-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathetl.py
127 lines (97 loc) · 3.85 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
"""Extract data from raw song JSON file and INSERT to 'songs' and 'artists' tables.
Parameters
----------
cur : cursor
cursor of psycopg2 database connection
filepath : file
song data file
"""
# open song file
df = pd.read_json(filepath, dtype={'year': int}, lines=True)
# insert song record
song_data = df[['song_id', 'title', 'artist_id', 'year', 'duration']].values[0].tolist()
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df[['artist_id', 'artist_name', 'artist_location', 'artist_latitude', 'artist_longitude']].values[0].tolist()
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""Extract data from raw log JSON file and INSERT to 'time', 'users' and 'songplays' tables.
Parameters
----------
cur : cursor
cursor of psycopg2 database connection
filepath : file
log data file
"""
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df['page'] == 'NextSong'].copy()
# convert timestamp column to datetime
t = pd.to_datetime(df["ts"], unit='ms')
# insert time data records
time_data = (t, t.dt.hour, t.dt.day, t.dt.week, t.dt.month, t.dt.year, t.dt.weekday)
column_labels = ('start_time', 'hour', 'day', 'week', 'month', 'year', 'weekday')
time_df = pd.DataFrame.from_dict(dict(zip(column_labels, time_data)))
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[["userId", "firstName", "lastName", "gender", "level"]]
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# convert dataframe timestamp column to datetime
df["ts"] = pd.to_datetime(df["ts"], unit='ms')
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = [index+1, row.ts, row.userId, row.level, songid, artistid, row.sessionId, row.location, row.userAgent]
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""Load song_data and log_data files and execute respective function with each file.
Parameters
----------
cur : cursor
cursor of psycopg2 database connection.
conn : connection
connection of psycopg2
filepath : string
directory of files
func : def
function for processing of each file
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root,'*.json'))
for f in files :
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
conn = psycopg2.connect("host=127.0.0.1 dbname=sparkifydb user=student password=student")
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()