-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2023.html
506 lines (446 loc) · 23.9 KB
/
2023.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>6th VISxAI Workshop at IEEE VIS 2023</title>
<link rel="stylesheet" href="node_modules/bootswatch/dist/sandstone/bootstrap.css">
<link rel="stylesheet" href="styles.css">
<link href="https://fonts.googleapis.com/css?family=IBM+Plex+Mono|IBM+Plex+Sans" rel="stylesheet">
<link rel="icon" type="image/png" sizes="32x32" href="favicon-32x32.png">
<link rel="icon" type="image/png" sizes="96x96" href="favicon-96x96.png">
<link rel="icon" type="image/png" sizes="16x16" href="favicon-16x16.png">
<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"
integrity="sha256-3edrmyuQ0w65f8gfBsqowzjJe2iM6n0nKciPUp8y+7E=" crossorigin="anonymous"></script>
<script src="node_modules/bootstrap/js/dist/util.js"></script>
<script src="node_modules/bootstrap/js/dist/collapse.js"></script>
<!-- Share card -->
<meta name="twitter:card" content="summary" />
<meta name="twitter:site" content="@visxai" />
<meta name="twitter:creator" content="@visxai" />
<meta property="og:url" content="http://visxai.io" />
<meta property="og:title" content="Workshop on Visualization for AI Explainability" />
<meta property="og:description"
content="The role of visualization in artificial intelligence (AI) gained significant attention in recent years. With the growing complexity of AI models, the critical need for understanding their inner-workings has increased. Visualization is potentially a powerful technique to fill such a critical need. The goal of this workshop is to initiate a call for 'explainables' / 'explorables' that explain how AI techniques work using visualization. We believe the VIS community can leverage their expertise in creating visual narratives to bring new insight into the often obfuscated complexity of AI systems."/>
<meta property="og:image" content="http://visxai.github.io/img/share.png" />
</head>
<body>
<div id="banner">
VISxAI is back! Join us at <a href="http://visxai.io">VISxAI 2024 at IEEE VIS</a> in St. Pete Beach, Florida!
</div>
<nav class="navbar navbar-expand-lg navbar-light bg-light">
<a class="navbar-brand" href="/"><span class="vxa">VISxAI</span></a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarColor03"
aria-controls="navbarColor03" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarColor03">
<ul class="navbar-nav mr-auto">
<li class="nav-item">
<a class="nav-link" href="submit.html">SUBMIT</a>
</li>
<li class="nav-item">
<a class="nav-link" href="#program">Program</a>
</li>
<li class="nav-item">
<a class="nav-link" href="#dates">Dates</a>
</li>
<li class="nav-item">
<a class="nav-link" href="#call">CFP</a>
</li>
<li class="nav-item">
<a class="nav-link" href="#hall-of-fame">Hall of Fame</a>
</li>
<li class="nav-item">
<a class="nav-link" href="#orga">Organizers</a>
</li>
<li class="nav-item">
<a class="nav-link" href="#pc">PC</a>
</li>
<li class="nav-item">
<a class="nav-link" href="2022.html">2022</a>
</li>
<li class="nav-item">
<a class="nav-link" href="2021.html">2021</a>
</li>
<li class="nav-item">
<a class="nav-link" href="2020.html">2020</a>
</li>
<li class="nav-item">
<a class="nav-link" href="2019.html">2019</a>
</li>
<li class="nav-item">
<a class="nav-link" href="2018.html">2018</a>
</li>
</ul>
</div>
</nav>
<div class="container" style="margin-top: 12pt;">
<div class="float-right">
<!--<img src="img/logo.png" height="70"/>-->
<img src="img/logo_v2.png" height="70" />
</div>
<!--<div style="position: absolute; right:5px;">-->
<!--</div>-->
<h2>6<sup>th</sup> Workshop on <br> <b>Visualization for AI Explainability</b></h2>
<p>October 18th, 2023 Online at 8:00am PT / 3:00pm UTC (+ meetup at IEEE VIS 2023 in Melbourne, Australia)</p>
<!-- <p class="text-center" style="font-size: 14pt;">
<b>PROGRAM IS ONLINE. <a href="program.html"> CLICK HERE !!!</a> </b>
</p> -->
<p>
The role of visualization in artificial intelligence (AI) gained
significant attention in recent years. With the growing complexity of AI
models, the critical need for understanding their inner-workings has
increased. Visualization is potentially a powerful technique to fill
such a critical need.
</p>
<p>
The goal of this workshop is to initiate a call for <i>"explainables" / "explorables"</i> that
explain how AI techniques work using visualization. We believe the VIS
community can leverage their expertise in creating visual narratives to
bring new insight into the often obfuscated complexity of AI systems.
</p>
<!-- <p class="text-center" style="font-size: 14pt;"> -->
<!-- <b>PROGRAM IS ONLINE. <a href="program.html"> CLICK HERE !!!</a> </b> -->
<!-- </p> -->
<p class="text-center">
<img class="img-fluid" src="img/examples-2023.png">
<div class="figure-caption">Example interactive visualization articles that explain general concepts and communicate experimental insights when playing with AI models.
(a) <a href="https://distill.pub/2019/visual-exploration-gaussian-processes/" target="_blank">A Visual Exploration of Gaussian Processes</a> by Görtler, Kehlbeck, and Deussen (<a href="https://visxai.io/2018">VISxAI 2018</a>);
(b) <a href="https://pair.withgoogle.com/explorables/fill-in-the-blank/" target="_blank">What Have Language Models Learned?</a> by Adam Pearce (<a href="https://visxai.io/2021">VISxAI 2021</a>);
(c) <a href="https://theo-jaunet.github.io/MemoryReduction/" target="_blank">What if we Reduce the Memory of an Artificial Doom Player?</a> by Jaunet, Vuillemot, and Wolf (<a href="https://visxai.io/2019">VISxAI 2019</a>);
(d) <a href="https://k-means-explorable.vercel.app/" target="_blank">K-Means Clustering: An Explorable Explainer</a> by Yi Zhe Ang (<a href="https://visxai.io/2022">VISxAI 2022</a>);
(e) <a href="https://tiga1231.github.io/umap-tour/" target="_blank">Comparing DNNs with UMAP Tour</a> by Li and Scheidegger (<a href="https://visxai.io/2020">VISxAI 2020</a>);
(f) <a href="https://parametric.press/issue-01/the-myth-of-the-impartial-machine/" target="_blank">The Myth of the Impartial Machine</a> by Feng and Wu (<a href="https://parametric.press/">Parametric Press</a>);
(g) <a href="http://formafluens.io/client/mix10.html">FormaFluens Data Experiment</a> by Strobelt, Phibbs, and Martino.
(h) <a href="https://idyll.pub/post/visxai-dimensionality-reduction-1dbad0a67a092b007c526a45/">The Beginner's Guide to Dimensionality Reduction</a> by Conlen and Hohman (<a href="https://visxai.io/2018">VISxAI 2018</a>).
</div>
</p>
<h2 id="dates">Important Dates</h2>
<pre>
July 30, 2023, anywhere: Submission Deadline
September 10, 2023: Author Notification
October 1, 2023: Camera Ready Deadline
<b>October 18th, 2023 at 8:00am PT / 3:00pm UTC: Workshop Online</b>
October xx, 2023: (optional) Meetup in Melbourne at VIS 2023
</pre>
<h2 id="program">Program Overview</h2>
<p>
All times in PT (UTC -8) on Wednesday, October 18, 2023.
<br>
<br>→ VISxAI is free to attend! Join us via Zoom: <a href="https://gatech.zoom.us/j/94590478262?pwd=dVltcGZGa1lpUWtYWUNjNzNBNlkxZz09">VISxAI 2023 Zoom link.</a>
<br>→ <a href="calendar/VISxAI 2023.ics">Add VISxAI 2023 to your calendar!</a>
<br>→ If you plan to attend the in-person VISxAI meetup at IEEE VIS (Thursday, October 26 at 12:00pm), <a href="https://docs.google.com/forms/d/e/1FAIpQLSfUdUTh7bBntIrnkpT03kT7P0LMk6er45LX3epilCrjpMsdDg/viewform">please fill out this form.</a>
</p>
<table style="padding: 5pt;">
<tr>
<td class="schedule">8:00</td>
<td><b>Welcome from the Organizers</b></td>
</tr>
<tr>
<td class="schedule">8:00 -- 8:30</td>
<td><b>Session I</b>
<br>
<a href="https://conformal-prediction.streamlit.app/">
Conformal Prediction: A Visual Introduction
</a>
-- Mihir Agarwal, Lalit Chandra Routhu, Zeel B Patel, Nipun Batra
<br>
<a href="https://jku-vds-lab.github.io/amumo">
Understanding and Comparing Multi-Modal Models
</a>
-- Christina Humer, Vidya Prasad, Marc Streit, Hendrik Strobelt
<br>
<a href="https://www.moritzdueck.com/neighborhood-traces/">
Neighborhood traces: When your neighborhood changes one layer at a time
</a>
-- Moritz Dück, Johannes Knittel, Hendrik Strobelt, Mennatallah El-Assady
<br>
<a href="http://jku-vds-lab.at/hoxai-at-visxai/">
Of Deadly Skullcaps and Amethyst Deceivers: Reflections on a Transdisciplinary Study on XAI and Trust
</a>
-- Andreas Hinterreiter, Christina Humer, Benedikt Leichtmann, Martina Mara, Marc Streit
<br>
<a href="https://observablehq.com/@visforpinns/visualization-for-understanding-pinns">
VisForPINNs: Visualization for Understanding Physics Informed Neural Networks
</a>
-- Viny Saajan Victor, Manuel Ettmüller, Andre Schmeißer, Heike Leitte, Simone Gramsch
</td>
</tr>
<tr>
<td class="schedule">8:30 -- 8:45</td>
<td><b>Break</b></td>
</tr>
<tr>
<td class="schedule">8:45 -- 9:15</td>
<td><b>Session II</b>
<br>
<a href="https://pair.withgoogle.com/explorables/grokking/">
Do Machine Learning Models Memorize or Generalize?
</a>
-- Adam Pearce, Asma Ghandeharioun, Nada Hussein, Nithum Thain, Martin Wattenberg, Lucas Dixon
<br>
<a href="https://poloclub.github.io/diffusion-explainer/">
Diffusion Explainer: Visual Explanation for Text-to-image Stable Diffusion
</a>
-- Seongmin Lee, Benjamin Hoover, Hendrik Strobelt, Zijie J. Wang, ShengYun Peng, Austin P Wright, Kevin Li, Haoyang Yang. Haekyu Park, Duen Horng Chau
<br>
<a href="https://graphical-models.netlify.app">
Learning What's in a Name with Graphical Models
</a>
-- Vu Luong, Justin S Selig
<br>
<a href="https://mlu-explain.github.io/neural-networks/">
Neural Networks: A Visual Introduction
</a>
-- Jared Wilber
<br>
<a href="https://www.cs.brandeis.edu/~dylan/pac_learning/">
PAC Learning Or: Why We Should (and Shouldn't) Trust Machine Learning
</a>
-- Dylan Cashman
</td>
</tr>
<tr>
<td class="schedule">9:15 -- 9:30</td>
<td><b>Break</b></td>
</tr>
<tr>
<td class="schedule">9:30 -- 10:30</td>
<td><b>Keynote: Matthew Conlen - <a href="https://twitter.com/mathisonian" target="_blank">@mathisonian</a></b>
<br>
<b>Beyond Notebooks: Computational Tools for Disseminating Research and Ideas</b>
<br>
Computational notebooks and interactive essays are both powerful mediums for sharing research; however, designers often mistakenly assume that they share similar design goals and constraints. This talk provides a critical examination of the differences between these two formats, highlighting the potential for interactive essays to move beyond the linear notebook format through a survey of influential works in experimental literature, cinema, graphic design, and game design. Recent research aids authors in crafting interactive essays, leveraging a variety of computational techniques including programming language design, structured text editing, computer graphics, and AR/VR.
</td>
</tr>
<tr><td></td><td><iframe style="border-radius:0.5em" width="560" height="315" src="https://www.youtube.com/embed/xVxnbfZ2fKs?si=n260v3wYSYA2uGn1" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe></td></tr>
<tr>
<td class="schedule">10:30am</td>
<td><b>Closing</b></td>
</tr>
</table>
<br>
<h2 id="call">Call for Participation</h2>
<!-- <p><strong>SUBMISSION CLOSED</strong></p> -->
<!-- <p> -->
<!-- To make our work more accessible to the general audience, we are soliciting submissions in a novel format:
blog-style posts and jupyter-like notebooks. In addition we also accept position papers in a more
traditional form.
Please contact us, if you want to submit a original work in another format. Email: <a
href="mailto:[email protected]">orga.visxai at gmail.com</a> -->
<!-- </p> -->
<div class="submit-button">
<a href="/submit.html">Submission instructions</a>
</div>
<br>
<p>
Explainable submissions (e.g., interactive articles, markup, and notebooks) are the core element of the workshop, as this
workshop aims to be a platform for explanatory visualizations focusing
on AI techniques.
</p>
<p>
Authors have the freedom to use whatever templates and formats they like. However, the narrative has to be
visual and interactive, and walk readers through a keen understanding on the ML technique or application.
Authors may wish to write a <a href="https://distill.pub">Distill-style</a> blog post (format), interactive
<a href="https://idyll-lang.org/">Idyll</a> markup, or a <a href="http://jupyter.org">Jupyter</a> or <a
href="https://beta.observablehq.com/">Observable</a> notebook that integrates code, text, and
visualization to tell the story.
</p>
<p>
Here are a few examples of visual explanations of AI methods in these types of formats:
<ul>
<li>[interactive article]
<a href="https://distill.pub/2019/visual-exploration-gaussian-processes/" target="_blank">A Visual Exploration of
Gaussian Processes</a>
</li>
<li>[interactive article]
<a href="https://distill.pub/2017/momentum/" target="_blank">Why Momentum Really Works</a>
</li>
<li>[interactive article]
<a href="http://www.r2d3.us/visual-intro-to-machine-learning-part-1/" target="_blank">A Visual Introduction to Machine Learning</a>
</li>
<li>[interactive article]
<a href="http://formafluens.io/client/mix10.html" target="_blank">Art-Inspired Data Experiments on Neural Network Model Decay</a>
</li>
<li>[interactive article]
<a href="https://research.google.com/bigpicture/attacking-discrimination-in-ml/" target="_blank">Attacking Discrimination with Smarter Machine Learning</a>
</li>
<li>[markup]
<a href="https://parametric.press/issue-01/the-myth-of-the-impartial-machine/" target="_">The Myth of the Impartial Machine</a>
</li>
<li>[markup]
<a href="https://idyll.pub/post/visxai-dimensionality-reduction-1dbad0a67a092b007c526a45/" target="_">The Beginner's Guide to Dimensionality Reduction</a>
</li>
<li>[notebook]
<a href="https://beta.observablehq.com/@nstrayer/t-sne-explained-in-plain-javascript" target="_blank">t-SNE Explained in Plain JavaScript</a>
</li>
<li>[notebook]
<a href="https://observablehq.com/@nsthorat/how-to-build-a-teachable-machine-with-tensorflow-js?collection=@observablehq/explorables" target="_blank">How to build a Teachable Machine with TensorFlow.js</a>
</li>
<li>[notebook]
<a href="http://nbviewer.jupyter.org/github/agconti/kaggle-titanic/blob/master/Titanic.ipynb" target="_blank">Titanic Machine Learning from Disaster</a>
</li>
</ul>
</p>
<p>
While these examples are informative and excellent, we hope the
Visualization & ML community will think about ways to creatively expand on
such foundational work to explain AI methods using novel interactions
and visualizations often present at IEEE VIS.
Please contact us, if you want to submit a original work in another
format. Email: <a href="mailto:[email protected]">orga.visxai (at) gmail.com</a>.
</p>
<p>
Our workshop will be hybrid. We encourage and accept submissions for those who cannot travel to VIS in person.
</p>
<p>
Note: We also accept more traditional papers that accompany an explainable.
Be aware that we require that the explainable must stand on its own.
The reviewers will evaluate the explainable (and might chose to ignore the paper).
</p>
<h2 id="hall-of-fame">Hall of Fame</h2>
Each year we award Best Submissions and Honorable Mentions. <i>Congrats to our winners!</i>
<br><br>
<h5>VISxAI 2023</h5>
<ul>
<li>
<a href="https://www.cs.brandeis.edu/~dylan/pac_learning/">
PAC Learning Or: Why We Should (and Shouldn't) Trust Machine Learning
</a>
-- Dylan Cashman
</li>
<li>
<a href="https://jku-vds-lab.github.io/amumo">
Understanding and Comparing Multi-Modal Models
</a>
-- Christina Humer, Vidya Prasad, Marc Streit, Hendrik Strobelt
</li>
<li>
<a href="https://pair.withgoogle.com/explorables/grokking/">
Do Machine Learning Models Memorize or Generalize?
</a>
-- Adam Pearce, Asma Ghandeharioun, Nada Hussein, Nithum Thain, Martin Wattenberg, Lucas Dixon
</li>
</ul>
<h5>VISxAI 2022</h5>
<ul>
<li>
<a href="https://k-means-explorable.vercel.app/">
K-Means Clustering: An Explorable Explainer
</a>
-- Yi Zhe Ang
</li>
<li>
<a href="https://uvasrg.github.io/poisoning/">
Poisoning Attacks and Subpopulation Susceptibility
</a>
-- Evan Rose, Fnu Suya, David Evans
</li>
</ul>
<h5>VISxAI 2021</h5>
<ul>
<li>
<a href="https://pair.withgoogle.com/explorables/fill-in-the-blank/">
What Have Language Models Learned?
</a>
-- Adam Pearce
</li>
<li>
<a href="http://www.cs.umd.edu/~amin/apps/visxai/sonification/">
Feature Sonification: An investigation on the features learned for Automatic Speech Recognition
</a>
-- Amin Ghiasi, Hamid Kazemi, W. Ronny Huang, Emily Liu, Micah Goldblum, Tom Goldstein
</li>
</ul>
<h5>VISxAI 2020</h5>
<ul>
<li>
<a href="https://tiga1231.github.io/umap-tour/">
Comparing DNNs with UMAP Tour
</a> -- Mingwei Li and Carlos Scheidegger
</li>
<li>
<a href="https://www.pewresearch.org/interactives/how-does-a-computer-see-gender/">
How Does a Computer "See" Gender?
</a> -- Stefan Wojcik, Emma Remy, and Chris Baronavski
</li>
</ul>
<h5>VISxAI 2019</h5>
<ul>
<li>
<a href="https://theo-jaunet.github.io/MemoryReduction/">
What if we Reduce the Memory of an Artificial Doom Player?
</a> -- Theo Jaunet, Romain Vuillemot, and Christian Wolf
</li>
<li>
<a href="https://qnkxsovc.gitlab.io/prob-vis/">
Statistical Distances and Their Implications to GAN Training
</a> -- Max Daniels
</li>
<li>
<a href="https://mybinder.org/v2/gh/KrishnaswamyLab/visualization_selection/master?filepath=Selecting_the_right_tool_for_the_job.ipynb">
Selecting the right tool for the job: a comparison of visualization algorithms
</a> -- Daniel Burkhardt, Scott Gigante, and Smita Krishnaswamy
</li>
</ul>
<h5>VISxAI 2018</h5>
<ul>
<li>
<a href="https://www.jgoertler.com/visual-exploration-gaussian-processes/">
A Visual Exploration of Gaussian Processes
</a> -- Jochen Görtler, Rebecca Kehlbeck and Oliver Deussen
</li>
<li>
<a href="https://idyll.pub/post/visxai-dimensionality-reduction-1dbad0a67a092b007c526a45/">
The Beginner's Guide to Dimensionality Reduction
</a> -- Matthew Conlen and Fred Hohman
</li>
<li>
<a href="https://roadsfromabove.netlify.com/">
Roads from Above
</a> -- Greg More, Slaven Marusic and Caihao Cui
</li>
</ul>
<!-- <p> <strong>SUBMISSION CLOSED</strong></p> -->
<h2 id="orga">Organizers <span style="font-size: small">(alphabetic)</span>
</h2>
<p>
Alex Bäuerle - Independent Researcher<br />
Angie Boggust - Massachusetts Institute of Technology<br />
Fred Hohman - Apple<br />
Ian Johnson - Latent Interfaces<br />
Zijie Jay Wang - Georgia Tech<br />
</p>
<h5>Steering Committee</h5>
<p>
Adam Perer - Carnegie Mellon University<br />
Hendrik Strobelt - MIT-IBM Watson AI Lab<br />
Mennatallah El-Assady - ETH AI Center<br />
</p>
<h2 id="pc">Program Committee</h2>
<p>
Jane Adams<br/>
Marco Angelini<br/>
Donald Bertucci<br/>
Ángel Cabrera<br/>
Jaegul Choo<br/>
Brandon Duderstadt<br/>
Angus Forbes<br/>
Iris Howley<br/>
Andriy Mulyar<br/>
Rita Sevastjanova<br/>
Arjun Srinivasan<br/>
Yang Wang<br/>
James Wexler<br/>
</p>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-119596896-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() { dataLayer.push(arguments); }
gtag('js', new Date());
gtag('config', 'UA-119596896-1');
</script>
</div>
</body>
</html>