $z$, $z_{1}$ and $z_{2}$:
72+
\begin{enumerate}[label=(\alph*)]
73+
\item $\overline{z_{1} + z_{2}} = \overline{z_{1}} + \overline{z_{2}}$
74+
\item $\overline{z_{1} - z_{2}} = \overline{z_{1}} - \overline{z_{2}}$
75+
\item $\overline{z_{1}z_{2}} = \overline{z_{1}} \cdot \overline{z_{2}}$
76+
\item $\overline{z_{1}/z_{2}} = \overline{z_{1}} / \overline{z_{2}}$
77+
\item $\overline{\overline{z}} = z$
78+
\item $z + \overline{z} = 2 \Real{z}$
79+
\item $z - \overline{z} = 2 \Imaginary{z}$
80+
\item $z\overline{z}$ is always real.
81+
\end{enumerate}
82+
\end{sidenote}
83+
\begin{sidenote}{Modulus Rules}
84+
For any complex numbers $z$, $z_{1}$ and $z_{2}$:
85+
\begin{enumerate}[label=(\alph*)]
86+
\item $\left\lvert \overline{z}\right\rvert = \left\lvert z\right\rvert $
87+
\item $\left\lvert z_{1}z_{2}\right\rvert = \left\lvert z_{1}\right\rvert \left\lvert z_{2}\right\rvert $
88+
\item $\left\lvert z_{1}/z_{2}\right\rvert = \left\lvert z_{1}\right\rvert /\left\lvert z_{2}\right\rvert $
89+
\item $\left\lvert z_{1} + z_{2}\right\rvert \leq \left\lvert z_{1}\right\rvert + \left\lvert z_{2}\right\rvert $
90+
\item $z\overline{z} = \left\lvert z\right\rvert^{2}$
91+
\end{enumerate}
92+
\end{sidenote}
93+
94+
\section{Polar Form}
95+
\begin{definition}{Polar Form}
96+
If $z = a + bi$ is a nonzero complex number, and $\phi$ is an angle from the real axis to the vector $z$, then the real and imaginary parts of $z$ can be expressed as:
97+
\begin{alignat*}{2}
98+
a &= \left\lvert z\right\rvert \cos \phi & \qquad b &= \left\lvert z\right\rvert \sin \phi
99+
\end{alignat*}
100+
101+
The complex number $z = a + bi$ can therefore be expressed as:
102+
\begin{align*}
103+
z = \left\lvert z\right\rvert (\cos \phi + i \sin \phi)
104+
\end{align*}
105+
106+
The angle $\phi$ is called an \concept{argument} of $z$. Is not unique, but only one argument (the \concept{principal argument}), which will satisfy in radians:
107+
\begin{align*}
108+
- \pi < \phi \leq \pi
109+
\end{align*}
110+
\end{definition}
111+
\begin{sidenote}{Geometric Interpretation}
112+
\begin{itemize}
113+
\item Multiplying two complex numbers has the geometric effect of multiplying their moduli, and adding their arguments.
114+
\item Dividing two complex numbers has the geometric effect of dividing their moduli, and subtracting their arguments.
115+
\end{itemize}
116+
\end{sidenote}
117+
\begin{theorem}{De Moivre's Theorem}
118+
If $n$ is a positive integer, and if $z$ is a nonzero complex number with polar form:
119+
\begin{align*}
120+
z = \left\lvert z\right\rvert (\cos \phi + i \sin \phi)
121+
\end{align*}
122+
Then:
123+
\begin{align*}
124+
z^{n} = \left\lvert z\right\rvert^{n} (\cos (n \phi) + i \sin (n \phi))
125+
\end{align*}
126+
\end{theorem}
127+
\begin{theorem}{Binomial Theorem and Pascal's Triangle}
128+
A method to expand any expression that has been raised to a power. Used to determine the coefficents of a term when expanded.
129+
130+
\concept{Pascal's Triangle} is a way to determine the terms:
131+
\begin{center}
132+
\begin{tikzpicture}[rotate=-90]
133+
\foreach \x in {0,1,...,5}
134+
{
135+
\foreach \y in {0,...,\x}
136+
{
137+
\pgfmathsetmacro\binom{factorial(\x)/(factorial(\y)*factorial(\x-\y))}
138+
\pgfmathsetmacro\shift{\x/2}
139+
\node[xshift=-\shift cm] at (\x,\y) {\pgfmathprintnumber\binom};
140+
}
141+
}
142+
\end{tikzpicture}
143+
\end{center}
144+
\end{theorem}
145+
\pagebreak
146+
\begin{example}
147+
\question{Express $\cos(4\theta)$ and $\sin(4\theta)$ in terms of powers of $\sin\theta$ and $\cos\theta$}
148+
\begin{enumerate}
149+
\item Find $(\cos\theta + i\sin\theta)^{4}$ using De Moivre:
150+
\begin{align*}
151+
(\cos\theta + i\sin\theta)^{4} = \cos(4\theta) + i\sin(4\theta)
152+
\end{align*}
153+
\item Use binomial expansion of $(\cos\theta + i\sin\theta)^{4}$
154+
\begin{align*}
155+
(cos\theta + i\sin\theta)^{4} &= \cos^{4}\theta + 4i\cos^{3}\theta\sin\theta - 6cos^{2}\theta\sin^{2}\theta - 4i\cos\theta\sin^{3}\theta + \sin^{4}\theta\\
156+
&= (cos^{4}\theta - 6\cos^{2}\theta\sin^{2}\theta + \sin^{4}\theta) + i(4\cos^{3}\theta\sin\theta - 4\cos\theta\sin^{3}\theta)
157+
\end{align*}
158+
\item Equate the real and nonreal parts.
159+
\begin{align*}
160+
\cos(4\theta) &= cos^{4}\theta - 6\cos^{2}\theta\sin^{2}\theta + \sin^{4}\theta\\
161+
\sin(4\theta) &= 4\cos^{3}\theta\sin\theta - 4\cos\theta\sin^{3}\theta
162+
\end{align*}
163+
\end{enumerate}
164+
\end{example}
165+
\ifSubfilesClassLoaded{%
166+
\vbox{\rulechapterend}}{\vspace*{\parskip}\rulebookend}
167+
\end{document}

0 commit comments

Comments
 (0)