forked from uxlfoundation/scikit-learn-intelex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeselected_tests.yaml
executable file
·505 lines (425 loc) · 29.7 KB
/
deselected_tests.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#===============================================================================
# Copyright 2020 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#===============================================================================
# This file lists node ids (in pytest sense) of sklearn tests that
# are to be deselected during test discovery step.
#
# Deselection can be predicated on the version of scikit-learn used.
# Use - node_id cond, or - node_id cond1,cond2 where cond is OPver.
# Supported OPs are >=, <=, ==, !=, >, <
# For example,
# - tests/test_isotonic.py::test_permutation_invariance >0.18,<=0.19
# will exclude deselection in versions 0.18.1, and 0.18.2 only
deselected_tests:
# Model with sparse data are different between oneAPI Data Analytics Library (oneDAL) and stock sklearn
- svm/tests/test_sparse.py::test_svc
- svm/tests/test_sparse.py::test_svc_iris
- svm/tests/test_sparse.py::test_sparse_realdata
# decision function different 1.83697605e-06
- ensemble/tests/test_bagging.py::test_sparse_classification
- ensemble/tests/test_bagging.py::test_sparse_regression <0.23
# Same results as in scikit-learn, but in a different order.
- svm/tests/test_svm.py::test_svc_ovr_tie_breaking[SVC]
- svm/tests/test_svm.py::test_svc_ovr_tie_breaking[NuSVC]
# Different models between oneAPI Data Analytics Library (oneDAL) and stock sklearn with custom and precompute kernel
- svm/tests/test_svm.py::test_svc_clone_with_callable_kernel
- svm/tests/test_svm.py::test_precomputed
# sklearn expects an exception for sparce matrices with 64-bit integer indices.
# sklearnex works correctly with 64-bit integer indices
- tests/test_common.py::test_estimators[NuSVC()-check_estimator_sparse_data]
- utils/tests/test_estimator_checks.py::test_xfail_ignored_in_check_estimator
# SVC._dual_coef_ is changing after fitting but result of prediction is still the same
- svm/tests/test_svm.py::test_tweak_params
# Bitwise comparison of SVR score using a print (diff = 2.220446049250313e-16)
- svm/tests/test_svm.py::test_custom_kernel_not_array_input[SVR]
# This test needs a warning from sklearn. sklearnex raises the same warning
- tests/test_common.py::test_estimators[SVC()-check_supervised_y_2d]
- tests/test_common.py::test_estimators[SVR()-check_supervised_y_2d]
- tests/test_common.py::test_estimators[NuSVC()-check_supervised_y_2d]
- tests/test_common.py::test_estimators[NuSVR()-check_supervised_y_2d]
# Bitwise comparison of probabilities using a print.
- metrics/tests/test_classification.py >=0.22,<0.24
# Max absolute difference: 0.04 for rocauc, and 0.01 for precision_recall
- metrics/tests/test_ranking.py::test_roc_curve_hard >=0.23,<0.24
# test_non_uniform_strategies fails due to differences in handling of vacuous clusters after update
# See https://github.com/IntelPython/daal4py/issues/69
- cluster/tests/test_k_means.py::test_relocated_clusters >=0.23,<0.24
- cluster/tests/test_k_means.py::test_kmeans_relocated_clusters >=0.24
# In sklearn, these algorithms are not included in this test, but we do, and they give an error. This is due to the different structure of the transformer.__module__.split(".").
- tests/test_common.py::test_transformers_get_feature_names_out[KMeans()] >=1.0
- tests/test_common.py::test_transformers_get_feature_names_out[PCA()] >=1.0
# oneAPI Data Analytics Library (oneDAL) does not check convergence for tol == 0.0 for ease of benchmarking
- cluster/tests/test_k_means.py::test_kmeans_convergence >=0.23
- cluster/tests/test_k_means.py::test_kmeans_verbose >=0.23
# For Newton-CG solver, solution computed in float32 disagrees with that of float64 a little more than
# the test expects, see https://github.com/scikit-learn/scikit-learn/pull/13645
- linear_model/tests/test_logistic.py::test_dtype_match
# This fails on certain platforms. Weighted data do not go through DAAL,
# unweighted do. Since convergence is not accomplished (comment in te test
# suggests that), coefficients are slightly different, resulting in 1 prediction
# disagreement.
- ensemble/tests/test_stacking.py::test_stacking_with_sample_weight[StackingClassifier]
# Insufficient accuracy of "coefs" and "intercept" in Elastic Net for multi-target problem
# https://github.com/oneapi-src/oneDAL/issues/494
- linear_model/tests/test_coordinate_descent.py::test_enet_multitarget
# Insufficient accuracy of objective function in Elastic Net in case warm_start
# https://github.com/oneapi-src/oneDAL/issues/495
- linear_model/tests/test_coordinate_descent.py::test_warm_start_convergence_with_regularizer_decrement <0.24
# oneAPI Data Analytics Library (oneDAL) doesn't support sample_weight (back to Sklearn), insufficient accuracy (similar to previous cases)
- linear_model/tests/test_coordinate_descent.py::test_enet_sample_weight_consistency >=0.23
# On small datasets, the regression coefficients for multi-target problem differ from scikit-learn. Coefficients matches for first label only.
# For big data the coefficients are close.
# See: https://github.com/IntelPython/daal4py/issues/275
- linear_model/tests/test_ridge.py::test_ridge_cv_individual_penalties >=0.24
# Different interpretation of trees compared to scikit-learn
# Looks like we need to align tree traversal. This problem will be fixed
- ensemble/tests/test_forest.py::test_min_samples_leaf
# Different random number generation engine in oneDAL and scikit-learn
# The result is depend on random state, for random_state=777 in RandomForestClassifier the test is passed
- ensemble/tests/test_voting.py::test_majority_label_iris
# Our threads are used internally and are not explicitly specified
- ensemble/tests/test_forest.py::test_backend_respected
# We do not support accessing trees through the result variable
- ensemble/tests/test_forest.py::test_warm_start
- inspection/tests/test_partial_dependence.py::test_recursion_decision_tree_vs_forest_and_gbdt[0] >=0.23
# Our implementation builds different trees compared to skikit-learn
# Comparison of tree forest will be failed
- ensemble/tests/test_forest.py::test_class_weights[RandomForestClassifier]
- inspection/tests/test_permutation_importance.py::test_robustness_to_high_cardinality_noisy_feature >=0.23
- tests/test_common.py::test_estimators[RandomForestClassifier()-check_classifiers_train]
- tests/test_common.py::test_estimators[RandomForestClassifier()-check_classifiers_train(readonly_memmap=True)]
- tests/test_common.py::test_estimators[RandomForestClassifier()-check_no_attributes_set_in_init] >=1.0
- tests/test_common.py::test_estimators[RandomForestRegressor()-check_no_attributes_set_in_init] >=1.0
- tests/test_common.py::test_estimators[SVC()-check_sample_weights_invariance(kind=zeros)] <1.0
- tests/test_common.py::test_estimators[SVR()-check_sample_weights_invariance(kind=zeros)] <1.0
- tests/test_common.py::test_estimators[NuSVC()-check_sample_weights_invariance(kind=zeros)] <1.0
- tests/test_common.py::test_estimators[NuSVR()-check_sample_weights_invariance(kind=zeros)] <1.0
- tests/test_common.py::test_estimators[NuSVC()-check_class_weight_classifiers] <1.0
- tests/test_multioutput.py::test_multi_output_classification
- tests/test_multioutput.py::test_classifier_chain_tuple_order >=0.24,<=1.1
# Different results sklearnex and sklearn linear regression with weights. Need to investigate.
- inspection/tests/test_permutation_importance.py::test_permutation_importance_sample_weight >=1.0
# Patched and unpatched kmeans belong same values to different clusters. Need to investigate.
- preprocessing/tests/test_discretization.py::test_nonuniform_strategies[kmeans-expected_2bins1-expected_3bins1-expected_5bins1] >=1.0,<=1.1
# OOB scores in sklearn and oneDAL are different because of different random nuber generators
- ensemble/tests/test_forest.py::test_forest_classifier_oob[X2-y2-0.65-array-RandomForestClassifier]
- ensemble/tests/test_forest.py::test_warm_start_oob[RandomForestClassifier]
# Need a warning from sklearn if some samples do not have OOB scores that can not be raised from oneDAL
- ensemble/tests/test_forest.py::test_forest_oob_warning[RandomForestClassifier]
- ensemble/tests/test_forest.py::test_forest_oob_warning[RandomForestRegressor]
- ensemble/tests/test_forest.py::test_oob_score_classifiers[RandomForestClassifier]
- ensemble/tests/test_forest.py::test_oob_score_regressors[RandomForestRegressor]
# Different behavior when 1 class enters the input
- feature_selection/tests/test_rfe.py::test_rfe_cv_groups
# The bugs are fixed in 2021.2 release
- ensemble/tests/test_forest.py::test_regression >=0.24 # pass for defaultDence method only
- ensemble/tests/test_forest.py::test_boston <0.24
- ensemble/tests/test_stacking.py::test_stacking_cv_influence
- utils/tests/test_estimator_checks.py::test_check_estimator_clones
# module name should starts with 'sklearn.' but we have 'daal4py.sklearn.'
- tests/test_common.py::test_check_n_features_in_after_fitting[LogisticRegression()] >=0.24,<1.0
- tests/test_common.py::test_check_n_features_in_after_fitting[SVC()] >=0.24,<1.0
- metrics/tests/test_score_objects.py::test_scoring_is_not_metric
- utils/tests/test_estimator_checks.py::test_check_dataframe_column_names_consistency >=1.0
# Stability issue with max absolute difference: 4.33846826e-08/1.17613697e-11. Remove in next release
- ensemble/tests/test_bagging.py::test_estimators_samples_deterministic
# We use similar statements, but with different words
- ensemble/tests/test_gradient_boosting.py::test_gradient_boosting_with_init_pipeline >=1.0
# Data for the tests is generated by using SVC. And it's not equal to stock sklearn
- metrics/tests/test_ranking.py::test_precision_recall_curve >=0.22,<0.24
# Some values in PCA.components_ (in the last component) aren't equal (0.6 on average for absolute error in this test)
# because of different implementations of PCA. Also, results are not stable.
- decomposition/tests/test_incremental_pca.py::test_whitening
# Stability issue with max absolute difference: 0.00015992. Remove in the next release.
- decomposition/tests/test_pca.py::test_pca_dtype_preservation >=0.24,<1.0
# The test fails because of changing of 'auto' strategy in PCA to improve performance.
# 'randomized' PCA expected, but 'full' is given.
- decomposition/tests/test_pca.py::test_pca_svd_solver_auto[data3-10-randomized]
# Scikit-learn logistic regression predict depends from decision_function while d4p is not.
# Assertion error in check_estimator(PoorScoreLogisticRegression())
- utils/tests/test_estimator_checks.py::test_check_estimator >=0.24
# Need to fix for next release
- tests/test_multioutput.py::test_classifier_chain_tuple_order >=0.24, <=1.0
# RandomForestRegressor sum(y_pred)!=sum(y_true)
- ensemble/tests/test_forest.py::test_balance_property_random_forest[squared_error] >=1.0
# This tests fail on mac mini 8.1 with stock scikit-learn
- semi_supervised/tests/test_label_propagation.py
# This test fails because with patch config_context with new options, but the
# test checks that only exact number of options is used
- tests/test_config.py::test_config_context
# HalvingGridSearchCV with Ridge and PCA didn't have feature_name_in. Need to fix.
- tests/test_common.py::test_pandas_column_name_consistency >=1.0.1
# Some sklearnex docstrings differ from scikit-learn.
- tests/test_docstrings.py >=1.0.2
# Accuracy of sklearnex and sklearn may differ due to different approaches
- manifold/tests/test_t_sne.py::test_preserve_trustworthiness_approximately_with_precomputed_distances
- manifold/tests/test_t_sne.py::test_bh_match_exact
- manifold/tests/test_t_sne.py::test_uniform_grid[barnes_hut]
- manifold/tests/test_t_sne.py::test_sparse_precomputed_distance
- manifold/tests/test_t_sne.py::test_tsne_different_square_distances >=0.24
# Temporary deselected up to 2021.6 release. Need to fix
- ensemble/tests/test_bagging.py::test_classification
# --------------------------------------------------------
# Not need of testing for daal4py patching
reduced_tests:
- cluster/tests/test_affinity_propagation.py
- cluster/tests/test_bicluster.py
- cluster/tests/test_birch.py
- cluster/tests/test_mean_shift.py
- cluster/tests/test_optics.py
- compose/tests/test_column_transformer.py
- decomposition/tests/test_dict_learning.py
- decomposition/tests/test_factor_analysis.py
- decomposition/tests/test_nmf.py
- decomposition/tests/test_online_lda.py
- ensemble/tests/test_gradient_boosting.py
- ensemble/tests/test_gradient_boosting_loss_functions.py
- ensemble/tests/test_iforest.py
- feature_selection/tests/test_chi2.py
- feature_selection/tests/test_feature_select.py
- feature_selection/tests/test_mutual_info.py
- feature_selection/tests/test_sequential.py
- feature_selection/tests/test_from_model.py
- manifold/tests/test_isomap.py
- manifold/tests/test_locally_linear.py
- manifold/tests/test_spectral_embedding.py
- model_selection/tests/test_successive_halving.py
- neighbors/tests/test_ball_tree.py
- neighbors/tests/test_kd_tree.py
- neighbors/tests/test_quad_tree.py
- tests/test_kernel_approximation.py
- tests/test_docstring_parameters.py
- tests/test_dummy.py
- tests/test_random_projection.py
- tests/test_naive_bayes.py
- utils/tests/test_arpack.py
- utils/tests/test_cython_blas.py
- utils/tests/test_encode.py
- utils/tests/test_estimator_html_repr.py
- utils/tests/test_extmath.py
- utils/tests/test_fast_dict.py
- utils/tests/test_mocking.py
- utils/tests/test_murmurhash.py
- utils/tests/test_sparsefuncs.py
- utils/tests/test_utils.py
- _loss/
- covariance/
- cross_decomposition/
- datasets/
- ensemble/_hist_gradient_boosting/
- experimental/
- feature_extraction/
- gaussian_process/
- impute/
- inspection/
- neural_network/
- preprocessing/
public:
- tests/test_common.py::test_estimators
# Failed in stock sklearn
- metrics/tests/test_common.py::test_not_symmetric_metric[precision_recall_curve]
- metrics/tests/test_common.py::test_binary_sample_weight_invariance[precision_recall_curve]
# --------------------------------------------------------
# The following tests currently fail with GPU offload
gpu:
# Segfaults
- ensemble/tests/test_weight_boosting.py
# Fails
- cluster/tests/test_dbscan.py::test_weighted_dbscan
- cluster/tests/test_k_means.py::test_k_means_fit_predict
- cluster/tests/test_k_means.py::test_predict
- decomposition/tests/test_pca.py::test_pca_dtype_preservation
- ensemble/tests/test_bagging.py::test_gridsearch
- ensemble/tests/test_bagging.py::test_estimators_samples
- ensemble/tests/test_common.py::test_ensemble_heterogeneous_estimators_behavior
- ensemble/tests/test_forest.py::test_min_samples_split[RandomForestClassifier]
- ensemble/tests/test_forest.py::test_min_weight_fraction_leaf
- ensemble/tests/test_voting.py::test_parallel_fit
- ensemble/tests/test_voting.py::test_sample_weight
- feature_selection/tests/test_rfe.py::test_number_of_subsets_of_features
- linear_model/tests/test_coordinate_descent.py::test_model_pipeline_same_as_normalize_true
- linear_model/tests/test_logistic.py::test_predict_3_classes
- linear_model/tests/test_logistic.py::test_logistic_cv_sparse
- linear_model/tests/test_logistic.py::test_ovr_multinomial_iris
- linear_model/tests/test_logistic.py::test_logistic_regression_multinomial
- manifold/tests/test_t_sne.py::test_preserve_trustworthiness_approximately
- manifold/tests/test_t_sne.py::test_uniform_grid
- manifold/tests/test_t_sne.py::test_tsne_different_square_distances
- metrics/tests/test_classification.py::test_precision_recall_f1_score_binary
- metrics/tests/test_classification.py::test_precision_recall_fscore_support_errors
- metrics/tests/test_classification.py::test_confusion_matrix_binary
- metrics/tests/test_classification.py::test_multilabel_confusion_matrix_binary
- metrics/tests/test_ranking.py::test_roc_curve
- metrics/tests/test_ranking.py::test_roc_returns_consistency
- metrics/tests/test_ranking.py::test_roc_curve_confidence
- metrics/tests/test_ranking.py::test_precision_recall_curve
- metrics/tests/test_ranking.py::test_score_scale_invariance
- metrics/tests/test_ranking.py::test_partial_roc_auc_score
- metrics/tests/test_score_objects.py::test_average_precision_pos_label
- mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_weights_prior_initialisation
- mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_mean_prior_initialisation
- mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_precisions_prior_initialisation
- mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_weights
- mixture/tests/test_bayesian_mixture.py::test_monotonic_likelihood
- mixture/tests/test_bayesian_mixture.py::test_compare_covar_type
- mixture/tests/test_bayesian_mixture.py::test_check_covariance_precision
- mixture/tests/test_bayesian_mixture.py::test_invariant_translation
- mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict
- mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_fit_predict_n_init
- mixture/tests/test_bayesian_mixture.py::test_bayesian_mixture_predict_predict_proba
- mixture/tests/test_gaussian_mixture.py::test_check_weights
- mixture/tests/test_gaussian_mixture.py::test_check_means
- mixture/tests/test_gaussian_mixture.py::test_check_precisions
- mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_estimate_log_prob_resp
- mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_predict_predict_proba
- mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_predict
- mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_predict_n_init
- mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit
- mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_best_params
- mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_fit_convergence_warning
- mixture/tests/test_gaussian_mixture.py::test_multiple_init
- mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_n_parameters
- mixture/tests/test_gaussian_mixture.py::test_bic_1d_1component
- mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_aic_bic
- mixture/tests/test_gaussian_mixture.py::test_gaussian_mixture_verbose
- mixture/tests/test_gaussian_mixture.py::test_warm_start
- mixture/tests/test_gaussian_mixture.py::test_convergence_detected_with_warm_start
- mixture/tests/test_gaussian_mixture.py::test_score
- mixture/tests/test_gaussian_mixture.py::test_score_samples
- mixture/tests/test_gaussian_mixture.py::test_monotonic_likelihood
- mixture/tests/test_gaussian_mixture.py::test_regularisation
- mixture/tests/test_gaussian_mixture.py::test_property
- mixture/tests/test_gaussian_mixture.py::test_sample
- mixture/tests/test_gaussian_mixture.py::test_init
- mixture/tests/test_mixture.py::test_gaussian_mixture_n_iter
- model_selection/tests/test_search.py::test_grid_search_one_grid_point
- model_selection/tests/test_search.py::test_search_default_iid
- model_selection/tests/test_search.py::test_random_search_cv_results_multimetric
- model_selection/tests/test_search.py::test_predict_proba_disabled
- model_selection/tests/test_validation.py::test_cross_val_predict_sparse_prediction
- model_selection/tests/test_validation.py::test_fit_and_score_verbosity
- neighbors/tests/test_neighbors.py::test_unsupervised_kneighbors
- neighbors/tests/test_neighbors.py::test_kneighbors_classifier
- neighbors/tests/test_neighbors.py::test_KNeighborsClassifier_multioutput
- neighbors/tests/test_neighbors.py::test_neighbors_metrics
- neighbors/tests/test_neighbors.py::test_neighbors_iris
- semi_supervised/tests/test_self_training.py::test_early_stopping
- svm/tests/test_sparse.py::test_svc
- svm/tests/test_sparse.py::test_svc_with_custom_kernel
- svm/tests/test_sparse.py::test_svc_iris
- svm/tests/test_sparse.py::test_error
- svm/tests/test_sparse.py::test_sample_weights
- svm/tests/test_sparse.py::test_sparse_realdata
- svm/tests/test_svm.py::test_precomputed
- svm/tests/test_svm.py::test_tweak_params
- svm/tests/test_svm.py::test_svm_classifier_sided_sample_weight[estimator0]
- svm/tests/test_svm.py::test_svm_equivalence_sample_weight_C
- svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-1-SVC]
- svm/tests/test_svm.py::test_negative_weights_svc_leave_two_labels[partial-mask-label-2-SVC]
- svm/tests/test_svm.py::test_svc_clone_with_callable_kernel
- svm/tests/test_svm.py::test_custom_kernel_not_array_input[SVR]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_estimators_dtypes]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_fit_score_takes_y]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_estimators_fit_returns_self]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_estimators_fit_returns_self(readonly_memmap=True)]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_dtype_object]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_pipeline_consistency]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_estimators_nan_inf]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_estimators_overwrite_params]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_estimators_pickle]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_methods_sample_order_invariance]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_methods_subset_invariance]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_fit2d_1feature]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_dict_unchanged]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_dont_overwrite_parameters]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_fit_idempotent]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_n_features_in]
- tests/test_common.py::test_estimators[BayesianGaussianMixture()-check_fit2d_predict1d]
- tests/test_common.py::test_estimators[GaussianMixture()-check_estimators_dtypes]
- tests/test_common.py::test_estimators[GaussianMixture()-check_fit_score_takes_y]
- tests/test_common.py::test_estimators[GaussianMixture()-check_estimators_fit_returns_self]
- tests/test_common.py::test_estimators[GaussianMixture()-check_estimators_fit_returns_self(readonly_memmap=True)]
- tests/test_common.py::test_estimators[GaussianMixture()-check_dtype_object]
- tests/test_common.py::test_estimators[GaussianMixture()-check_pipeline_consistency]
- tests/test_common.py::test_estimators[GaussianMixture()-check_estimators_nan_inf]
- tests/test_common.py::test_estimators[GaussianMixture()-check_estimators_overwrite_params]
- tests/test_common.py::test_estimators[GaussianMixture()-check_estimators_pickle]
- tests/test_common.py::test_estimators[GaussianMixture()-check_methods_sample_order_invariance]
- tests/test_common.py::test_estimators[GaussianMixture()-check_methods_subset_invariance]
- tests/test_common.py::test_estimators[GaussianMixture()-check_fit2d_1feature]
- tests/test_common.py::test_estimators[GaussianMixture()-check_dict_unchanged]
- tests/test_common.py::test_estimators[GaussianMixture()-check_dont_overwrite_parameters]
- tests/test_common.py::test_estimators[GaussianMixture()-check_fit_idempotent]
- tests/test_common.py::test_estimators[GaussianMixture()-check_n_features_in]
- tests/test_common.py::test_estimators[GaussianMixture()-check_fit2d_predict1d]
- tests/test_common.py::test_estimators[KMeans()-check_clustering]
- tests/test_common.py::test_estimators[KMeans()-check_clustering(readonly_memmap=True)]
- tests/test_common.py::test_estimators[LogisticRegression()-check_sample_weights_invariance(kind=ones)]
- tests/test_common.py::test_estimators[LogisticRegression()-check_sample_weights_invariance(kind=zeros)]
- tests/test_common.py::test_estimators[LogisticRegression()-check_classifiers_classes]
- tests/test_common.py::test_estimators[LogisticRegression()-check_decision_proba_consistency]
- tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]
- tests/test_common.py::test_estimators[OneVsOneClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]
- tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifier_multioutput]
- tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train]
- tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True)]
- tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_classifiers_train(readonly_memmap=True,X_dtype=float32)]
- tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_decision_proba_consistency]
- tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_sample_order_invariance]
- tests/test_common.py::test_estimators[OneVsRestClassifier(estimator=LogisticRegression(C=1))-check_methods_subset_invariance]
- tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_classifiers_classes]
- tests/test_common.py::test_estimators[RFE(estimator=LogisticRegression(C=1))-check_decision_proba_consistency]
- tests/test_common.py::test_estimators[RFECV(estimator=LogisticRegression(C=1))-check_classifiers_classes]
- tests/test_common.py::test_estimators[RFECV(estimator=LogisticRegression(C=1))-check_decision_proba_consistency]
- tests/test_common.py::test_estimators[RandomForestClassifier()-check_class_weight_classifiers]
- tests/test_common.py::test_estimators[SVC()-check_sample_weights_pandas_series]
- tests/test_common.py::test_estimators[SVC()-check_sample_weights_not_an_array]
- tests/test_common.py::test_estimators[SVC()-check_sample_weights_shape]
- tests/test_common.py::test_estimators[SVC()-check_pipeline_consistency]
- tests/test_common.py::test_estimators[SVC()-check_estimators_nan_inf]
- tests/test_common.py::test_estimators[SVC()-check_estimators_pickle]
- tests/test_common.py::test_estimators[SVC()-check_classifier_data_not_an_array]
- tests/test_common.py::test_estimators[SVC()-check_classifiers_classes]
- tests/test_common.py::test_estimators[SVC()-check_classifiers_train]
- tests/test_common.py::test_estimators[SVC()-check_class_weight_classifiers]
- tests/test_common.py::test_estimators[SVC()-check_fit2d_1feature]
- tests/test_common.py::test_estimators[SVC()-check_dict_unchanged]
- tests/test_common.py::test_estimators[SVC()-check_fit_idempotent]
- tests/test_common.py::test_estimators[SVC()-check_n_features_in]
- tests/test_common.py::test_estimators[SelfTrainingClassifier(base_estimator=LogisticRegression(C=1))-check_classifiers_classes]
- tests/test_common.py::test_estimators[SelfTrainingClassifier(base_estimator=LogisticRegression(C=1))-check_decision_proba_consistency]
- tests/test_common.py::test_estimators[StackingClassifier(estimators=[('est1',LogisticRegression(C=0.1)),('est2',LogisticRegression(C=1))])-check_sample_weights_invariance(kind=ones)]
- tests/test_common.py::test_estimators[StackingClassifier(estimators=[('est1',LogisticRegression(C=0.1)),('est2',LogisticRegression(C=1))])-check_sample_weights_invariance(kind=zeros)]
- tests/test_common.py::test_estimators[TSNE()-check_fit_idempotent]
- tests/test_common.py::test_estimators[TSNE()-check_n_features_in]
- tests/test_common.py::test_search_cv[RandomizedSearchCV(estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]})-check_classifiers_classes]
- tests/test_common.py::test_search_cv[RandomizedSearchCV(estimator=LogisticRegression(),param_distributions={'C':[0.1,1.0]})-check_decision_proba_consistency]
- tests/test_common.py::test_search_cv[RandomizedSearchCV(error_score='raise',estimator=Pipeline(steps=[('pca',PCA()),('logisticregression',LogisticRegression())]),param_distributions={'logisticregression__C':[0.1,1.0]})-check_decision_proba_consistency]
- tests/test_common.py::test_check_n_features_in_after_fitting[TSNE()]
- tests/test_multiclass.py::test_ovr_fit_predict_sparse
- tests/test_multiclass.py::test_ovr_binary
- tests/test_multiclass.py::test_ovr_fit_predict_svc
- tests/test_multiclass.py::test_ovr_multilabel_predict_proba
- tests/test_multiclass.py::test_ovr_multilabel_decision_function
- tests/test_multiclass.py::test_ovr_single_label_decision_function
- tests/test_multiclass.py::test_ovr_coef_
- tests/test_multiclass.py::test_ovr_deprecated_coef_intercept
- tests/test_multiclass.py::test_pairwise_cross_val_score
- tests/test_multioutput.py::test_multiclass_multioutput_estimator_predict_proba
- tests/test_multioutput.py::test_classifier_chain_fit_and_predict_with_sparse_data
# Very slow execution due to SVC
- model_selection/tests/test_validation.py::test_validation_curve_cv_splits_consistency
- model_selection/tests/test_search.py::test_grid_search_cv_results
- model_selection/tests/test_search.py::test_random_search_cv_results